1. Introduction

2. Distributed MPC descriptions
 - Game theory
 - Suboptimal MPC

3. Distributed control example

4. Coupled constraints
 - Constraint augmentation
 - Constraint manager

5. Conclusions and future work
Electrical power distribution

[Map of the United States showing electrical power distribution systems and interconnections.]
Chemical plant integration

Material flow

Energy flow
MPC at the large scale

Decentralized Control

- Traditional approach
 - Wealth of literature from the early 1970’s on improved decentralized control
 - Well-known that poor performance may result if the interconnections are not negligible

MPC at the large scale

Decentralized Control

- Traditional approach
 - Wealth of literature from the early 1970’s on improved decentralized control
 - Well-known that poor performance may result if the interconnections are not negligible

Centralized Control

- Steady increase in available computational power has provided the opportunity for centralized control
- Many practitioners view centralized control of large, networked systems as impractical and unrealistic
Nomenclature: consider two interacting subsystems

<table>
<thead>
<tr>
<th>Objective functions</th>
<th>$V_1(u_1, u_2), \ V_2(u_1, u_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>$V(u_1, u_2) = w_1 V_1(u_1, u_2) + w_2 V_2(u_1, u_2)$</td>
</tr>
<tr>
<td>decision variables</td>
<td>$u_1 \in \Omega_1, \ u_2 \in \Omega_2$</td>
</tr>
</tbody>
</table>
Nomenclature: consider two interacting subsystems

<table>
<thead>
<tr>
<th>Objective functions</th>
<th>(V_1(u_1, u_2), \ V_2(u_1, u_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>(V(u_1, u_2) = w_1 V_1(u_1, u_2) + w_2 V_2(u_1, u_2))</td>
</tr>
<tr>
<td>decision variables</td>
<td>(u_1 \in \Omega_1, \ u_2 \in \Omega_2)</td>
</tr>
<tr>
<td>Decentralized Control</td>
<td>(\min_{u_1 \in \Omega_1} \tilde{V}1(u_1) \quad \min{u_2 \in \Omega_2} \tilde{V}_2(u_2))</td>
</tr>
</tbody>
</table>
Nomenclature: consider two interacting subsystems

<table>
<thead>
<tr>
<th>Decision Variables</th>
<th>Objective Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_1 \in \Omega_1$, $u_2 \in \Omega_2$</td>
<td>$V_1(u_1, u_2), V_2(u_1, u_2)$</td>
</tr>
</tbody>
</table>

and

| Objective Functions | $V(u_1, u_2) = w_1 V_1(u_1, u_2) + w_2 V_2(u_1, u_2)$ |

| Decentralized Control | $\min_{u_1 \in \Omega_1} \tilde{V}_1(u_1)$, $\min_{u_2 \in \Omega_2} \tilde{V}_2(u_2)$ |

| Noncooperative Control | $\min_{u_1 \in \Omega_1} V_1(u_1, u_2)$, $\min_{u_2 \in \Omega_2} V_2(u_1, u_2)$ |

(Nash equilibrium)
Nomenclature: consider two interacting subsystems

<table>
<thead>
<tr>
<th>Objective functions</th>
<th>$V_1(u_1, u_2), \ V_2(u_1, u_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>$V(u_1, u_2) = w_1 V_1(u_1, u_2) + w_2 V_2(u_1, u_2)$</td>
</tr>
<tr>
<td>decision variables</td>
<td>$u_1 \in \Omega_1, \ u_2 \in \Omega_2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decentralized Control</th>
<th>$\min_{u_1 \in \Omega_1} \tilde{V}1(u_1) \min{u_2 \in \Omega_2} \tilde{V}_2(u_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noncooperative Control</td>
<td>$\min_{u_1 \in \Omega_1} V_1(u_1, u_2) \min_{u_2 \in \Omega_2} V_2(u_1, u_2)$</td>
</tr>
<tr>
<td>(Nash equilibrium)</td>
<td></td>
</tr>
<tr>
<td>Cooperative Control</td>
<td>$\min_{u_1 \in \Omega_1} V(u_1, u_2) \min_{u_2 \in \Omega_2} V(u_1, u_2)$</td>
</tr>
<tr>
<td>(Pareto optimal)</td>
<td></td>
</tr>
</tbody>
</table>
Nomenclature: consider two interacting subsystems

<table>
<thead>
<tr>
<th>Objective functions</th>
<th>(V_1(u_1, u_2), ; V_2(u_1, u_2)) and (V(u_1, u_2) = w_1 V_1(u_1, u_2) + w_2 V_2(u_1, u_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>decision variables</td>
<td>(u_1 \in \Omega_1, ; u_2 \in \Omega_2)</td>
</tr>
<tr>
<td>Decentralized Control</td>
<td>(\min_{u_1 \in \Omega_1} \tilde{V}1(u_1)), (\min{u_2 \in \Omega_2} \tilde{V}_2(u_2))</td>
</tr>
<tr>
<td>Noncooperative Control</td>
<td>(\min_{u_1 \in \Omega_1} V_1(u_1, u_2)), (\min_{u_2 \in \Omega_2} V_2(u_1, u_2))</td>
</tr>
<tr>
<td>(Nash equilibrium)</td>
<td></td>
</tr>
<tr>
<td>Cooperative Control</td>
<td>(\min_{u_1 \in \Omega_1} V(u_1, u_2)), (\min_{u_2 \in \Omega_2} V(u_1, u_2))</td>
</tr>
<tr>
<td>(Pareto optimal)</td>
<td></td>
</tr>
<tr>
<td>Centralized Control</td>
<td>(\min_{u_1, u_2 \in \Omega_1 \times \Omega_2} V(u_1, u_2))</td>
</tr>
<tr>
<td>(Pareto optimal)</td>
<td></td>
</tr>
</tbody>
</table>
Noninteracting systems

\[V_2(u) \]

\[V_1(u) \]

\(b \)

\(a \)

\(n, d, p \)
Weakly interacting systems
Moderately interacting systems

\[V_1(u) \]

\[V_2(u) \]

Point labels: b, p, a, d, n

Axes: u_1, u_2

Stewart and Rawlings
Cooperative MPC with Coupled Constraints 9 / 33
Strongly interacting (conflicting) systems
Strongly interacting (conflicting) systems

\[V_2(u) \]

\[V_1(u) \]
Geometry of cooperative vs. noncooperative MPC

\[\begin{align*}
V_1(u) & \geq 4 \\
V_2(u) & \\
\end{align*} \]
Geometry of cooperative vs. noncooperative MPC

Stewart and Rawlings

Cooperative MPC with Coupled Constraints 12 / 33
Cooperative Model Predictive Control

\[V(u_1, u_2) \]

\[u_1 \]

\[u_2 \]

MPC 1

MPC 2
Cooperative Model Predictive Control

\[V(u_1, u_2) \]

\[u_1, u_2 \]

MPC 1

\[u^0 \]

MPC 2

\[u^0 \]
Cooperative Model Predictive Control

\[V(u_1, u_2) \]

\[u_1 \]

\[u_2 \]

\[u_0 \]

\[u_1^* \]

\[u_2^* \]

\[u_0^* \]

MPC 1

\[u_1^* \]

MPC 2

\[u_2^* \]
Cooperative Model Predictive Control

\[V(u_1, u_2) \]

\[u_1 \]

\[u_2 \]

\[u^*_1 \]

\[u^*_2 \]

\[u^0 \]

\[u_1 \]

\[u_2 \]

MPC 1

MPC 2

Stewart and Rawlings

Cooperative MPC with Coupled Constraints
Cooperative Model Predictive Control

\[V(u_1, u_2) \]

\[u_0 \]

MPC 1

\[u^1 \]

MPC 2

\[u^1 \]
Cooperative Model Predictive Control

\[V(u_1, u_2) \]

\[u_0, u_1, u_2 \]

MPC 1

\[u^1 \]

MPC 2

\[u^1 \]
Cooperative Model Predictive Control

\[V(u_1, u_2) \]

MPC 1
\[u_1^* \]

MPC 2
\[u_2^* \]
Cooperative Model Predictive Control

$V(u_1, u_2)$

u_0

u_1

u_2

MPC 1

MPC 2

u^*_1

u^*_2
Cooperative Model Predictive Control

\[V(u_1, u_2) \]

\[
\begin{align*}
V(u_1, u_2) &= \text{Objective function} \\
\text{MPC 1} &\quad u^2 \\
\text{MPC 2} &\quad u^2
\end{align*}
\]
Cooperative Model Predictive Control

\[V(u_1, u_2) \]

MPC 1
\[u^2 \]

MPC 2
\[u^2 \]

Stewart and Rawlings
Properties established by suboptimal MPC theory

- **Stability**: Given a feasible initial condition, adding the stability constraint
 \[\|u_i\| \leq d_i \|x_i(0)\| \]
 gives nominal closed-loop stability for any number of information exchanges

\[1\] Venkat et al. [2006a] and Venkat et al. [2006b]
Properties established by suboptimal MPC theory1

- **Stability:** Given a feasible initial condition, adding the stability constraint
 \[\|u_i\| \leq d_i \|x_i(0)\| \]
 gives nominal closed-loop stability for any number of information exchanges

- **Cost decrease:** Plant-wide objective is decreased at each iterate

1Venkat et al. [2006a] and Venkat et al. [2006b]
Cooperative control as suboptimal MPC

Properties established by suboptimal MPC theory1

- **Stability:** Given a feasible initial condition, adding the stability constraint
 \[\|u_i\| \leq d_i\|x_i(0)\| \]
 gives nominal closed-loop stability for any number of information exchanges

- **Cost decrease:** Plant-wide objective is decreased at each iterate

- **Convergence:** Cooperative MPC produces centralized control performance at the limit of infinite iterates

1Venkat et al. [2006a] and Venkat et al. [2006b]
Two reactors with separation and recycle

\[\begin{align*}
D, x_{Ad}, x_{Bd} & \quad \text{MPC}_3 \\
F_r, x_{Ar}, x_{Br} & \quad A \rightarrow B \\
F_r, x_{Ar}, x_{Br} & \quad B \rightarrow C \\
F_{m}, x_{Am}, x_{Bm} & \quad A \rightarrow B \\
F_{m}, x_{Am}, x_{Bm} & \quad B \rightarrow C \\
F_{purge} & \\
H_b & \quad \text{MPC}_3
\end{align*} \]
Two reactors with separation and recycle

\begin{align*}
H_m &\quad 0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \quad 35 \quad 40 \\
H_b &\quad 0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \quad 35 \quad 40 \\
F_1 &\quad 0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \quad 35 \quad 40 \\
D &\quad 0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \quad 35 \quad 40
\end{align*}

Stewart and Rawlings

Cooperative MPC with Coupled Constraints 16 / 33
Two reactors with separation and recycle

Performance comparison

<table>
<thead>
<tr>
<th></th>
<th>Cost ($\times 10^{-2}$)</th>
<th>Performance loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized MPC</td>
<td>1.75</td>
<td>-</td>
</tr>
<tr>
<td>Decentralized MPC</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>Noncooperative MPC</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>Cooperative MPC (1 iterate)</td>
<td>2.2</td>
<td>25.7%</td>
</tr>
<tr>
<td>Cooperative MPC (10 iterates)</td>
<td>1.84</td>
<td>5%</td>
</tr>
</tbody>
</table>
Coupled constraints

- Feed distribution between MPC controllers

\[F_0 + F_1 \leq F_T \]
Geometry of coupled constraints

Feasible region cannot be separated into Cartesian product of subspaces

$$\mathcal{F} = (\Omega_1 \times \cdots \times \Omega_M) \cap \Delta$$
Coupled constraints give suboptimal points of attraction

\[\Phi(u_1, u_2) \]

Relaxation of coupled constraints guarantees feasibility only at convergence

\[u^0 \]

\(^2\text{Cheng et al. [2007]}\)
Geometry of coupled constraints

- Coupled constraints give suboptimal points of attraction

\[\Phi(u_1, u_2) \]

\[u_1 \]

\[u_2 \]

\[u^* \]

\[u^0 \]

\[\Phi(u_1, u_2) \]

\(^2\) Cheng et al. [2007]
Coupled constraints give suboptimal points of attraction

Relaxation of coupled constraints guarantees feasibility only at convergence2

2Cheng et al. [2007]
Coupled constraints

- Resource sharing between subsystems usually couples only a small subset of inputs.
- These coupled inputs can be included in every subsystem as a decision variable.

\[\tilde{u}_i = \begin{bmatrix} u_{U,i} \\ u_C \end{bmatrix} \]

- Augmenting each subsystem’s decision variables with coupled inputs gives decoupled constraints for each subsystem.

\[
\begin{bmatrix}
D_1 & D_2 & \cdots & D_C
\end{bmatrix}
\begin{bmatrix}
u_{U,1} \\
u_{U,2} \\
\vdots \\
u_C
\end{bmatrix} \leq \begin{bmatrix} d_1 \\
d_2 \\
\vdots \\
d_C
\end{bmatrix} \rightarrow
\begin{bmatrix} D_i & D_C \end{bmatrix}
\begin{bmatrix} u_{U,i} \\ u_C \end{bmatrix} \leq \begin{bmatrix} d_i \\ d_C \end{bmatrix}
\]
Two reactors with separation and recycle

\[\Delta H_r \]

\[\Delta H_m \]

\[\Delta F_0 \]

\[\Delta F_1 \]
Two reactors with separation and recycle

When using cooperative control alone, the inputs F_0 and F_1 get stuck at a suboptimal point, leading to steady-state offset

Performance comparison

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
<th>Performance loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized MPC</td>
<td>15.391</td>
<td>-</td>
</tr>
<tr>
<td>Cooperative MPC (1 iterate)</td>
<td>20.656</td>
<td>30.7%</td>
</tr>
<tr>
<td>with augmented inputs</td>
<td>15.402</td>
<td>0.071%</td>
</tr>
</tbody>
</table>
Coupled constraints

- Decision variable augmentation is reasonable only when constraint coupling is sparse.
- Some applications have nonsparse coupling, such as highly integrated plants with state constraints.
- In these cases, the optimization in each subsystem approaches the centralized optimization.
- Instead, we can optimize the constraint slack available to each subsystem in an auxiliary optimization.
We want to solve the optimization problem

\[
\min_u \ V(u) \\
\text{s.t.} \quad Du \leq d
\]

Instead we can solve the bilevel optimization

\[
\min_{\hat{d}} V(u(\hat{d})) \\
\text{s.t.} \quad \sum \hat{d}_i = d \\
u(\hat{d}) = \arg\{\min_u V(u) \text{ s.t. } D_i u_i \leq \hat{d}_i \quad \forall i\}
\]

The optimal solution to this optimization \(\hat{d}^* \) gives the optimal constraint partitioning so that

\[
D_i u_i^* \leq \hat{d}_i^* \quad \forall i
\]
Geometry of constraint manager

Constraint manager optimality lemma:
An optimal inner box $\hat{\Omega}^* \subseteq \Upsilon$ exists such that the cooperative MPC iterates with constraint $u \in \hat{\Omega}^*$ converge to u^*.
Geometry of constraint manager

Constraint manager optimality lemma:
An optimal inner box $\hat{\Omega}^* \subseteq \Upsilon$ exists such that the cooperative MPC iterates with constraint $u \in \hat{\Omega}^*$ converge to u^*

Feasible constraint partitioning

Constraint manager chooses sequence of inner box constraints $\{\hat{\Omega}^k\}$ forming point of attraction sequence $\{u(\hat{\Omega}^k)\}$ so that $u(\hat{\Omega}^k) \rightarrow u^*$
The constraint manager is a Stackelberg game (bilevel optimization)
- Difficult to find solutions
- Checking local optimality conditions is NP hard

Because both upper and lower optimizations have the same objective function, we perform a trick

1. Solve lower problem as suboptimal centralized MPC, giving candidate solution \tilde{u}
2. Choose corresponding constraints $\hat{\Omega}(\tilde{u})$ that has maximum feasible volume
Use the constraint manager iterate \tilde{u} as the initial condition for cooperative MPC.

The cooperative MPC can do only better therefore $V(\tilde{u}^k)$ is a control Lyapunov function.
Two reactors with separation and recycle

\[\Delta H_r \]

\[\Delta H_m \]

\[\Delta F_0 \]

\[\Delta F_1 \]

Stewart and Rawlings

Cooperative MPC with Coupled Constraints 29 / 33
Two reactors with separation and recycle

When using cooperative control alone, the inputs F_0 and F_1 get stuck at a suboptimal point, leading to steady-state offset.

Performance comparison

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
<th>Performance loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized MPC</td>
<td>15.391</td>
<td>-</td>
</tr>
<tr>
<td>Cooperative MPC (1 iterate) with augmented inputs</td>
<td>20.656</td>
<td>30.7%</td>
</tr>
<tr>
<td>with constraint management</td>
<td>15.402</td>
<td>0.071%</td>
</tr>
<tr>
<td></td>
<td>15.417</td>
<td>0.17%</td>
</tr>
</tbody>
</table>
Conclusions and future work

- Distributed MPC can be split into two types based on game theory
 - Noncooperative MPC can produce closed-loop instability for strongly interacting systems
 - Cooperative MPC gives nominal closed-loop stability for any number of iterations
Conclusions and future work

- Distributed MPC can be split into two types based on game theory
 - Noncooperative MPC can produce closed-loop instability for strongly interacting systems
 - Cooperative MPC gives nominal closed-loop stability for any number of iterations
- Subsystem inputs can be augmented with coupled inputs to achieve plantwide optimality
- Plants with dense constraint coupling can achieve optimality via auxiliary optimization (constraint manager)
- Both schemes are stabilizing
Conclusions and future work

- Distributed MPC can be split into two types based on game theory
 - **Noncooperative MPC** can produce closed-loop instability for strongly interacting systems
 - **Cooperative MPC** gives nominal closed-loop stability for any number of iterations

- Subsystem inputs can be augmented with coupled inputs to achieve plantwide optimality

- Plants with dense constraint coupling can achieve optimality via auxiliary optimization (constraint manager)

- Both schemes are stabilizing

- Additional test cases should be used to evaluate each approach
Acknowledgments

- Support from the U.S. National Science Foundation through grant CTS–0456694.
- Collaboration with and support from Aspentech, Eastman, ExxonMobil and Shell Global Solutions.

