Exercise 5

Aim of this exercise is to model a hot air balloon and to simulate it. Later, we will formulate a parameter estimation problem with it. Part of the work was done in the lecture already, so we can start with a nonlinear ordinary differential equation (ODE) of the hot air balloon.

Model the system

1. Write a MATLAB function $[\dot{x}]=\text{odefunballoon}(t,x)$ of the hot air balloon system dynamics in the state-space form (to be simulated with ode45)

$$\dot{x} = f(t, x).$$

Here, the state is given by

$$x = \begin{bmatrix} y \\ v \\ T \end{bmatrix}$$

and the (time invariant) model equations by

$$f(t, x) = \begin{bmatrix} v \\ -\beta v - g + \frac{F_B(y)}{m(T)} \\ u - k_2 (T - T_0) / C \end{bmatrix}$$

where

- y [m] is the height
- v [m/s] is the vertical velocity
- T [K] is the temperature of the air in the balloon
- T_0 [K] is the outside temperature
- u [W] is the heating power of the burner
- $g = 9.81$ m/s2 is the earth’s gravitational constant
- $F_B(y) = g V \frac{p(y)}{\rho}$ [N] is the buoyancy force
- $p(y) = c_1 - c_2 y$ [Pa] is the pressure (with the pressure assumed to decay linearly).
- T_0 [K] is the outside temperature (assumed constant)
- V [m3] is the volume of the balloon (assumed constant)
- $C = C_A V$ [J/K] is the heat capacity of the air in the balloon (assumed constant, product of volumetric heat capacity C_A and volume V)
- k [J/K/kg] is the gas constant for air relative to the mass, such that the relation $pV = k m T$ holds.
- $k_2 = A k_3$ [W/K] is the heat loss factor of the balloon, the product of the balloon surface A and the coefficient k_3 [W/K/m2] for heat loss per area and Kelvin
- $m(T) = m_0 + m_A(T)$ [kg] is the total mass of the balloon, the combination of the fixed mass m_0 of the solid components and the mass of the air $m_A(T) = V \frac{p(y)}{\rho}$
- β is a damping coefficient that corresponds to Stokes-type air friction

Based on physical intuition and internet search about balloons, the atmosphere, etc, we choose numerical values for the unknown constants as follows:

- $k_2 = 1200$ W K$^{-1}$
\[V = 4000 \text{ m}^3 \]
\[C_A = 1200 \text{ J K}^{-1} \text{ m}^{-3} \]
\[k = 287 \text{ J K}^{-1} \text{ kg}^{-1} \]
\[T_0 = 290 \text{ K} \]
\[c_2 = 12 \text{ Pa m}^{-1} \]
\[c_1 = 1.013 \cdot 10^5 \text{ Pa} \]
\[m_0 = 500 \text{ kg} \]
\[\beta = 0.02 \text{ s}^{-1} \]

In this sheet, we just assume a constant heating power

\[u = 60000 \text{ W} \]

Note that the input \(t \) (time) is required in the function \(f(t, x) \) because the ODE solver expects it, but that \(t \) does not enter any of the model equations because we have a time independent model.

Simulate the system

2. Simulate the balloon for a time of 3600 seconds, using the MATLAB routine \texttt{ode45}. Start the balloon with \(y = 100 \text{ m}, v = 0, T = 390 \text{ K} \).

3. Plot the trajectories for the states.

4. Now simulate with a fixed nonzero control input for a long time. Where does the balloon end?