

PORTS and TERMINALS

JAN C. WILLEMS

K.U. Leuven

Presented by Paolo Rapisarda

Theme: energy transfer

How is energy transferred from the environment to a system?

How is energy transferred between systems?
Does interconnection mean energy transfer?

Energy

Energy := a physical quantity transformable into heat.

Energy

Energy := a physical quantity transformable into heat.

For example, capacitor \mapsto resistor \mapsto heat. Energy on capacitor $=\frac{1}{2} C V^{2}$

Electrical ports

Electrical circuit

wires \cong terminals

Electrical circuit

At each terminal:

a current (counted >0 into the circuit) and a potential

$$
\leadsto \text { behavior } \mathscr{B} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}
$$

$\left(I_{1}, I_{2}, \ldots, I_{N}, P_{1}, P_{2}, \ldots, P_{N}\right): \mathbb{R} \rightarrow \mathbb{R}^{N} \times \mathbb{R}^{N} \in \mathscr{B}$ means: this current/potential trajectory is compatible with the circuit architecture and its element values.

KCL and KVL

Kirchhoff's current law (KCL):

$$
\llbracket\left(I_{1}, I_{2}, \ldots, I_{N}, P_{1}, P_{2}, \ldots, P_{N}\right) \in \mathscr{B} \rrbracket \Rightarrow \llbracket I_{1}+I_{2}+\cdots+I_{N}=0 \rrbracket .
$$

Kirchhoff's voltage law (KVL):

$$
\begin{aligned}
& \llbracket\left(I_{1}, I_{2}, \ldots, I_{N}, P_{1}, P_{2}, \ldots, P_{N}\right) \in \mathscr{B} \text { and } \alpha: \mathbb{R} \rightarrow \mathbb{R} \rrbracket \\
& \quad \Rightarrow \llbracket\left(I_{1}, I_{2}, \ldots, I_{N}, P_{1}+\alpha, P_{2}+\alpha, \ldots, P_{N}+\alpha\right) \in \mathscr{B} \rrbracket .
\end{aligned}
$$

Energy transfer

Assume that we monitor the current/potential on a set of terminals.

Can we speak about 'the energy transferred from the environment to the circuit along these terminals'?

Ports

Terminals $\{1,2, \ldots, p\}$ form a port $: \Leftrightarrow$
$\llbracket\left(I_{1}, \ldots, I_{p}, I_{p+1}, \ldots, I_{N}, P_{1}, \ldots, P_{p}, P_{p+1}, \ldots, P_{N},\right) \in \mathscr{B} \rrbracket$

$$
\Rightarrow \llbracket I_{1}+I_{2}+\cdots+I_{p}=0 \rrbracket . \quad \text { 'port KCL' }
$$

$\mathrm{KCL} \Rightarrow$ all terminals together form a port.

Ports

If terminals $\{1,2, \ldots, p\}$ form a port, then power in $=P_{1}(t) I_{1}(t)+P_{2}(t) I_{2}(t)+\cdots+P_{p}(t) I_{p}(t)$
energy in $=\int_{t_{1}}^{t_{2}}\left[P_{1}(t) I_{1}(t)+P_{2}(t) I_{2}(t)+\cdots+P_{p}(t) I_{p}(t)\right] d t$
This interpretation in terms of power and energy is not valid unless these terminals form a port !

Examples

2-terminal 1-port devices:

resistors, inductors, capacitors, memristors, etc., any 2 -terminal circuit composed of these.

$\mathbf{K C L} \Rightarrow \mathbf{a}$ port $\left(I_{1}=-I_{2}=: I\right)$.
KVL \Rightarrow only $P_{1}-P_{2}=: V$ matters.
\sim usual circuit variables (I, V).

Example

Terminals $\{1,2,3,4\}$ form a port. But $\{1,2\}$ and $\{3,4\}$ do not.

We cannot speak about
'the energy transferred from terminals $\{1,2\}$ to $\{3,4\}$ '.

Example

Terminals $\{1,2,3,4\}$ form a port. But $\{1,2\}$ and $\{3,4\}$ do not.

Terminals $\{1,2\}$ and $\{3,4\}$ form ports.

Energy transfer between circuits

Assume that we monitor the current/potential on a set of terminals between circuits or within a circuit.

Can we speak about
'the energy transferred along these terminals'?

Internal ports

Terminals $\{1,2, \ldots, N\}$ form an internal port $: \Leftrightarrow$

$$
\begin{aligned}
& \llbracket\left(I_{1}, I_{2}, \ldots, I_{N}, P_{1}, P_{2}, \ldots, P_{N}\right) \in \mathscr{B} \rrbracket \\
& \quad \Rightarrow \llbracket I_{1}+I_{2}+\cdots+I_{N}=0 \rrbracket . \quad \text { internal port-KCL},
\end{aligned}
$$

Power and energy

Flow through the terminals from one side to the other in the direction of the arrows:
power $=\quad I_{1}(t) P_{1}(t)+I_{2}(t) P_{2}(t)+\cdots+I_{N}(t) P_{N}(t)$
energy $=\int_{t_{1}}^{t_{2}}\left[I_{1}(t) P_{1}(t)+I_{2}(t) P_{2}(t)+\cdots+I_{N}(t) P_{N}(t)\right] d t$

This physical interpretation of power and energy is valid only if the terminals form an internal port.

Example

Because of the source and the load (2-terminal 1-ports) terminals $\{1,2\}$ and $\{3,4\}$ form internal ports.

Therefore, we can speak of
'the energy transferred from the source to the load'.

Mechanical ports

Mechanical systems

At each terminal: a position and a force.
\leadsto position/force trajectories $(q, F) \in \mathscr{B} \subseteq\left(\left(\mathbb{R}^{\bullet}\right)^{2 N}\right)^{\mathbb{R}}$.

More generally, a position, force, angle, and torque.

Mechanical ports

Terminals $\{1,2, \ldots, p\}$ form a (mechanical) port $: \Leftrightarrow$

$$
\begin{aligned}
& \left(q_{1}, \ldots, q_{p}, q_{p+1}, \ldots, q_{N}, F_{1}, \ldots, F_{p}, F_{p+1}, \ldots, F_{N}\right) \in \mathscr{B} \\
& \quad \Rightarrow \quad \llbracket F_{1}+F_{2}+\cdots+F_{p}=0 \rrbracket . \quad \text { 'port KFL' }
\end{aligned}
$$

Power and energy

If terminals $\{1,2, \ldots, p\}$ form a port, then

$$
\text { power in }=F_{1}(t)^{\top} \frac{d}{d t} q_{1}(t)+\cdots+F_{p}(t)^{\top} \frac{d}{d t} q_{p}(t)
$$

energy in $=\int_{t_{1}}^{t_{2}}\left(F_{1}(t)^{\top} \frac{d}{d t} q_{1}(t)+\cdots+F_{p}(t)^{\top} \frac{d}{d t} q_{p}(t)\right) d t$.

This interpretation in terms of power and energy is not valid unless these terminals form a port !

Example

$\underline{\text { Spring }}$

$$
F_{1}+F_{2}=0, \quad K\left(q_{1}-q_{2}\right)=F_{1}
$$

satisfies KFL
power in $=F_{1}(t) \frac{d}{d t} q_{1}(t)+F_{2}(t) \frac{d}{d t} q_{2}(t)=F_{1}(t) \frac{d}{d t}\left(q_{1}-q_{2}\right)(t)$

Examples

Damper

$$
F_{1}+F_{2}=0, \quad D \frac{d}{d t}\left(q_{1}-q_{2}\right)=F_{1}
$$

Springs and dampers, and their interconnection form ports.

A mass

$$
M \frac{d^{2}}{d t^{2}} q=F
$$

does not satisfy KFL

Not a port!!!

Therefore $F(t) \frac{d}{d t} q(t)$ is not power (even though it has the dimension of power).

Consequences

Consequences of the fact that a mass is not a port.

The inerter:
RLC synthesis \Leftrightarrow Damper-Spring-Inerter synthesis
\nLeftarrow Damper-Spring-Mass synthesis

- Motion energy

Energy as an extensive quantity

Motion energy

Back to the mass

$$
\begin{aligned}
& M \frac{d^{2}}{d t^{2}} q=F \Rightarrow \frac{d}{d t} \frac{1}{2} M\left\|\frac{d}{d t} q\right\|^{2}=F^{\top} \frac{d}{d t} q \\
& \text { If } F^{\top} \frac{d}{d t} q \text { is not power, } \\
& \text { is } \frac{1}{2} M\left\|\frac{d}{d t} q\right\|^{2} \text { not stored (kinetic, motion) energy??? }
\end{aligned}
$$

Kinetic energy and invariance under uniform motions

M

What is the kinetic energy?

$$
\mathscr{E}_{\text {kinetic }}=\frac{1}{2} M\|v\|^{2}
$$

Willem 's Gravesande 1688-1742

Émilie du Châtelet 1706-1749

This expression is not invariant under uniform motion. Physical significance dubious!

Motion energy

What is the motion energy?
What quantity is transformable into heat?

Calculate by considering

Motion energy

What is the motion energy?
What quantity is transformable into heat?

$$
\mathscr{E}_{\text {motion }}=\frac{1}{2} \frac{M_{1} M_{2}}{M_{1}+M_{2}}\left\|v_{1}-v_{2}\right\|^{2}
$$

Invariant under uniform motion.

Motion energy

Generalization to N masses.

$$
\mathscr{E}_{\text {motion }}=\frac{1}{4} \sum_{i, j \in\{1,2, \ldots, N\}} \frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}}\left\|v_{i}-v_{j}\right\|^{2}
$$

Motion energy

With external forces.

(KFL) $\sum_{i \in\{1,2, \ldots, N\}} F_{i}=0 \Rightarrow \frac{d}{d t} \mathscr{E}_{\text {motion }}=\sum_{i \in\{1,2, \ldots, N\}} F_{i}^{\top} v_{i}$.

Motion energy

$$
\mathscr{E}_{\text {motion }}=\frac{1}{4} \sum_{i, j \in\{1,2, \ldots, N\}} \frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}}\left\|v_{i}-v_{j}\right\|^{2}
$$

Distinct from the classical expression of the kinetic energy,

$$
\mathscr{E}_{\text {kinetic }}=\frac{1}{2} \sum_{i \in\{1,2, \ldots, N\}} M_{i}\left\|v_{i}\right\|^{2}
$$

Motion energy

Reconciliation: $M_{N+1}=\infty, F_{N+1}=-\left(F_{1}+F_{2}+\cdots+F_{N}\right)$,

measure velocities w.r.t. this infinite mass ('ground'), then

$$
\begin{array}{r}
\frac{1}{4} \sum_{i, j \in\{1,2, \ldots, N, N+1\}} \frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}+M_{N+1}}\left\|v_{i}-v_{j}\right\|^{2} \\
\longrightarrow \quad \frac{1}{2} \sum_{i \in\{1,2, \ldots, N\}} M_{i}\left\|v_{i}\right\|^{2}
\end{array}
$$

Energy as an extensive quantity

Motion energy

Motion energy is not an extensive quantity, it is not additive.

Total motion energy \neq sum of the parts.

Concluding remarks

Energy transfer

One cannot speak about
"the energy transferred from system 1 to system 2 " or "from the environment to system 1 ",

unless the relevant terminals form a port.

Power and energy are not 'local', they involve 'action at a distance'.

Terminals are for interconnection,

 ports are for energy transfer.
Copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.be
http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you
Thank you
Thank you
Thank you
Thank you
Thank you
Thank you

