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Why Study Polynomial Equations?

– fundamental mathematical objects

– powerful modelling tools

– ubiquitous in Science and Engineering (often hidden)

Systems and Control Signal Processing Computational Biology Kinematics/Robotics
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Polynomial root-finding has a long and rich history. . .

Egypt Babylon Euclid Diophantus Al-Khwarizmi
(3000BCE-300BCE) (3000BCE-539BCE) (fl. 300BCE) (c200-c284) (c780-c850)

Zhu Shijie Pierre de Fermat René Descartes Isaac Newton Gottfried Leibniz
(c1260-c1320) (c1601-1665) (1596-1650) (1643-1727) (1646-1716)
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Etienne Bézout
(1730-1783)

Carl Friedrich Gauss
(1777-1755)

Jean-Victor Poncelet
(1788-1867)

Evariste Galois
(1811-1832)

Arthur Cayley
(1821-1895)

Leopold Kronecker
(1823-1891)

Edmond Laguerre
(1834-1886)

James J. Sylvester
(1814-1897)

Francis S. Macaulay
(1862-1937)

David Hilbert
(1862-1943)
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. . . leading to Algebraic Geometry and Computer Algebra

– large body of literature

– emphasis not (anymore) on solving equations

– computer algebra: symbolic manipulations (e.g., Gröbner Bases)

– numerical issues!

Wolfgang Gröbner
(1899-1980)

Bruno Buchberger
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Back to the roots! Let’s use linear algebra!?

– comprehensible and accessible language

– intuitive geometric interpretation

– computationally powerful framework

– well-established methods and stable numerics
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Eigenvalue decompositions are at the core of root-finding

Eigenvalue equation
Av = λv

and eigenvalue decomposition

A = VΛV−1

Enormous importance in (numerical) linear algebra and apps

– ‘understand’ the action of matrix A

– at the heart of a multitude of applications: oscillations,
vibrations, quantum mechanics, data analytics, graph theory,
and many more
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From eigenvalues to roots . . . and back

Characteristic Polynomial
The eigenvalues of A are the roots of

p(λ) = |A− λI |

Companion Matrix
Solving

q(x) = 7x3 − 2x2 − 5x + 1 = 0

leads to  0 1 0
0 0 1

−1/7 5/7 2/7

 1
x
x2

 = x

 1
x
x2
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The Sylvester Matrix is used for finding common roots
of multiple univariate polynomials

Consider two polynomial equations

f (x) = x3 − 6x2 + 11x − 6 = (x − 1)(x − 2)(x − 3)
g(x) = −x2 + 5x − 6 = −(x − 2)(x − 3)

Common roots if |S(f , g)| = 0

S(f , g) =


−6 11 −6 1 0

0 −6 11 −6 1

−6 5 −1 0 0
0 −6 5 −1 0
0 0 −6 5 −1

 James Joseph Sylvester
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Sylvester’s construction can be understood from



1 x x2 x3 x4

f (x)=0 −6 11 −6 1 0
x ·f (x)=0 −6 11 −6 1
g(x)=0 −6 5 −1
x ·g(x)=0 −6 5 −1
x2·g(x)=0 −6 5 −1




1 1
x1 x2

x2
1 x2

2

x3
1 x3

2

x4
1 x4

2

 = 0

where x1 = 2 and x2 = 3 are the common roots of f and g
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The vectors in the Vandermonde-like null space K obey a ‘shift
structure’: 

1
x
x2

x3

 x =


x
x2

x3

x4


The Vandermonde-like null space K is not available directly,
instead we compute Z , for which ZV = K . We now have

KD = K

ZVD = ZV

leading to the generalized eigenvalue problem

ZV = ZVD
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Realization Theory Essentials

(A, B, C, D)
u y

State-space formulation of linear dynamical system:

{
xk+1 = Axk + Buk

yk = Cxk + Buk
with

 xk ∈ Rn

uk ∈ Rm

yk ∈ Rp

Controllability and Observability Matrices:

Ci =
[

B AB . . . Ai−1B
]

Oi =
[

CT (CA)T . . . (CAi−1)T
]T

and the corresponding Gramians:

P = CC∗
Q = O∗O

that solve the Lyapunov equations

APA∗ − P = −BB∗

A∗QA− Q = −C∗C

Impulse Response: Markov parameters gk

gk =

{
D k = 0

CAk−1B k > 0

Transfer function:

G(q) =
∑

k gkq
−k

= C(qI− A)−1B + D
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Linear Realization Theory

Impulse response experiment: Markov parameters gk

gk =

{
D k = 0
CAk−1B k > 0

Hankel matrix from data:

H =


g1 g2 g3 g4 . . .

g2 g3 g4 . . .
. . .

g3 g4 . . .
. . .

. . .

g4 . . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

 = OC

rank(H) = McMillan Degree

Andrei Andreyevich Markov

Leopold Kronecker
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Realization Theory – Algorithm

Algorithm (Realization Theory)

input: Markov parameters
gk , k = 0, . . . ,K

output: (Minimal order) realization
(Ar ,Br ,Cr ,Dr )

1 The matrix Dr is easily found as

Dr = g0.

2 Construct the (block-)Hankel matrix Hi ,j

Hi ,j =


g1 g2 g3 g4 . . .

g2 g3 g4 . . .
. . .

g3 g4 . . .
. . .

. . .

g4 . . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
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Realization Theory – Algorithm

1 Perform an SVD on Hi ,j = UΣVT and take

Oi = UΣ1/2,

Cj = Σ1/2VT .

The rank of the block Hankel matrix, the minimal order of the
underlying system, is equal to the number of nonzero singular
values.

2 Cr is formed from the first p rows of Oi , while Br is formed
from the first m columns of Cj .
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Realization Theory – Algorithm

1 From the observability matrix

OiA = Oi ,

Ar can be calculated as

Ar =
(
Oi

)†Oi .

Analogously, Ar can also be calculated as

|Cj (Cj |)† .
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Generalizing the Sylvester matrix to the multivariate case
leads to the Macaulay matrix

Consider the system

p(x , y) = x2 + 3y2 − 15 = 0
q(x , y) = y − 3x3 − 2x2 + 13x − 2 = 0

Matrix representation of the system: Macaulay matrix M


1 x y x2 xy y2 x3 x2y xy2 y3

p(x ,y) −15 1 3
x ·p(x ,y) −15 1 3
y ·p(x ,y) −15 1 3
q(x ,y) −2 13 1 −2 −3
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p(x , y) = x2 + 3y2 − 15 = 0
q(x , y) = y − 3x3 − 2x2 + 13x − 2 = 0

Continue to enlarge the Macaulay matrix M:

1 x y x2 xy y2 x3 x2y xy2 y3 x4 x3y x2y2 xy3 y4 x5 x4y x3y2x2y3 xy4 y5→
d = 3

p − 15 1 3

xp − 15 1 3

yp − 15 1 3

q − 2 13 1 − 2 − 3

d = 4

x2p − 15 1 3

xyp − 15 1 3

y2p − 15 1 3

xq − 2 13 1 − 2 − 3

yq − 2 13 1 − 2 − 3

d = 5

x3p − 15 1 3

x2yp − 15 1 3

xy2p − 15 1 3

y3p − 15 1 3

x2q − 2 13 1 − 2 − 3

xyq − 2 13 1 − 2 − 3

y2q − 2 13 1 − 2 − 3

↓ .
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.
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– Macaulay coefficient matrix M:

M =

[ × × × × 0 0 0
0 × × × × 0 0
0 0 × × × × 0
0 0 0 × × × ×

]

– solutions generate vectors in null space

MK = 0

– number of solutions m = nullity

Multivariate Vandermonde
basis for the null space:

1 1 . . . 1

x1 x2 . . . xm

y1 y2 . . . ym

x2
1 x2

2 . . . x2
m

x1y1 x2y2 . . . xmym

y2
1 y2

2 . . . y2
m

x3
1 x3

2 . . . x3
m

x2
1 y1 x2

2 y2 . . . x2
mym

x1y2
1 x2y2

2 . . . xmy2
m

y3
1 y3

2 . . . y3
m

x4
1 x4

2 . . . x4
4

x3
1 y1 x3

2 y2 . . . x3
mym

x2
1 y

2
1 x2

2 y
2
2 . . . x2

my
2
m

x1y3
1 x2y3

2 . . . xmy3
m

y4
1 y4

2 . . . y4
m

...
...

...
...
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Select the ‘top’ m linear independent
rows of K

S1 K



1 1 . . . 1

x1 x2 . . . xm

y1 y2 . . . ym

x2
1 x2

2 . . . x2
m

x1y1 x2y2 . . . xmym

y2
1 y2

2 . . . y2
m

x3
1 x3

2 . . . x3
m

x2
1 y1 x2

2 y2 . . . x2
mym

x1y2
1 x2y2

2 . . . xmy2
m

y3
1 y3

2 . . . y3
m

x4
1 x4

2 . . . x4
4

x3
1 y1 x3

2 y2 . . . x3
mym

x2
1 y

2
1 x2

2 y
2
2 . . . x2

my
2
m

x1y3
1 x2y3

2 . . . xmy3
m

y4
1 y4

2 . . . y4
m

...
...

...
...
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Shifting the selected rows gives (shown for 3 columns)

1 1 1
x1 x2 x3
y1 y2 y3

x2
1 x2

2 x2
3

x1y1 x2y2 x3y3

y2
1 y2

2 y2
3

x3
1 x3

2 x3
3

x2
1 y1 x2

2 y2 x2
3 y3

x1y
2
1 x2y

2
2 x3y

2
3

y3
1 y3

2 y3
3

x4
1 x4

2 x4
4

x3
1 y1 x3

2 y2 x3
3 y3

x2
1 y

2
1 x2

2 y
2
2 x2

3 y
2
3

x1y
3
1 x2y

3
2 x3y

3
3

y4
1 y4

2 y4
3

.

.

.

.

.

.

.

.

.


→ “shift with x”→



1 1 1
x1 x2 x3
y1 y2 y3

x2
1 x2

2 x2
3

x1y1 x2y2 x3y3

y2
1 y2

2 y2
3

x3
1 x3

2 x3
3

x2
1 y1 x2

2 y2 x2
3 y3

x1y
2
1 x2y

2
2 x3y

2
3

y3
1 y3

2 y3
3

x4
1 x4

2 x4
4

x3
1 y1 x3

2 y2 x3
3 y3

x2
1 y

2
1 x2

2 y
2
2 x2

3 y
2
3

x1y
3
1 x2y

3
2 x3y

3
3

y4
1 y4

2 y4
3

.

.

.

.

.

.

.

.

.


simplified:

1 1 1
x1 x2 x3
y1 y2 y3

x1y1 x2y2 x3y3

x3
1 x3

2 x3
3

x2
1 y1 x2

2 y2 x2
3 y3

[ x1
x2

x3

]
=


x1 x2 x3

x2
1 x2

2 x2
3

x1y1 x2y2 x3y3

x2
1 y1 x2

2 y2 x2
3 y3

x4
1 x4

2 x4
4

x3
1 y1 x3

2 y2 x3
3 y3
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– finding the x-roots: let Dx = diag(x1, x2, . . . , xs), then

S1 KDx = Sx K ,

where S1 and Sx select rows from K wrt. shift property

– reminiscent of Realization Theory



26/43

We have
S1 KDx = Sx K

However, K is not known, instead a basis Z is computed that satisfies

ZV = K

Which leads to

(SxZ )V = (S1Z )VDx



27/43

It is possible to shift with y as well. . .

We find
S1KDy = SyK

with Dy diagonal matrix of y -components of roots, leading to

(SyZ )V = (S1Z )VDy

Some interesting results:

– same eigenvectors V !

– (SyZ )−1(S1Z ) and (SxZ )−1(S1Z ) commute
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Algorithm

1 Fix a monomial ordering scheme

2 Construct coefficient matrix M to sufficiently large dimensions

3 Compute basis for nullspace of M: nullity s and Z

4 Find s linear independent rows in Z

5 Choose shift function, e.g., x

6 Solve the GEVP
(S2Z )V = (S1Z )VDx

S1 selects linear independent rows in Z; S2 the rows that are ‘hit’ by
the shift

(S1Z and S2Z can be rectangular as long as S1Z contains s linear
independent rows)
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The null space is an nD state sequence

The null space of the Macaulay matrix is the interface between
polynomial system and nD state space description

– nD state-space model (for n = 2)

v(k + 1, l) = Axv(k , l)
v(k, l + 1) = Ayv(k , l)

– null space of Macaulay matrix: nD state sequence | | | | | | | | | |
v00 v10 v01 v20 v11 v02 v30 v21 v12 v03

| | | | | | | | | |

T

=

 | | | | | | |
v00 Axv00 Ayv00 · · · A3

xv00 A2
xAyv00 AxA

2
yv00 A3

yv00

| | | | | | |

T
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– shift-invariance property, e.g., for y :
−v00−
−v10−
−v01−
−v20−
−v11−
−v02−

AT
y =


−v01−
−v11−
−v02−
−v21−
−v12−
−v03−

 ,

– corresponding nD system realization

v(k + 1, l) = Axv(k , l)
v(k , l + 1) = Ayv(k , l)

v(0, 0) = v00

– choice of basis null space leads to different system realizations

– eigenvalues of Ax and Ay invariant: x and y components of roots
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Roots at infinity? Mind the Gap!

– dynamics in the null space of M(d) for increasing degree d

– nilpotency gives rise to a ‘gap’

– mechanism to count and separate affine from infinity
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Roots at infinity lead to nD descriptor systems

Weierstrass Canonical Form decouples affine/infty[
v(k + 1)
w(k − 1)

]
=
[

A 0
0 E

] [
v(k)
w(k)

]

nD descriptor state-space model

v(k + 1, l) = Axv(k, l)
v(k, l + 1) = Ayv(k, l)

w(k − 1, l) = Exw(k, l)
w(k, l − 1) = Eyw(k, l)

with nilpotent Ex and Ey
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Polynomial root-finding is a question in linear algebra and
multidimensional realization theory

– Solving multivariate polynomials

– Macaulay formulation makes it a linear algebra question
– Realization theory in null space of Macaulay matrix
– nD autonomous (descriptor) state-space models

– Decisions made based upon (numerical) rank

– # roots (nullity)
– # affine roots (column reduction)

– Mind the Gap phenomenon: affine vs. infinity roots

– Not discussed

– multiplicity of roots
– column-space based method
– over-constrained systems
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Polynomial Optimization Problems are EVPs

min
x ,y

x2 + y2

s. t. y − x2 + 2x − 1 = 0

Lagrange multipliers give conditions for optimality:

L(x , y , z) = x2 + y2 + z(y − x2 + 2x − 1)

we find
∂L/∂x = 0 → 2x − 2xz + 2z = 0
∂L/∂y = 0 → 2y + z = 0
∂L/∂z = 0 → y − x2 + 2x − 1 = 0
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Observations:

– everything remains polynomial

– system of polynomial equations

– shift with objective function to find minimum/maximum

Let
AxV = xV

and
AyV = yV

then find min/max eigenvalue of

(A2
x + A2

y )V = (x2 + y2)V
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Recent advances in the Macaulay spirit

Computing state-recursion polynomials
Batselier K., Wong N., “Computing the state recursion polynomials for
discrete linear mD systems”, Automatica, vol. 64, pp.254-261, 2016.

“The CPD appears to be the joint EVD of the multiplication tables”
Vanderstukken J., Stegeman A., De Lathauwer L., “Systems of
polynomial equations, higher-order tensor decompositions and
multidimensional harmonic retrieval: A unifying framework.” (two-part
paper), KU Leuven ESAT-STADIUS TR 17-133 and TR 17-134, 2017.

Block-shifting with an objective function
Vermeersch C., De Moor B., “Globally Optimal Least-Squares ARMA
Model Identification is an Eigenvalue Problem”, IEEE Control Systems
Letters, 3:4, 1062–1067, 2019.

Exploring the non-autonomous case
Vergauwen B., Agudelo M., De Moor B., “Order estimation of two
dimensional systems based on rank decisions”, IEEE CDC 2018.

Adapting the choice of basis for improved numerical stability
Telen S., Mourrain B., Van Barel M., “Solving Polynomial Systems via
Truncated Normal Forms”, SIAM J Matrix Anal Appl, 39:3, 1421–1447,
2018.
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Conclusions

– bridging the gap between algebraic geometry and engineering

– finding roots: linear algebra and realization theory!

– extension to over-constrained systems

– polynomial optimization: extremal eigenvalue problems
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Open Problems

Many challenges remain

– exploiting sparsity and structure of M

– efficient (more direct) construction of the eigenvalue problem

– algorithms to find the minimizing solution efficiently (inverse
power method?)

Dreesen P., Batselier K., De Moor B., “Multidimensional
realisation theory and polynomial system solving”, Int J Control,
91:12, pp. 2692–2704, 2018. (arXiv 1805.02253)
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Thank you for listening!
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