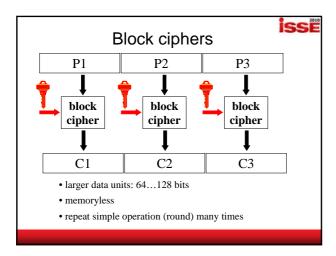
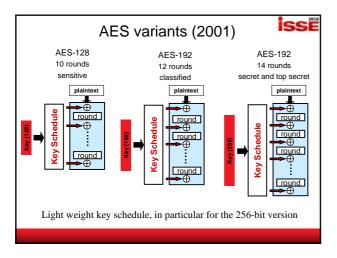


Cryptography ≠ security

crypto is only a tiny piece of the security puzzle

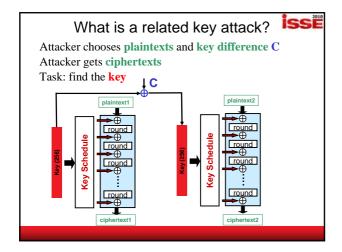

- but an important one

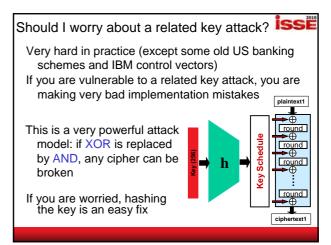
most systems break elsewhere

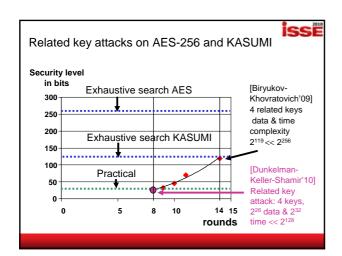

- incorrect requirements or specifications
- implementation errors
- application level
- social engineering (layer 8)

Outline

- Context
- Cryptography
 - Block ciphers
 - Stream ciphers
 - Hash functions
 - Public-key cryptology
- Protocols
- Hacks

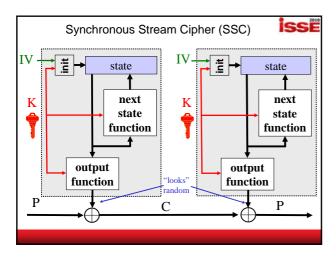





AES: security

155E

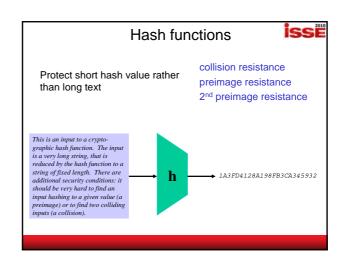
- cryptanalysis: no attack has been found that can exploit this structure (in spite of the claimed algebraic attack [Courtois'02])
- implementation level attack
 - cache attack precluded by bitsliced implementations or by special hardware support
 - fault attack requires special countermeasures

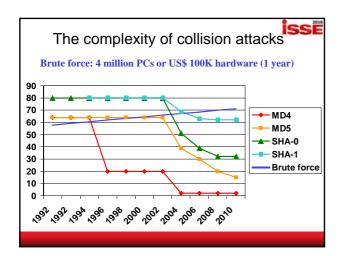


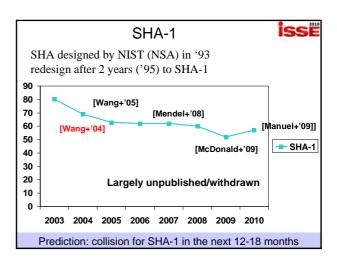
KASUMI (2002)

issE

- Widely used in all 3G phones
- Present in 40% of GSM phones but not yet used
- Good news: related key attacks do not apply in in the GSM or 3G context

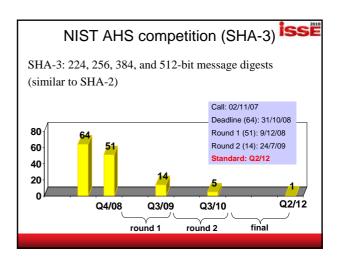

GSM

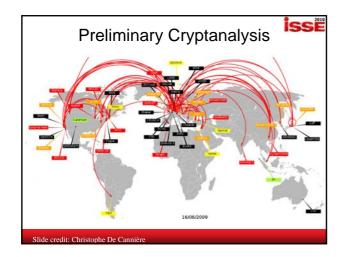

iss²⁰¹⁰


- A5/1 weak
 - [Barkan+03] requires seconds (software not available so requires math)
 - [Nohl10]: Kraken = 2 Terabyte of Rainbow tables http://reflextor.com/trac/a51
- A5/2 trivially weak (milliseconds)
- A5/3 (=Kasumi) seems ok but not yet used (even if in 1.2 billion out of of 3 billion handsets)
- · Even simpler attacks
 - eavesdrop after base station (always cleartext)
 - switch off encryption (can be detected)

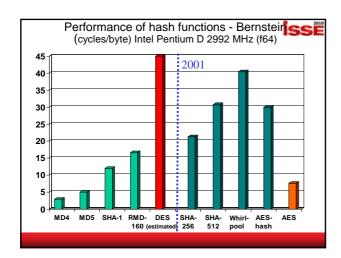
GSM

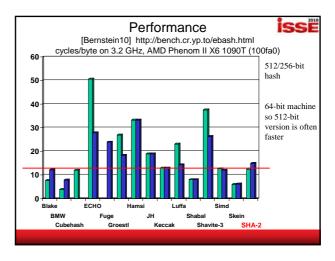
- growing number of open source tools to intercept: GnuRAdio, Airprobe, OpenBTS
- but needs more work (1-2 years?)
- be careful when rolling out 2-factor authentication via SMS
- intercepting mobile phone traffic is illegal

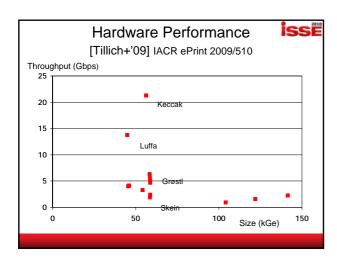

Alternatives in ISO 10118-3

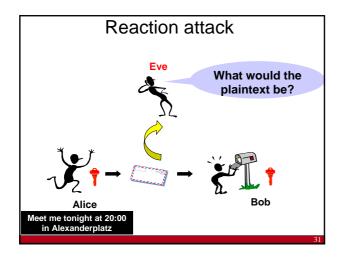

SHA-2 current standard for NIST

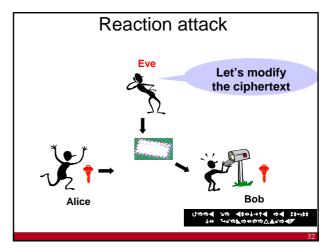
- So far no real progress in cryptanalysis

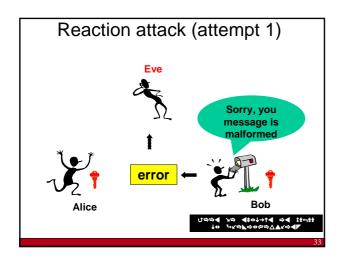

Whirlpool: not too fast

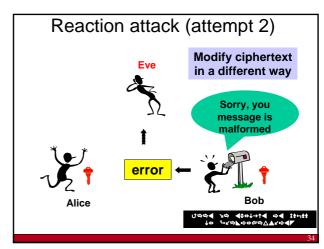

RIPEMD-160: 80-bit security against collisions

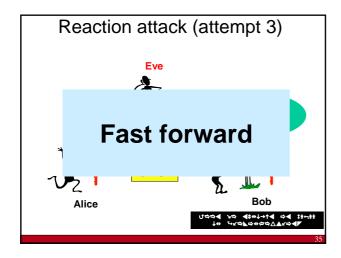


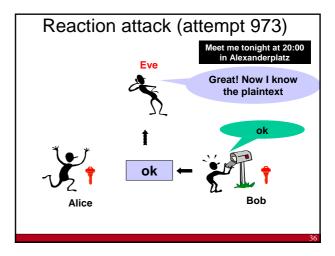









Issues arisen during Round 2 • security: - few real attacks but some weaknesses - new design ideas harder to validate - very few provable properties • performance: roughly as fast or faster than SHA-2 - SHA-2 gets faster every day - widely different results for hardware and software • software: large difference between high end and embedded • hardware: FGPA and ASIC • diversity = third criterion for the final • NIST expects that SHA-2 and SHA-3 will co-exist

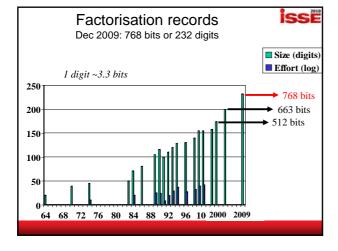


Reaction attacks: well known

- [Bleichenbacher98] PKCS #1v1.5 1 million chosen ciphertexts; improved by [Klima-Pokorny-Rosa03]
- [Manger01] OAEP PKCS #1v2 a few 1000 chosen ciphertexts
- [Bellare-Kohno-Namprempre 02]: SSH
- [Vaudenay'02] SSL, IPsec, WTLS...
- [Canvel-Hiltgen-Vaudenay-Vuagnoux03]: SSL/TLS
- Solution:
 - don't send error messages (bad engineering practice)
 - authenticated encryption: MAC the ciphertexts and do not decrypt if MAC is incorrect

Authenticated encryption

- needed for network security, but only fully understood by crypto community around 2000 (too late)
- dump CBC mode
- standards:
 - CCM: CTR + CBC-MAC [NIST SP 800-38C]
 - GCM: CTR + GMAC [NIST SP 800-38D]
- · both are suboptimal but patent free
- properties
 - associated data
 - parallelizable
 - on-line
 - provable security


Reaction attack strikes again

- 17 Sept. 2010: major attack on ASP.NET that used CBC-AES without authenticating the ciphertext
- · affects millions of web apps
- 28 Sept. 2010: patch available

Outline

- Context
- Cryptography
 - Block ciphers
 - Stream ciphers
 - Hash functions
 - Public-key cryptology
- Protocols
- Hacks

Factorisation

iss²⁰¹⁰

record in May'07: 21039-1 (313 digits) using SNFS

new record in Dec'09: 768 bits (or 231 digits) using NFS

267 instructions or 2000 "2.2GHz AMD Opteron" years

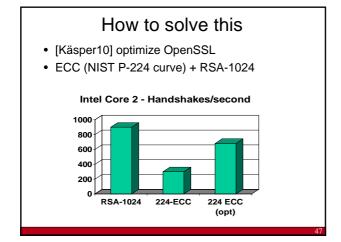
1024 bits:

- 1000 times harder than 768 bits
- feasible in academic community in period 2015-2017

Factorisation Governments/organized crime want to factor multiple integers – will use dedicated hardware hardware factoring machine: TWIRL [TS'03] (The Weizmann Institute Relation Locator) initial R&D cost of ~\$20M 512-bit RSA keys can be factored with a device costing \$5K in about 10 minutes 1024-bit RSA keys can be factored with a device costing \$10M in about 6 weeks ECRYPT statement on key lengths and parameters http://www.ecrypt.eu.org 896-bit factorization in 2012, 1024-bit factorization in 2015?

Cryptographic protocols

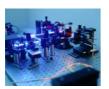
- · SK entity authentication
 - be suspicious of "optimized" RFID protocol with a "security proof"
- secret key establishment based on public keys: essential for Internet protocols
- · quantum cryptography
- advanced protocols: multi-party computation


44

Diffie-Hellman/STS offers one major advantage

- forward secrecy: compromise of long term private keys does not expose past session keys
 - Motivation: Google/China incident
- but more expensive
 - 3 moves rather than 1
 - more public operations
 - incompatible with TLS optimizations such as session caching, session tickets, false start

46

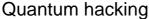

SSL/TLS

- · SSL/TLS well studied
- · OpenSSL widely used
- Yet
 - reconnection flaw
 - MiTM by governments
 - 100+ names per certificate

48

Quantum cryptography

- · Security based
 - on the assumption that the laws of quantum physics are correct
 - rather than on the assumption that certain mathematical problems are hard

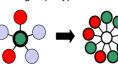


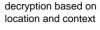
Quantum cryptography

- no solution for entity authentication problem (bootstrapping needed with secret keys)
- · no solution (yet) for multicast
- dependent on physical properties of communication channel
- cost
- implementation weaknesses (side channels)

50

http://www.iet.ntnu.no/groups/optics/qcr/





Advanced protocols

- · multi-party computation
- · threshold crypto
- privacy protecting data mining
- · social and group crypto

distance bounding

"you can trust it because you don't have to"

stop building databases with policies – go for privacy by design with true data minimization

Multi-party computation becomes "truly practical"

- · Similar to first public key libraries 20 years ago
 - EU: CACE project (Computer Aided Cryptography Engineering), www.cace-project.eu
 - US: Brown Univ. + UCSD (Usenix 2010)
- Examples
 - efficient zero-knowledge proofs
 - 2-party computation of AES (Bristol)
 - secure auction of beetroots in Denmark (BRICS)
 - oblivious transfer for road pricing (COSIC)

Anonymous credentials

- Chaum in the 1980s: science fiction
 - Proof knowledge of a signature
 - Rather than possession of a private signing key
 - Can also prove predicates on attributes
 - Verifier gains no additional information
 - Except in case of abuse judge can intervene
 - Secure even if Issuer and Verifier collude (single/multiple show)
- Concrete protocols
 - Chaum-Pedersen and Brands: Credentica U-Prove (Microsoft)
 - Camenish-Lysyanskaya Idemix (IBM)
 - DAA in TPM

Recent announcement: patents will be freed

Internet voting

- Helios [Adida'08] www.heliosvoting.org
 - sophisticated cryptographic protocols: open auditopen source
- Spring 2009: rector elections in UC, Belgium
- August 2010: adopted by IACR
- . .
 - remote voting
 - as everything is encrypted, log files can be made public so disputes can be resolved easily
- --
- coercion risk
- Trojan or virus can easily undermine these elections (proof of concept [Desmedt'09])

not suitable for public sector elections

Fully homomorphic encryption • From E(x) and E(y), you can compute E(x+y), E(c.x) and E(x.y) without decrypting • Many cool applications including cloud computing • [Gentry'09] ideal lattices = breakthrough • First implementations require only seconds [Vercauteren-Smart'10], [Gentry-Halevi'10].... - but to ciphertext for 1 bit is 3 million bits and public key is several Mbyte

Protocols: conclusions

- more modularity and less complexity would be desirable, but large body of legacy standards and code that is hard to change
- public key operations are still a bottleneck at the server side
- advanced protocols can bring added value from the simple (password-based AKE) to more complex multi-party interactions

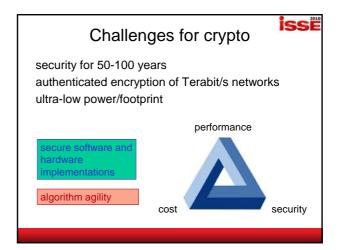
"Hacked"

- · May 2010: Car systems
 - Experimental Security Analysis of a Modern Automobile
- May 2010: EMV
 - Chip and PIN broken
- · July 2010: ATM machines
 - Jackpotting Automated Teller Machines Redux
- · July 2010: stuxnet worm SCADA systems
- Sept 2010: HDCP

Bad news: the CA mess

[Eckersley10] "An observatory for the SSLiverse"

10.8M servers start SSL handshake


- · 4.3M use valid certificate chains
- 1482 CA certs trustable by Windows or Firefox
- 1.4M unique valid leaf certs
 - 300K signed by one GoDaddy cert
- 80 distinct keys used in multiple CA certs
- several CAs sign the IP address 192.168.1.2 (reserved by RFC 1918)
- 2 leaf certs have 508-bit keys
- Debian OpenSSL bug (2006-2008)
 - resulted in 28K vulnerable certs
 - fortunately only 530 validate
 - only 73 revoked

How can we fix this mess?

Good news: DNSSec

- long and winding road (started in 1997)
- several attacks (e.g. cache poisoning [Kaminsky08])
- several TLDs signed 2005-2009
- live in July 2010 for root
- · Versign will sign .com early 2011
- http://www.root-dnssec.org/
- http://ispcolumn.isoc.org/2006-08/dnssec.html

İSSE

Challenges for advanced crypto

- privacy enhancing technologies
- linking crypto with physical world
 - biometrics, physical uncloneable functions
- · distributed secure execution
- whitebox cryptography
- · crypto for nanotechnology

Conclusion

- interesting and challenging mathematical problems, w.r.t. foundations and engineering aspects
- make sure that you can upgrade your crypto algorithms and protocols
- lattice based crypto is not a silver bullet for the cloud
- · multiparty computation becomes practical

2010 was an exciting crypto year

... and IACR uses remote e-voting

The end Thank you for your attention