Open Problem Session

When is a linear system optimal?

Jan C. Willems
K.U. Leuven
Plagiarism is the greatest form of compliment
Consider the QDF

\[\omega \in C^\infty(\mathbb{R}, \mathbb{R}^w) \mapsto \sum_{k, \ell} \left(\frac{d^k}{dt^k} \omega \right)^\top \Phi_{k,\ell} \left(\frac{d^k}{dt^\ell} \omega \right) \]

\[\Phi_{k,\ell} = \Phi_{\ell,k} \in \mathbb{R}^{w \times w}. \text{ Introduce} \]

\[\Phi(\zeta, \eta) := \sum_{k, \ell} \Phi_{k,\ell} \zeta^k \eta^\ell, \]

and denote the QDF by \(Q_\Phi(\omega) \).

\(Q_\Phi \) is like a Lagrangian.
\(w \in C^\infty(\mathbb{R}, \mathbb{R}^w) \) is an \textit{optimal trajectory} if

\[
\int_{-\infty}^{+\infty} \left(Q_\Phi(w + \Delta) - Q_\Phi(w) \right) dt \geq 0
\]

for all \(\Delta \in C^\infty(\mathbb{R}, \mathbb{R}^w) \) with compact support.
Stationarity: \[\Leftrightarrow \]
\[
\Phi(-\frac{d}{dt}, \frac{d}{dt})w = 0
\]

Minimality: \[\Leftrightarrow \text{ in addition} \]
\[
\Phi(-i\omega, i\omega) \geq 0 \text{ for all } \omega \in \mathbb{R}
\]

Note \[\Phi(-\frac{d}{dt}, \frac{d}{dt}) = \Phi^\top\left(\frac{d}{dt}, -\frac{d}{dt}\right) \]
Opens up the possibility of describing a behavior very effectively by a single function Q_Φ:

The behavior consists of the trajectories $w : \mathbb{R} \to \mathbb{R}^w$ than minimize, or render stationary, $\int_{-\infty}^{+\infty} Q_\Phi(w) \, dt$.
Consider

\[R\left(\frac{d}{dt}\right)w = 0. \]

Denote its *behavior* by \(\mathcal{B} \).

Open Problem: *When is \(\mathcal{B} \) an optimal behavior?*

i.e., Given \(\mathcal{B} \), \(\mathcal{C} \ni \Phi \), with

\[\Phi(-i\omega, i\omega) \geq 0 \quad \text{for all} \quad \omega \in \mathbb{R}, \text{such that} \]

\[\Phi\left(-\frac{d}{dt}, \frac{d}{dt}\right)w = 0 \]

has also the given behavior \(\mathcal{B} \)?
Consider

\[R\left(\frac{d}{dt}\right) w = 0. \]

Denote its \textit{behavior} by \(\mathcal{B} \).

\textbf{Open Problem:} \textit{When is \(\mathcal{B} \) an optimal behavior?}

\textbf{Sufficient:}

\[[R(\xi) = R^\top(-\xi)] \land [R(i\omega) \geq 0 \text{ for all } \omega \in \mathbb{R}] \]

\textbf{Necessary (autonomous case) and Sufficient:}

Given \(\exists \ U \) unimodular, such that \(UR \) has these properties.

But, we are looking for conditions on \(\mathcal{B} \)!
The scalar case $\tilde{w} = 1$ is easy, but not uninteresting.

\[
R\left(\frac{d}{dt}\right)\tilde{w} = 0, \quad R \in \mathbb{R}[\xi]
\]

is stationary iff $R(\xi) = R(-\xi)$, i.e., R is even.
The scalar case $\omega = 1$ is easy, but not uninteresting.

$$R\left(\frac{d}{dt}\right)w = 0, \quad R \in \mathbb{R}[\xi]$$

is stationary iff $R(\xi) = R(-\xi)$, i.e., R is even.

Equivalently, iff \mathcal{B} is

1. time-reversible $:=[w(t) \in \mathcal{B}] \Leftrightarrow [w(-t) \in \mathcal{B}]$
2. and of even dimension.

Root pattern:
The scalar case $w = 1$ is easy, but not uninteresting.

$$R \left(\frac{d}{dt} \right) w = 0, \quad R \in \mathbb{R}[\xi]$$

is stationary iff $R(\xi) = R(-\xi)$, i.e., R is even.

optimal behavior iff imaginary roots even multiplicity.

Root pattern:

Time-reversible, even dimension, non-oscillatory.
Optimality \Rightarrow non-constant trajectories unbounded.

If, as young Leibniz claimed,

ours is the best of all possible worlds,

there was a Big Bang, and it will end as a Supernova...
Optimality \Rightarrow non-constant trajectories unbounded.

If, as young Leibniz claimed,

ours is the best of all possible worlds,
there was a Big Bang, and it will end as a Supernova...

What $\mathcal{W} \in \mathcal{L}^W$ are optimal?

Please hand in solutions by noon on Thursday!
Optimality \Rightarrow non-constant trajectories unbounded.

If, as young Leibniz claimed, *ours is the best of all possible worlds*, there was a Big Bang, and it will end as a Supernova...

What $\mathcal{B} \in \mathcal{L}^\mathcal{W}$ are optimal?

Please hand in solutions by noon on Thursday!

Thank you