MAC Algorithms

Prof. Bart Preneel
Katholieke Universiteit Leuven
bartDOTpreneel(AT)esatDOTkuleuvenDOTbe
http://www.esat.kuleuven.be/~preneel

August 2006

MAC Algorithms: overview

1. definition
2. applications
3. attacks
4. constructions
 - based on block ciphers
 - based on hash functions
 - dedicated MACs
 - based on authentication codes/universal hash functions

MAC = hash function with secret key

MAC: definition (1)

Message Authentication Code
= hash function with secret key:
1. description of h public
2. X arbitrary length \Rightarrow fixed length m (32...160 bits)
3. computation of $h_K(X)$ “easy” given X and K
4. computation of $h_K(X)$ “hard” given only X, even if a large number of pairs $\{X_i, h_K(X_i)\}$ is known

calculation of $h_K(X)$ without knowledge of secret key:
forgey
 - verifiable or not verifiable
 - selective or existential
MAC: definition (2)

A MAC is secure if, for an adversary who does not know K, it is computationally infeasible to perform an existential forgery under an adaptive chosen text attack.

A MAC is (ϵ,t,q,q',L) secure if, an adversary who does not know K, and

- can spend time t (operations),
- can obtain the MAC for q texts of this choice,
- and can observe the MAC for q' texts (not of his choice),

(each message of length L), cannot produce an existential forgery with probability of success larger than ϵ.

Applications

MAC versus digital signature:
- non-repudiation
- key management
+ performance/computational effort
+ size of MAC and of keys

- banking
- Internet security: IP security
- electronic purses + authorization for credit cards

Attack: exhaustive key search

try all values of the key K

- # $X, h_K(X)$ pairs $\approx k/m$
- # attempts $\approx 2^{k-1}$
- a recovered key is only valuable within its lifetime
- but allows for arbitrary forgery

long term security: 75...90 bits

Attack complexity: $[2^k, k/m, 0]$ or $[2^{2k/3}, 0, k/m, 0]$ with 2^k offline work

notation
work - known texts - chosen texts - on-line verifications

‘Attack’: guess MAC

success probability $\max(1/2^m, 1/2^k)$

but:
- not verifiable
- requires on-line verification

depending on application: $m, k \geq 32...64$

Attack complexity: $[0, 0, 0, \min(2^m, 2^k)]$
Attack: birthday forgery attack (1)

![Diagram of birthday forgery attack (1)]

- $H_0 = IV \ x_1$
- $H_1 = f(x_1) \ f$
- $H_2 = f(x_2) \ f$
- $H_3 = \text{output transformation}$

- $H_0 = IV \ x_1$
- $H_1 = f(x_1) \ f$
- $H_2 = f(x_2) \ f$
- $H_3 = \text{output transformation}$

unambiguous padding of input to multiple of block length divide input into blocks x_1, x_2, \ldots, x_t

Birthday forgery attack (2)

find (x, x'): $h(x) = g(H_t) = h(x') = g(H'_t)$

- internal collision: $H_t = H'_t$
- external collision: $H_t \neq H'_t$ but $g(H_t) = g(H'_t)$

note: if g is bijective, there are no external collisions

Lemma 1 An internal collision for an iterated MAC can be used for a forgery which requires only a single chosen text.

indeed: $h_K(x \| y) = h_K(x' \| y)$ and thus one can predict the 2nd MAC without knowing K

note: this does NOT work for an external collision.

Attack: birthday forgery attack (2b)

![Diagram of birthday forgery attack (2b)]

- $H_0 = IV \ x_1$
- $H_1 = f(x_1) \ f$
- $H_2 = f(x_2) \ f$
- $H_3 = \text{output transformation}$

unambiguous padding of input to multiple of block length divide input into blocks x_1, x_2, \ldots, x_t

Birthday forgery attack (3)

- internal memory (H_i): n bits
- MAC value: m bits

[Preneel-van Oorschot] forgery: $[0, 2^n/2, \leq 2^{n-m}, 0]$:

- internal collision after $2^{n/2}$ text-MAC pairs (by the birthday paradox)
- # external collisions is equal to $(2^{n/2})^2/2^{m+1} = 2^{n-m-1}$ (or 0 if g is a permutation)
- distinguish internal/external by simulating the attack of lemma 1 (fails with high probability for external collisions only; 2 chosen texts per collision)

small improvement: $[0, 2^{n/2}, \min(2^{n/2}, 2^{n-m}), 0]$
Birthday paradox

Given a set with S elements.
Choose r elements at random (with replacements), with $r \ll S$.
Find probability p that there at least two identical elements.

$$q = 1 - p = 1 - \frac{S - 1}{S} \cdot \frac{S - 2}{S} \cdots \frac{S - (r - 1)}{S} = \prod_{k=1}^{r-1} \left(1 - \frac{k}{S}\right)$$

$$\ln q = \sum_{k=1}^{r-1} \ln \left(1 - \frac{k}{S}\right) \approx -\sum_{k=1}^{r-1} \frac{k}{S} = -\frac{r(r-1)}{2S}$$

$$p = 1 - \exp \left(-\frac{r(r-1)}{2S} \right) \quad \text{if } r = \sqrt{S} : p = 39\%$$

birthday paradox: for $S = 365$ and $r = 23$, $p = 1/2$
intuition: number of pairs of elements is $r(r-1)/2$.

Birthday forgery attack (4)

Let h be an iterated MAC with n-bit chaining variable, m-bit result, a compression function f which behaves like a random function (for fixed x_i), and output transformation g.

An internal collision for h can be found using u known text-MAC pairs, where each text has the same substring of $s \geq 0$ trailing blocks, and v chosen texts.

$$u = \sqrt{2/((s + 1) \cdot 2^n/2}$$
$$v = 0 \text{ if the output transformation } g \text{ is a permutation or }$$
$$v = 2 \left(2^{n-m} (1 - \frac{1}{e}) + \left\lfloor \frac{n - 1 - \log_2(s + 1)}{m - 1} \right\rfloor \right),$$

Birthday forgery attack (5)

practical?

• not all environments allow for chosen texts
• optimization reduces number of known texts
• extension to key recovery is more dangerous

how to preclude? see later

Birthday forgery attack (6)

practical?

• not all environments allow for chosen texts
• optimization reduces number of known texts
• extension to key recovery is more dangerous

how to preclude? see later
MAC algorithms based on a block cipher

ISO 9797-1 (2001)

- 6 variants of CBC-MAC
- 3 padding schemes
 - padd with zeroes
 - padd with 1 (always) followed by zeroes
 - prepend length in bits and padd with zeroes

Other schemes

XOR MAC
PMAC
3GPP-MAC
XCBC

CBC-MAC: Algorithm 1 (1)

\[
\begin{align*}
E_{K_1}(x_1) \quad &\quad H_1 \quad x_2 \\
E_{K_1}(H_1) \quad &\quad H_2 \\
E_{K_1}(H_{t-1}) \quad &\quad G \\
h_{K_1}(x) \quad &\quad x_t
\end{align*}
\]

- proof of security for fixed length inputs by [Bellare-Kilian-Rogaway'94]
- \(m = 32 \ldots 64 \) bits

CBC-MAC: Algorithm 1 (2)

security with DES:

- key search: \([2^{56}, 2, 0, 0]\)
- key recovery using lc: \([2^{43}, 2^{43}, 0, 0]\)
- guess MAC: \([0, 0, 0, \min(2^{56}, 2^m)]\)
- birthday forgery attack (even if triple-DES):
 - \(m = 64 \): \([0, 2^{32}, 1, 0]\)
 - \(m = 32 \): \([0, 2^{32}, 2^{33}, 0]\)
- trivial forgery for \(m = 64 \) if no special operation for last block
- improved attack for \(m = 32 \): \([0, 2, 2^{16}, 0]\) [Knudsen97]
 much smaller than expected!

Why a special operation for the last block?

\(x \) consists of a single block

- \(\text{MAC}_{K}(x) \) is known
- then \(\text{MAC}_{K}(x || (x \oplus \text{MAC}_{K}(x))) = \text{MAC}_{K}(x) \).

\(x, x' \) consist of a single block

- \(\text{MAC}_{K}(x) \) and \(\text{MAC}_{K}(x') \) are known
- \(\text{MAC}_{K}(x || (x' \oplus \text{MAC}_{K}(x))) = \text{MAC}_{K}(x') \).

\(x, x', \) and \(Y \) fall on block boundaries

- \(\text{MAC}_{K}(x), \text{MAC}_{K}(x||Y), \) and \(\text{MAC}_{K}(x') \) are known
- \(\text{MAC}_{K}(x' || Y') = \text{MAC}_{K}(x || Y) \)
 if \(Y' = Y \oplus \text{MAC}_{K}(x) \oplus \text{MAC}_{K}(x') \).
Knudsen’s attack for $m < n$ (1)

Probabilistic variant of the attack

- 2 known texts: $\text{MAC}_K(x) = \alpha_m$ and $\text{MAC}_K(x') = \alpha'_m$
- output of last encryption = $\alpha_m || \beta_{n-m}$ and $\alpha'_m || \beta'_{n-m}$, with α, α' known and β, β' unknown.
- chosen texts: r pairs of the following form: $x || \alpha_m || \gamma_{n-m}$ and $x' || \alpha'_m || \gamma'_{n-m}$.
- input block for the last encryption (G) is of the form $0_m || (\beta \oplus \gamma)_{n-m}$ and $0_m || (\beta' \oplus \gamma')_{n-m}$.

Knudsen’s attack for $m < n$ (2)

- if for a pair $\beta \oplus \gamma = \beta' \oplus \gamma'$, the two MACs for that pair will be equal; this is easy to detect.
- this happens with probability 0.63 if $r = \sqrt{2^{n-m}}$
- based on the collision, we can compute $\beta \oplus \beta' := \gamma \oplus \gamma'$
- this leads to a forgery as follows:
 $\text{MAC}_K(x||Y) = \text{MAC}_K(x'||Y \oplus (\Delta \alpha_m || \Delta \beta_{n-m}))$
 with $\Delta \alpha = \alpha \oplus \alpha'$ and $\Delta \beta = \beta \oplus \beta'$.

2 known texts, $2 \cdot 2^{(n-m)/2} + 1$ chosen texts

CBC-MAC: Algorithm 2 (1)

RIPEMD-MAC [RIPE’93] + EMAC (DMAC) [Petrank-Rackoff’98]

CBC-MAC: Algorithm 2 (2)

Security with DES:

- key search: $[2^{56}, 2, 0, 0]$
- guess MAC: $[0, 0, 0, \min(2^{56}, 2^m)]$
- birthday forgery attack (even if triple-DES):
 - $m = 64$: $[0, 2^{32}, 1, 0]$
 - $m = 32$: $[0, 2^{32}, 2^{33}, 0]$

Much smaller than expected!
CBC-MAC: Algorithm 3 (retail MAC) (1)

Key recovery attack on retail MAC (1)

- collect 2^{32} known text-MAC pairs (e.g., of 2 blocks)
- with probability 0.39 there is a collision (x, x')
- find the keys K_1 for which the input to the last triple encryption (G) is the same for x and x'
 - with high probability, there will be only 1 solution
 - work factor: $2 \cdot 2^{56}$ encryptions
- use K_1 to compute G' and G''
- find the key K_2: 2^{56} encryptions

$2^{32.5}$ known texts and $3 \cdot 2^{56}$ encryptions

CBC-MAC: Algorithm 3 (retail MAC) (2)

Key recovery attack on retail MAC (2)

- one known text $\alpha = \text{MAC}_K(x)$, say of 2 blocks x_1, x_2
- guess K_1
 - compute the value of G (input of the last triple encryption)
 - choose $x'_1 \neq x_1$ and x'_2 such that the same value for G is obtained, or $x'_2 = E_{K_1}(x'_1) \oplus G$
 - ask a MAC verification device: $\text{MAC}_K(x'_1 || x'_2) = \alpha$?
 - if yes, the guess for K_1 was right (with high probability)
- use K_1 to compute G' and G''
- find the key K_2: 2^{56} encryptions

1 known text, $3 \cdot 2^{56}$ encryptions and 2^{56} MAC verifications

security with DES and $m = 64$:
- key search: $[2^{112}, 2, 0, 0]$
- guess MAC: $[0, 0, 0, \min(2^{112}, 2^m)]$
- birthday forgery attack: $[0, 2^{32}, 1, 0]$ (or $[0, 2^{32}, 2^{33}, 0]$)
- improved key recovery [Preneel-van Oorschot-Knudsen]
 - $[3 \cdot 2^{56}, 2^{32}, 0, 0]$
 - $[3 \cdot 2^{56}, 1, 0, 2^{56}]$

solution: triple-DES in first and last round?
CBC-MAC: Algorithm 4 (Mac-DES) (1)

[Knudsen-Preneel’98]

\[E^{K_1}(x_1) \rightarrow H_1 \rightarrow E^{K_1}(x_2) \rightarrow H_2 \rightarrow \cdots \rightarrow E^{K_1}(x_t) \rightarrow h_K(x) \]

CBC-MAC: Algorithm 4 (Mac-DES) (2)

security with DES and \(m = 64 \):

- key search: \([2^{112}, 2, 0, 0]\)
- guess MAC: \([0, 0, 0, \min(2^{112}, 2^m)]\)
- birthday forgery attack:
 \([0, 2^{32}, 1, 0]\), for \(m = 32 \): \([0, 2^{32}, 2^{33}, 0]\)
- improved key recovery [Coppersmith-Mitchell-Knudsen00]:
 \([2^{59}, 2^{33}, 3 \cdot 2^{49}, 0]\), for \(m = 32 \): \([2^{64}, 0, 2^{63}, 2^{57}]\)

stronger against key recovery than MAC Algorithm 3

XOR MAC

[Bellare-Guérin-Rogaway’95]

\[\Sigma, N \text{ with } \Sigma = c_0 \oplus c_1 \oplus c_2 \oplus \cdots \oplus c_t \]

- stronger security reduction than CBC-MAC (linear decrease of security with number of blocks)
- incremental and parallelizable
- twice as slow as CBC-MAC (for 32-bit length field)
- MAC twice as long

OCB mode and PMAC (1)

[Rogaway-Bellare-Black-Krovetz 01]

- authenticated encryption: indistinguishability under chosen plaintext attack and authenticity of ciphertexts
- randomized encryption using a nonce \(N \): nonce can be used only once but does not need to be unpredictable
- one block cipher key (but 3 keys)
- any input length: no need for multiple of block length
- fully parallel, preprocessing possible
- minimal ciphertext expansion: MAC and nonce
- only two extra block cipher calls

PMAC: variant with only MAC optimization: [Rogaway04] (Asiacrypt 2004)
OCB mode and PMAC (2)

\[
\begin{align*}
\Sigma := p_1 \oplus \cdots \oplus p_{t-1} \oplus c_t \| 0^* \oplus Y_t \\
\text{MAC} := \text{first bits of } E_K(\Sigma \oplus Z_t)
\end{align*}
\]

security bound: \(O\left(\frac{q^2}{2^n} + \frac{1}{2^n}\right) \) with \(q' \) total number of blocks

OCB mode and PMAC (3)

input: \(p_1 \ldots p_{t-1} p_t \) (\(p_t \) can be incomplete)

1. \(L := E_K(0^n) \) and \(R := E_K(N \oplus L) \)
2. for \(i := 1 \) to \(t \) do \(Z_i := L_i \oplus R \)
3. for \(i := 1 \) to \(t - 1 \) do \(c_i := E_K(p_i \oplus Z_i) \oplus Z_i \)
4. \(Y_t := E_K(\text{len}(p_t) \oplus L_{-1} \oplus Z_t) \)
5. \(c_t := Y_t \oplus p_t \)
6. \(\Sigma := p_1 \oplus \cdots \oplus p_{t-1} \oplus c_t \| 0^* \oplus Y_t \)
7. \(\text{MAC} := \text{first bits of } E_K(\Sigma \oplus Z_t) \)

\(L_1 := L, L_i := L_{i-1} \cdot x^{\text{ntz}(i)}, L_{-1} := L \cdot x^{-1} \)

multiplication in \(GF(2^{128}) \) with \(f(x) = x^{128} + x^7 + x^2 + x + 1 \)

ntz(\(i \)): number of trailing zeroes in binary representation of \(i \)

3GPP-MAC and XCBC

3GPP-MAC:

CBC-MAC where MAC = leftmost \(m \) bits of \(E_{K'}(\Sigma) \) with \(\Sigma := c_0 \oplus c_1 \oplus c_2 \oplus \cdots \oplus c_t \)

Birthday attack still applies \([0, 2^{32}, 2^{33}, 0]\) if \(m = 64 \).

XCBC [Black-Rogaway-00]: 3-key construction

CBC with XOR of \(K_2 \) to final input block \((H_{t-1}) \) if complete block and \(K_3 \) if padding was needed

XCBCX [Black-Rogaway-00]: extra XOR of result with \(K_2/K_3 \) may increase strength against exhaustive key search à la DES-X

OMAC [Iwata-Kurosawa-03] renamed as CMAC by NIST:

derive \(K_2/K_3 \) from \(K \) (à la PMAC)

Birthday attack still applies

\(L := E_K(0^n) \) is used by banks as key confirmation value

Impact of AES

- Exhaustive key search no longer relevant, hence MAC Algorithms 3 and 4 are not needed
- Main ‘concern’ for CBC-MAC variants (only exception is XOR MAC) is birthday forgery attack with \(2^{64} \) known texts
Countermeasures against birthday attack

Best attacks known for AES are indicated (= conjected security level)

- Increase the size of the internal memory n (Algorithm 5) $[0, 2^{84}, 2, 0]$ (double computation)
- Randomize the first block of the data (R-MAC) [Semanko01] $[0, 2^{84}, 2, 0]$ (double MAC length)
- Truncation: improves security against key recovery but adds very limited protection against birthday forgery
- Prepending the length: does not work
- Prepending a serial number prior to padding (with length before or after) does not work if serial numbers are in clear [Brincat-Mitchell01]: $[0, 1, 2^{65}, 0]$
- Derive key in output transformation from a serial number

MAC: based on a hash function (MDC) (1)

Secret prefix: $h(K_1||x)$ K_1 x

Prepend length to avoid that one can compute $h(K_1||x||y)$ from $h(K_1||x)$ without knowing K_1

Secret suffix: $h(x||K_2)$ x K_2

Off-line attacks on h

MAC: based on a hash function (MDC) (2)

Envelope: $h(K_1||x||K_2)$ K_1 x K_2

- Provable security based on pseudo-randomness of compression function f
- Forgery (for MD5): 2^{64} known texts
- Key recovery: 2^{66} known texts and 2^{20} chosen texts

MDx-MAC (SHA-1-MAC, RIPEMD-160-MAC)

- Stronger pseudo-random properties: key in each iteration
- K_1 and K_2 in separate blocks: precludes key recovery

MAC: based on a hash function (MDC) (3)

HMAC: $h_K(X) = h(K_2||h(K_1||x))$

Security proof:

- h collision resistant for secret IV (*)
- f secure MAC if H_{i-1} is secret key
- Need also f pseudo-random function if H_{i-1} is secret key for efficient implementation

Problem: security proof no longer valid after attack by Wang et al. (*)

Fixed by [Bellare06]: it is sufficient to assume that f pseudo-random function if H_{i-1} is secret key
(then HMAC is PRF and thus a secure MAC)
Dedicated MACs

- D. Davies and D. Clayden [1983]
- key size $k = 64$, internal memory $m = 64$, result $n = 32$
- typical speed: 2 Mbyte/s (50% of MD4)
- special mode for messages ≥ 1024 bytes

best known attacks:
- forgery: 2^{24} messages of 1 Kbyte
- key recovery: 2^{32} chosen texts, $2^{44} \ldots 2^{51}$ multiplications
- several large classes of weak keys

Other dedicated MAC algorithms

- KHF (cryptanalyzed by Wagner)

fixed length input
- COMP-128 (GSM example)
- CAVE (CDMA)
- Secure-ID
- Two-Track-MAC

Information-theoretic authentication

authentication codes (AC): unconditionally secure
= independent of computational power of opponent!!!

- research area since mid 1970s
- widely believed to be impractical:
 - use key only once
 - sometimes very large keys
 - security level against forgery is at most half the key size

in 1990s series of new schemes:
 polynomial evaluation, Toeplitz, bucket hashing, MMH, UMAC, . . .

Information-theoretic authentication (2)

attacks:
- impersonation: P_i
- substitution: P_s
- deception: $P_d = \max(P_i, P_s)$

simplified model:
- authentication without secrecy
- authenticator (\simeq MAC) added to text
- use key only once
Bounds [Simmons 84]

Theorem [Authentication Channel Capacity]

\[P_i \geq 2^{-I(M;K)} \]
\[P_s \geq 2^{-H(K|M)} \] (\(\geq 2 \) distinct inputs)

Note: \(H(K) = H(K|M) + I(K;M) \)

Theorem [square root bound]

\[P_d \geq \frac{1}{\sqrt{2^{H(K)}}} \]

Example: polynomial authentication code

- key \(k', k \in GF(2^r) \)
- split \(x \) into \(x_1, x_2, \ldots, x_t \), with \(x_i \in GF(2^r) \)
- note \(\ell = t \cdot r \)

\[g(x) = k' + \sum_{i=1}^{t} x_i \cdot k^i \]

for a random AC: \(\Pr(\text{success}) = P_i = 1/2^r \)

forgery after 1 text/AC pair: \(\Pr(\text{success}) = P_s = (\ell/r)/2^r \)

\(P_i = 1/2^{80} \) and \(P_s = 1/2^{64} \): 160-bit key
message shorter than 640 Kbyte

Bounds

bad news

- The square root bound can only be tight if the inputs are very small (compared to the key)

good news

- Wegman & Carter 1977
 use authentication codes with \(P_s > P_i \)
 this leads to much shorter keys
- Johansson et al. 1993 \(P_s > P_i \)
 \(\Rightarrow \) the number of plaintexts grows exponentially with the number of keys.

How to use Authentication Codes in practice?

1. Distill essential property of compression phase
2. Replace key addition by pseudo-random function

Credits: the subsequent slides (50-52 and 55) are heavily inspired by Dan Bernstein’s presentation on poly1305-AES: http://cr.yp.to/talks.html#2005.02.15
Step 1: Distill essential property

family of functions $g_k : A \rightarrow B$ with $a = |A|$ and $b = |B|$.

Let ϵ be any positive real number.

g_k is an ϵ-almost universal class (or $\epsilon - AU$ class) G of hash functions if $\forall x, x' \neq x \in A$

$$\Pr_k \{g_k(x) = g_k(x')\} \leq \epsilon.$$

g_k is an ϵ-almost \times universal class (or $\epsilon-A\times U$ class) G of hash functions if $\forall x, x' \neq x \in A$ and $\forall \Delta \in B$

$$\Pr_k \{g_k(x) = g_k(x') \times \Delta\} \leq \epsilon.$$

Step 1: Distill essential property (2)

functions that are ϵ-AU

- $g_k(x) = \Sigma_{i=0}^t x_i \cdot k_i$ with $k, x_i \in \text{GF}(2^r)$
- $g_k(x) = \Sigma_{i=0}^t x_i \cdot k_i$ with $k, x_i \in \text{GF}(p)$

functions that are ϵ-A\timesU

- $g_k(x) = \Sigma_{i=1}^t x_i \cdot k_i$ with $k, x_i \in \text{GF}(2^r)$ ($\times = \oplus$)
- $g_k(x) = \Sigma_{i=1}^t x_i \cdot k_i$ with $k, x_i \in \text{GF}(p)$ ($\times = +$)
- same but $x_i \in \text{GF}(2^{32})$ and $p = 2^{127} - 1$ [Bernstein99]
- same but $x_i \in \text{GF}(2^{64})$ and $p = 2^{64} - 59$ but need to re-encode x_i [Krovetz-Rogaway00] - PolyR
- same but $x_i \in \text{GF}(2^{128})$ and $p = 2^{130} - 5$ [Bernstein02] - Poly1305
- same but $x_i \in \text{GF}(2^{96})$ and $p = 2^{127} - 1$ [Kohno-Viega-Whiting03] - CWC
- $g_k(x) = \Sigma_{i=1}^t x_i \cdot k_i \mod p$ with $k_i, x_i \in \text{GF}(p)$ ($\times = +$)

Step 2: Replace addition $k' +$

Choose pseudorandom function family $f_{k'} = f_{k'}(g_k(x))$ hard to distinguish from random function

- example: AES$_{k'}(x)$, MD5($k||x$) (for fixed input length)

Option 1: MAC$_{k||k'}(x) = f_{k'}(g_k(x))$ with $g \epsilon$-AU

Option 2: MAC$_{k||k'}(x) = f_{k'}(n) \ast g_k(x)$ with $g \epsilon$-A\timesU need nonce but better security

Option 3: MAC$_{k||k'}(x) = f_{k'}(n||g_k(x))$ with $g \epsilon$-AU need nonce and larger input of f

Optimization:

use f to derive k and k' from a common master key

Example: Poly1305-AES [Bernstein02-05]

Option 2: MAC$_{k||k'}(x) = f_{k'}(n) + g_k(x)$

- $f(n) = \text{AES}_{k'}(n)$
- $g_k(x) = \Sigma_{i=1}^t x_i \cdot k_i \mod p$
- $k, x_i \in \text{GF}(2^{128})$ and $p = 2^{130} - 5$

If an attacker adaptively chooses $C \leq 2^{64}$ messages (max ℓ bytes each) and obtains their MAC values, attempts F forgeries:

$$1 - \Pr\{\text{all forgeries rejected}\} \leq 14F[\ell/16]/2^{106}.$$

(here we assume AES is perfect)

Example: $\ell = 1536$, $C = F = 2^{64}$: $1 - \Pr \leq 3 \cdot 10^{-10}$

Note: with option 1 we have $1 - \Pr \leq 8C(C + F)[\ell/16]/2^{106}$

With $C = F = 2^{32}$: $3.4 \cdot 10^{-10}$
Performance

very high speeds
- ALRED and Alpha-MAC: 2.5 faster than AES
- poly1305-AES: 4-5 cycles/byte
- UMAC: up to 1-2 cycles/byte for long messages
- VMAC: up to 0.5 cycles/byte on Athlon 64 for long messages

compare to MAC Algorithms (on Pentium):
- HMAC, MDx-MAC: 13.1 cycles/byte for SHA-1 and 15.8 cycles/byte for RIPEMD-160
- CBC-MAC: 43 cycles/byte for DES and 15 cycles/byte for AES

Performance (2)

- parallelizable
- if long keys are needed (inner product): low key agility, i.e., inefficient for short messages (poly1305-AES is an exception)

conclusion: attractive, but be aware that unconditional security is lost

HMAC and CBC-MAC: based on universal hash functions?
can also be studied in this model

EMAC: Option 1 with \(g_k(x) = \text{AES}_k(AES_k(x_1) \oplus x_2) \oplus x_3 \) and \(f(x) = \text{AES}_{k'}(x) \)

NMAC-MD5: Option 1 with \(g_k(x) = \text{MD5}(k||x) \) and \(f_k'(x) = \text{MD5}(k'\|x) \)

HMAC-MD5: same as above with key optimization

HMAC-MD4-DJB: Option 3 with \(g_k(x) = \text{MD5}(k||x) \) and \(f_k'(n||x) = \text{MD5}(k'\|n\||x) \)

Conclusions

- Still an active research area — need for security bounds and extreme performance
- With AES/Rijndael, MACs based on block ciphers may increase importance compared to HMAC
- Few dedicated proposals
- Some applications may start using authentication codes (= universal hash functions)