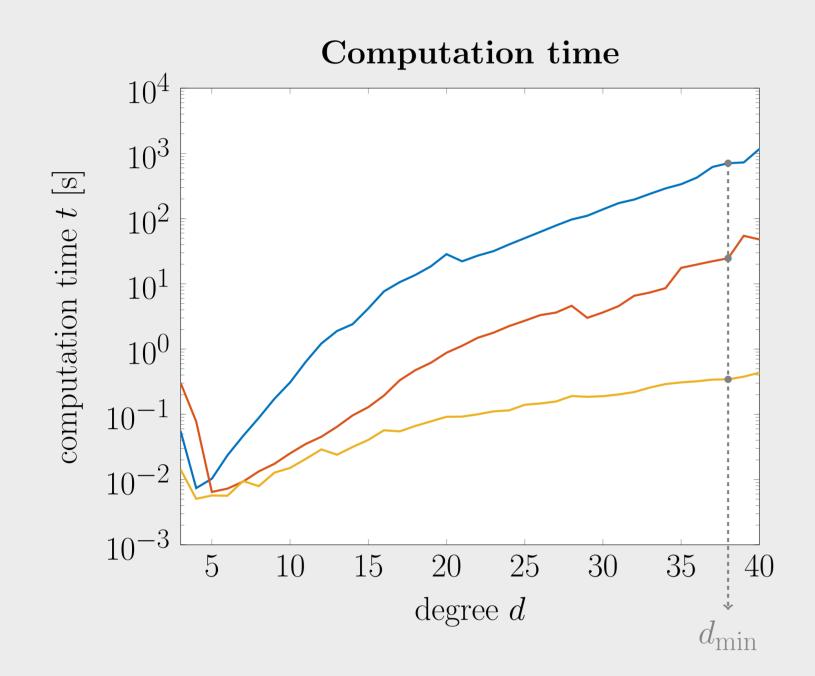
A Recursive Algorithm to Compute a Numerical Basis of the Null Space of the Block Macaulay Matrix

Poster for the 29th ERNSI Workshop in System Identification Christof Vermeersch[†] and Bart De Moor[†]

A recursive and sparse algorithm pushes the block Macaulay matrix to larger problems!



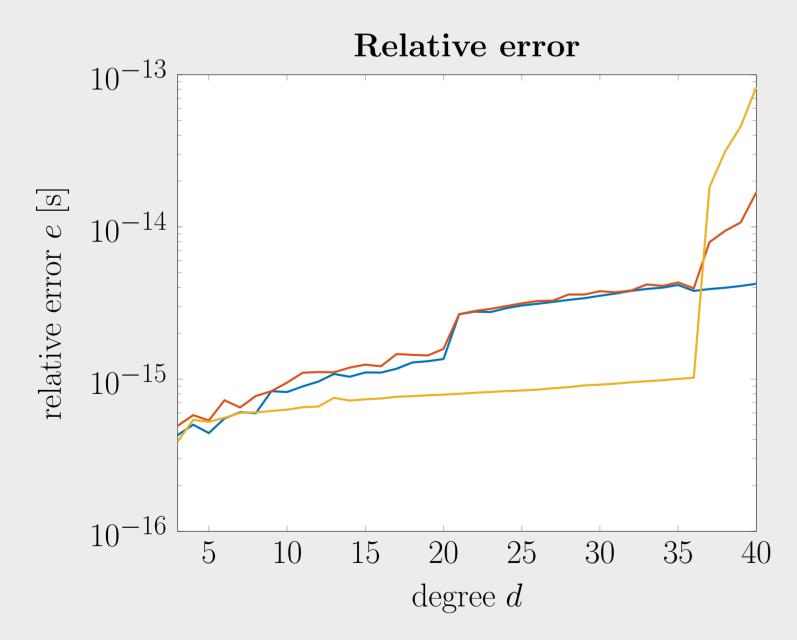


Figure 1: The computation time t and relative error $e = \frac{|M_d Z_d|}{|M_d|}$ of the full (-), recursive (-), and sparse (-) algorithm to compute a numerical null space of the block Macaulay matrix of the ARMA model identification example

[†] KU Leuven, Department of Electrical Engineering (ESAT), Center for Dynamical Systems, Signal Processing, and Data Analytics (STADIUS), Kasteelpark Arenberg 10, 3001 Leuven, Belgium (christof.vermeersch@esat.kuleuven.be, bart.demoor@esat.kuleuven.be)

Multiparameter Eigenvalue Problems

A multiparameter eigenvalue problem (MEP) extends the typical structure of the well-known standard eigenvalue problem (SEP)

$$\left(\sum_{\{\omega\}} A_{\omega} \lambda^{\omega}\right) z = 0, \quad z \neq 0$$

Examples:

- Linear 2-EP: $(A_{00} + A_{10}\lambda_1 + A_{01}\lambda_2)z = 0$
- Nonlinear 3-EP: $(A_{000} + A_{200}\lambda_1^2 + A_{013}\lambda_2\lambda_3^3)z = 0$

Block Macaulay Approach

We shift the MEP with the different eigenvalues and construct the block Macaulay matrix from the shifted coefficient matrices

The null space of the block Macaulay matrix is block multishift-invariant

$$\begin{bmatrix}
\frac{z}{z\alpha} \\
\frac{z\gamma}{z\alpha^2} \\
z\alpha^2 \\
z\alpha\gamma \\
z\gamma^2
\end{bmatrix}
\xrightarrow{\alpha}
\begin{bmatrix}
\frac{z}{z\alpha} \\
\frac{z\gamma}{z\alpha^2} \\
z\alpha\gamma \\
z\alpha\gamma \\
z\gamma^2
\end{bmatrix}$$

$$S_1KD_{\alpha} = S_{\alpha}K$$
(SEP)

In practice, we need to use a **numerical basis** of this null space

$$S_1 Z T D_{\alpha} = S_{\alpha} Z T$$

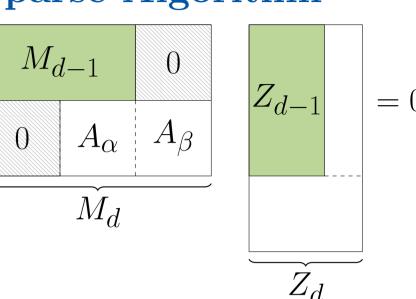
$$T D_{\alpha} T^{-1} = (S_1 Z)^{\dagger} (S_{\alpha} Z)$$

Problem statement

The computation of the numerical basis is a bottle neck, both in computation time and memory!

Recursive and Sparse Algorithm

The required degree d of the numerical basis Z_d is not known in advance, hence we need to build the block Macaulay matrix M_d recursively and update Z_d in every step



- 1. Enlarge the block Macaulay matrix M_{d-1} to M_d
- 2. Compute the update V_d from the new blocks A_{α} and A_{β}

$$V_d = \text{NULL}\left(\left[A_{\alpha}Z_{d-1}^2 \ A_{\beta}\right]\right)$$

3. Build a new numerical basis Z_d via the update V_d

$$Z_d = \begin{bmatrix} Z_{d-1} V_d^1 \\ V_d^2 \end{bmatrix}$$

A **sparse** implementation avoids the explicit construction of the block Macaulay matrix M_d and only stores the coefficient matrices

Numerical Example

We consider the identification of an ARMA model via an MEP, as discussed by Vermeersch and De Moor (2019)

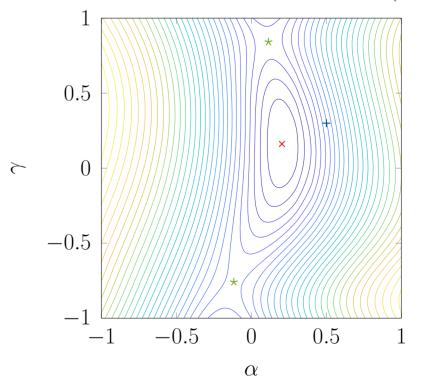


Figure 2: This contour plot shows the cost function of the identification problem, with the original, minimal and local parameters

Table 1: Numerical results of the identification problem (d = 38)

Algorithm	Time	Memory	Relative error
full orth.	3737.4s	2.1 GB	3.9060×10^{-15}
recursive orth.	144.1s	2.1 GB	1.8234×10^{-14}
sparse orth.	4.3s	0.1 GB	1.8234×10^{-14}