Additional structure in the JADE algorithm for Independent Component Analysis

Pieter Penninckx, Lieven De Lathauwer

Monopoli, 2010
Aim

To improve the accuracy of the JADE algorithm for applications in Independent Component Analysis
Problem formulation

Independent Component Analysis

The JADE algorithm

The JADE+ algorithm

Experimental comparison
Independent component analysis

Aim

source signals \rightarrow Mixing \rightarrow sensor signals

Given sensor signals

Asked source signals

Indeterminacy number of signals, order, scaling
Independent component analysis
Signals as random numbers
Independent component analysis
Data model

\[X = MS \]
Cumulant tensors are higher order statistics

\[Y \in \mathbb{R}^N \text{ random vector} \]

Cumulant tensors

- first order mean \[\mathbb{R}^N \]
- second order covariance matrix \[\mathbb{R}^{N \times N} \]
- third order \[C^{(3)}_Y \] \[\mathbb{R}^{N \times N \times N} \]
- fourth order \[C^{(4)}_Y \] \[\mathbb{R}^{N \times N \times N \times N} \]
Cumulant tensors are supersymmetric

\((C_Y)_{i_1,\ldots,i_k} = (C_Y)_{\sigma(i_1,\ldots,i_k)}\)

for any permutation \(\sigma\)
The mode-\(k\) product of a tensor with a matrix

Example

\[
(\mathcal{T} \times_3 A)_{i,j,k,l} = \sum_m \mathcal{T}_{i,j,m,l} A_{m,k}
\]
Multilinearity of cumulant tensors

\[X = MS \]

\[C_X^{(K)} = C_{MS}^{(K)} = C_S^{(K)} \times_1 M \cdots \times_K M \]
Superdiagonal cumulant tensors

\[S = (s_1, \ldots, s_J) \]

Because \(s_1, \ldots, s_J \) are statistically independent, \(C_S \) is a superdiagonal tensor:
How to compute the mixing matrix M

$$X = MS \iff C_X^{(4)} = C_S^{(4)} \times_1 M \times_2 M \times_3 M \times_4 M$$
How to compute the mixing matrix M

$X = MS \iff C_X^{(4)} = C_S^{(4)} \times_1 M \times_2 M \times_3 M \times_4 M$

$S = M^\dagger X \iff C_S^{(4)} = C_X^{(4)} \times_1 M^\dagger \times_2 M^\dagger \times_3 M^\dagger \times_4 M^\dagger$

minimize ‘non-superdiagonal’
How to compute the mixing matrix M

$$C^{(4)}_{S} = C^{(4)}_{X} \times_{1} M^{\dagger} \times_{2} M^{\dagger} \times_{3} M^{\dagger} \times_{4} M^{\dagger}$$

$M^{\dagger} = U \Delta V$ \hspace{1cm} (SVD)

ΔV can be computed from second order statistics.

$Z := \Delta VX$

$UZ = U \Delta VX = M^{\dagger}X = S$

$$C^{(4)}_{S} = C^{(4)}_{UZ} = C^{(4)}_{Z} \times_{1} U \times_{2} U \times_{3} U \times_{4} U$$
The JADE algorithm
The JADE algorithm
The JADE algorithm
The core step of JADE is a Jacobi rotation

\[
\begin{pmatrix}
c & -s \\
s & c
\end{pmatrix}
\begin{pmatrix}
* & * \\
* & *
\end{pmatrix}
\begin{pmatrix}
c & s \\
-s & c
\end{pmatrix}
\]

\(c = \cos(\theta), \ s = \sin(\theta)\)

(cos 2\(\theta\), sin 2\(\theta\)): dominant eigenvector of a matrix
The core step of JADE is a Jacobi rotation

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & c & 0 & -s \\
0 & 0 & 1 & 0 \\
0 & s & 0 & c \\
\end{pmatrix}
\begin{pmatrix}
\ast & \ast & \ast & \ast \\
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & c & 0 & s \\
0 & 0 & 1 & 0 \\
0 & -s & 0 & c \\
\end{pmatrix}
\]

\[c = \cos(\theta), \ s = \sin(\theta)\]

(cos 2\(\theta\), sin 2\(\theta\)): dominant eigenvector of a matrix

sweep: iterate over all principal 2 \(\times\) 2 submatrices
Hidden additional structure

The J^2 matrix slices of $C_Z^{(4)} \in \mathbb{R}^{J \times J \times J \times J}$ are linear combinations of a set of J matrices.

$$C^Z = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix} = (E \ 0) \begin{pmatrix} \Lambda & 0 \\ 0 & 0 \end{pmatrix} (E \ 0)^T$$

$$= E \Lambda E^T$$

$$= E \Lambda^{1/2} \Lambda^{1/2} E^T$$
Hidden additional structure

\[T = \Delta \times_1 U \times_2 U \times_3 W \]
\(\Delta \) superdiagonal tensor, \(U, W \) orthogonal

\[T \times_1 U^{-1} \times_2 U^{-1} = \Delta \times_3 W = \]

\[T \times_1 U^{-1} \times_2 U^{-1} \times_3 W^{-1} = \Delta = \]
The JADE+ algorithm

while necessary do
 do one sweep for U: act on the first two modes
 update W: act on the third mode
end while
The JADE+ algorithm acts on the third mode

\[
\Delta \times_3 W =
\]

- take the ‘diagonal plane’ and normalise its rows
- take an orthogonal approximation of this
One sweep in the JADE+ algorithm

\[T_{\text{new}} = T_{\text{old}} \times_1 Q^{-1} \times_2 Q^{-1} \]

\(Q \) is rotation over angle \(\theta \)
\(\tan(\theta) \): root of polynomial of degree 4

One sweep: iterate over \(2 \times 2 \times 2 \) subtensors
Experimental comparison

If there is a difference in accuracy, then it is very small: as small as the difference in accuracy due to reducing the number of matrix slices.
Thank you!