

PORTS and TERMINALS

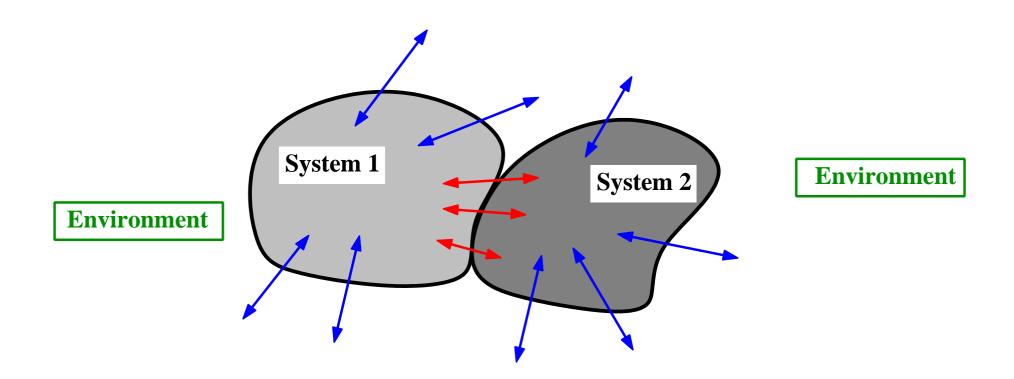
JAN C. WILLEMS K.U. Leuven

Presented by Paolo Rapisarda

MTNS 2010, Budapest

July 9, 2010

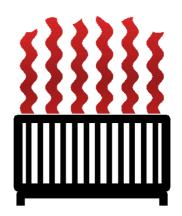
Theme: energy transfer



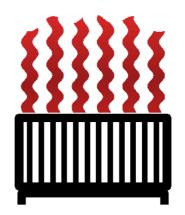
How is **energy transferred** from the environment to a system?

How is energy transferred between systems? Does interconnection mean energy transfer?

Energy := a physical quantity transformable into heat.

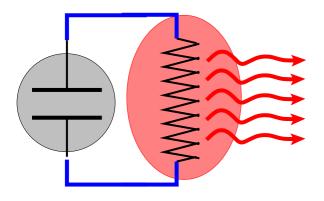


Energy := a physical quantity transformable into heat.



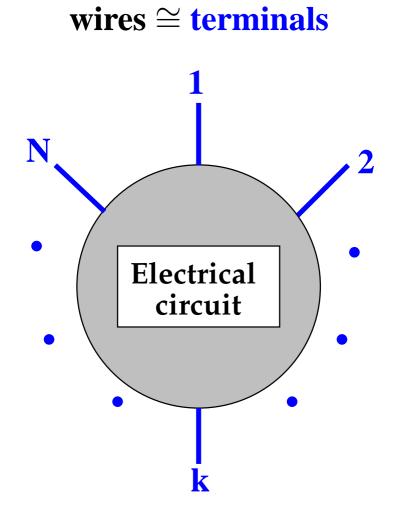
For example, capacitor \mapsto resistor \mapsto heat.

Energy on capacitor = $\frac{1}{2}CV^2$

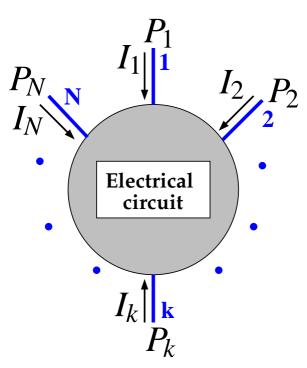


Electrical ports

Electrical circuit



Electrical circuit

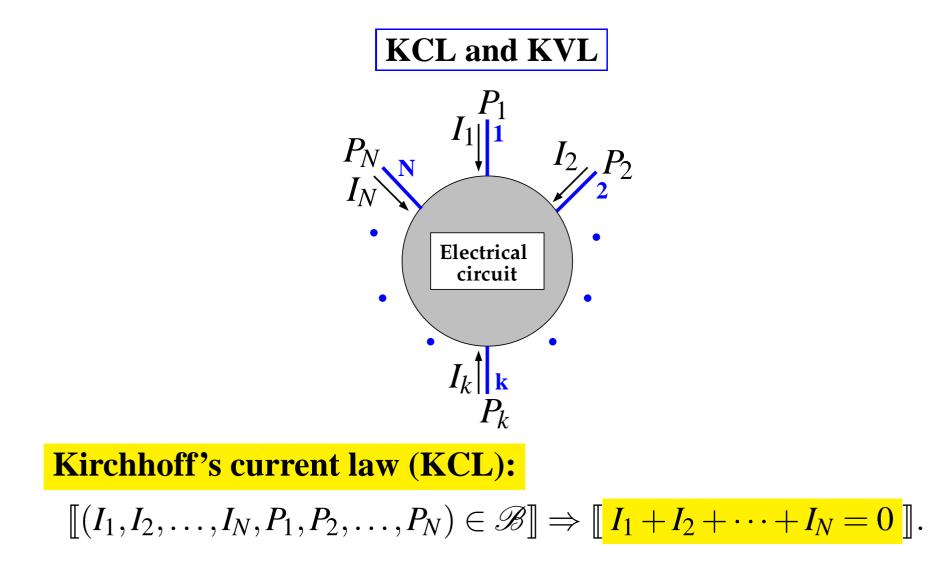


At each terminal:

a **current** (counted > 0 into the circuit) and a potential

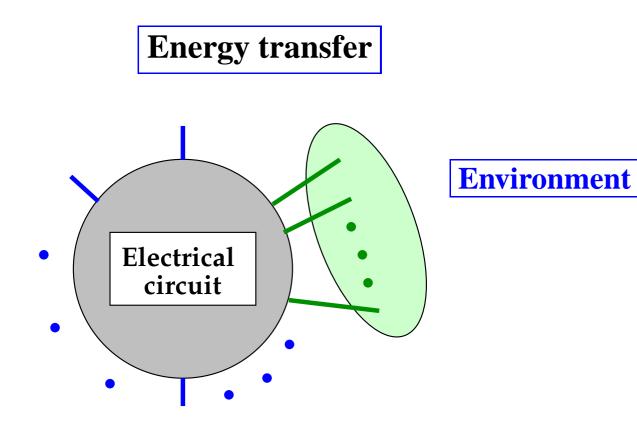
 \rightsquigarrow behavior $\mathscr{B} \subseteq \left(\mathbb{R}^N \times \mathbb{R}^N\right)^{\mathbb{R}}$

 $(I_1, I_2, \ldots, I_N, P_1, P_2, \ldots, P_N) : \mathbb{R} \to \mathbb{R}^N \times \mathbb{R}^N \in \mathscr{B}$ means: this current/potential trajectory is compatible with the circuit architecture and its element values.



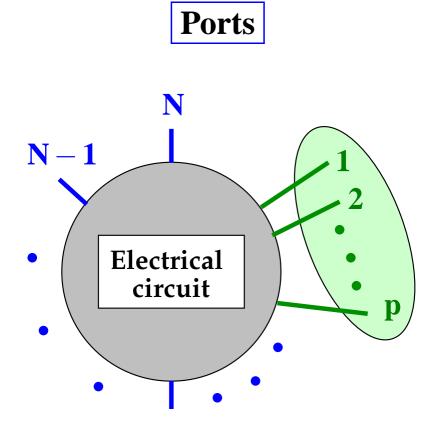
Kirchhoff's voltage law (KVL):

 $\llbracket (I_1, I_2, \dots, I_N, P_1, P_2, \dots, P_N) \in \mathscr{B} \text{ and } \alpha : \mathbb{R} \to \mathbb{R} \rrbracket$ $\Rightarrow \llbracket (I_1, I_2, \dots, I_N, P_1 + \alpha, P_2 + \alpha, \dots, P_N + \alpha) \in \mathscr{B} \rrbracket.$



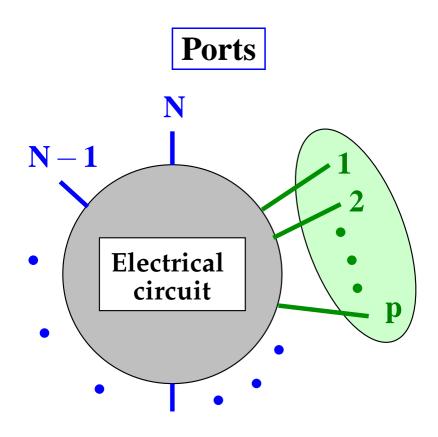
Assume that we monitor the current/potential on a set of terminals.

Can we speak about 'the energy transferred from the environment to the circuit along these terminals'?



Terminals
$$\{1, 2, ..., p\}$$
 form a port :
 $\llbracket (I_1, ..., I_p, I_{p+1}, ..., I_N, P_1, ..., P_p, P_{p+1}, ..., P_N,) \in \mathscr{B} \rrbracket$
 $\Rightarrow \llbracket I_1 + I_2 + \dots + I_p = 0 \rrbracket$. *`port KCL'*

KCL \Rightarrow all terminals together form a port.



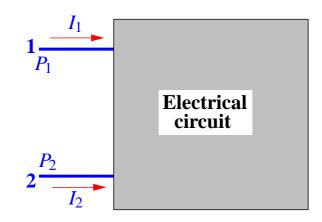
If terminals $\{1, 2, \dots, p\}$ form a port, then

power in = $P_1(t)I_1(t) + P_2(t)I_2(t) + \dots + P_p(t)I_p(t)$ **energy in** = $\int_{t_1}^{t_2} [P_1(t)I_1(t) + P_2(t)I_2(t) + \dots + P_p(t)I_p(t)] dt$

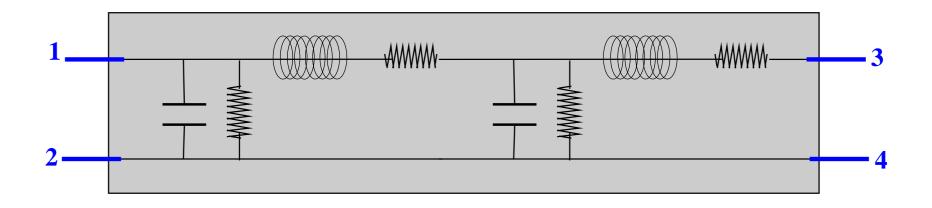
This interpretation in terms of power and energy is not valid unless these terminals form a port ! Examples

2-terminal 1-port devices:

resistors, inductors, capacitors, memristors, etc., any 2-terminal circuit composed of these.

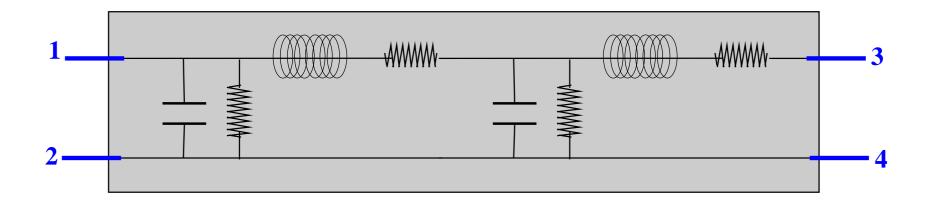


KCL \Rightarrow a port $(I_1 = -I_2 =: I)$. **KVL** \Rightarrow only $P_1 - P_2 =: V$ matters. \rightarrow usual circuit variables (I, V).

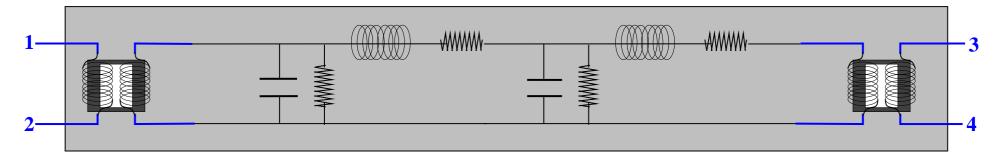


Terminals $\{1,2,3,4\}$ form a port. But $\{1,2\}$ and $\{3,4\}$ do not.

We cannot speak about *'the energy transferred from terminals* {1,2} *to* {3,4}'.

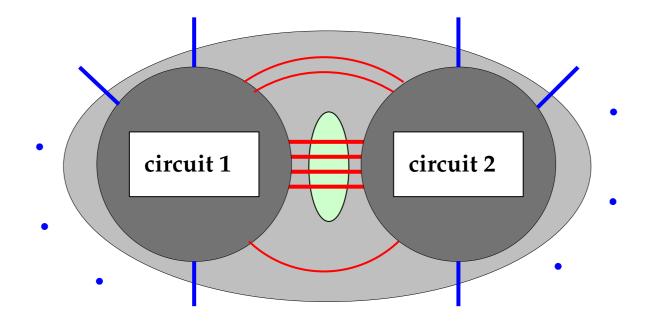


Terminals $\{1,2,3,4\}$ form a port. But $\{1,2\}$ and $\{3,4\}$ do not.



Terminals $\{1,2\}$ and $\{3,4\}$ form ports.

Energy transfer between circuits

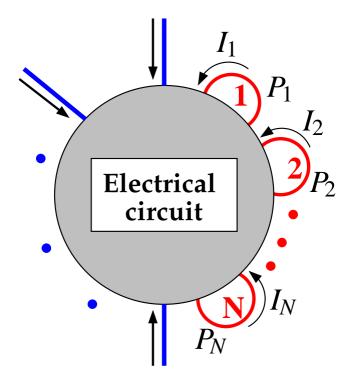


Assume that we monitor the current/potential on a set of terminals between circuits or within a circuit.

Can we speak about

'the energy transferred along these terminals'?

Internal ports



Terminals $\{1, 2, \dots, N\}$ form an internal port : \Leftrightarrow

$$\begin{bmatrix} (I_1, I_2, \dots, I_N, P_1, P_2, \dots, P_N) \in \mathscr{B} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} I_1 + I_2 + \dots + I_N = 0 \end{bmatrix}. \quad `internal port-KCL'$$

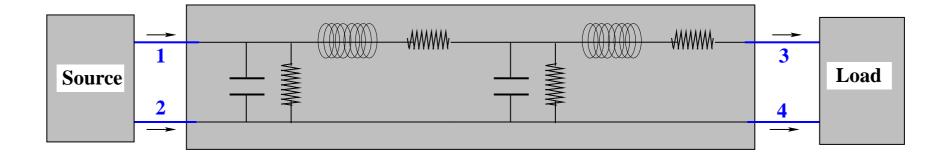
Power and energy

Flow through the terminals *from one side to the other* in the direction of the arrows:

power =
$$I_1(t)P_1(t) + I_2(t)P_2(t) + \dots + I_N(t)P_N(t)$$

energy = $\int_{t_1}^{t_2} [I_1(t)P_1(t) + I_2(t)P_2(t) + \dots + I_N(t)P_N(t)] d$

This physical interpretation of power and energy is valid only if the terminals form an internal port.

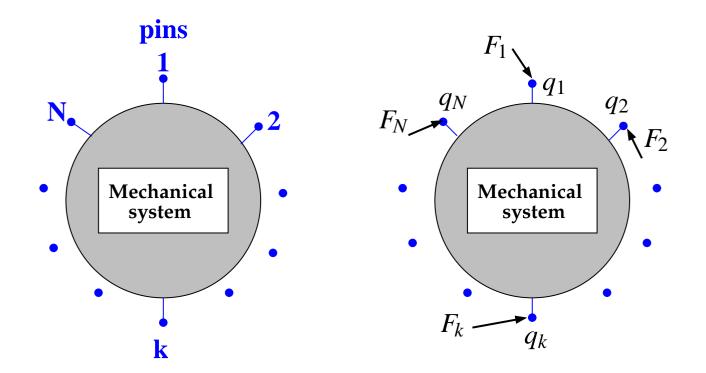


Because of the source and the load (2-terminal 1-ports) terminals $\{1,2\}$ and $\{3,4\}$ form internal ports.

Therefore, we can speak of *'the energy transferred from the source to the load'*.

Mechanical ports

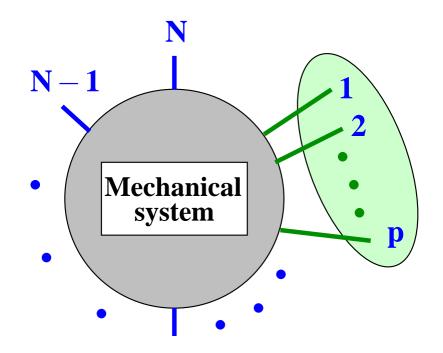
Mechanical systems



At each terminal: a **position** and a force. \rightarrow **position/force trajectories** $(q, F) \in \mathscr{B} \subseteq ((\mathbb{R}^{\bullet})^{2N})^{\mathbb{R}}$.

More generally, a **position**, **force**, **angle**, and **torque**.

Mechanical ports



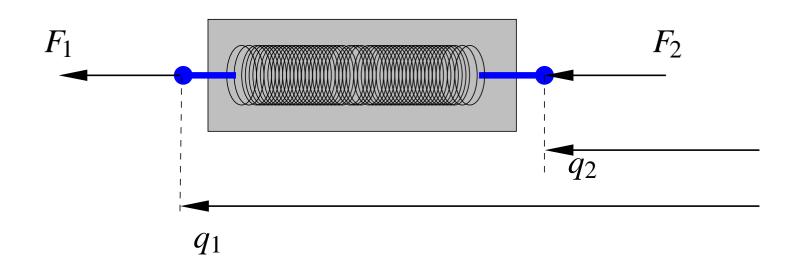
Terminals $\{1, 2, ..., p\}$ **form a (mechanical) port** : $(q_1, ..., q_p, q_{p+1}, ..., q_N, F_1, ..., F_p, F_{p+1}, ..., F_N) \in \mathscr{B},$ $\Rightarrow [F_1 + F_2 + \dots + F_p = 0].$ *`port KFL'* Power and energy

If terminals $\{1, 2, \dots, p\}$ form a port, then

power in =
$$F_1(t)^{\top} \frac{d}{dt} q_1(t) + \cdots + F_p(t)^{\top} \frac{d}{dt} q_p(t)$$
,

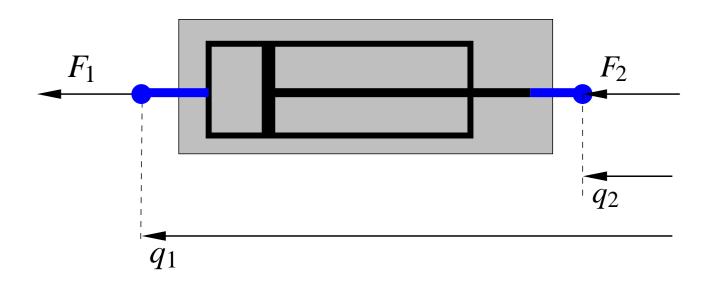
energy in
$$= \int_{t_1}^{t_2} \left(F_1(t)^\top \frac{d}{dt} q_1(t) + \dots + F_p(t)^\top \frac{d}{dt} q_p(t) \right) dt.$$

This interpretation in terms of power and energy is not valid unless these terminals form a port !



$$F_1 + F_2 = 0$$
, $K(q_1 - q_2) = F_1$ satisfies KFL

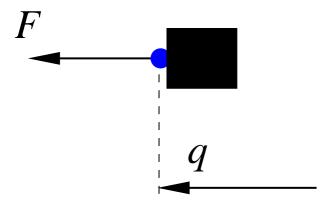
power in =
$$F_1(t) \frac{d}{dt} q_1(t) + F_2(t) \frac{d}{dt} q_2(t) = F_1(t) \frac{d}{dt} (q_1 - q_2) (t)$$



$$F_1 + F_2 = 0, \quad D\frac{d}{dt}(q_1 - q_2) = F_1$$

Springs and dampers, and their interconnection form ports.

satisfies KFL



$$M\frac{d^2}{dt^2}q = F$$

does <u>not</u> satisfy KFL

Not a port!!!

Therefore $F(t)\frac{d}{dt}q(t)$ is not power (even though it has the dimension of power).

Consequences

Consequences of the fact that a mass is not a port.

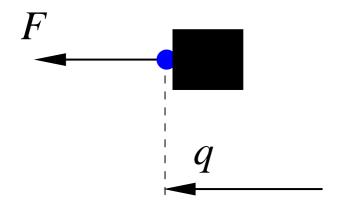
The inerter:

RLC synthesis \Leftrightarrow **Damper-Spring-Inerter** synthesis

⇔ Damper-Spring-Mass synthesis

- Motion energy
- Energy as an extensive quantity

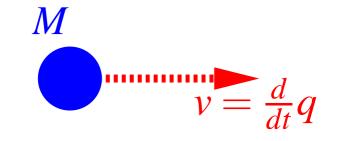
Back to the mass



$$M\frac{d^2}{dt^2}q = F \quad \Rightarrow \quad \frac{d}{dt}\frac{1}{2}M||\frac{d}{dt}q||^2 = F^{\top}\frac{d}{dt}q$$

If $F^{\top} \frac{d}{dt} q$ is not power, is $\frac{1}{2}M||\frac{d}{dt}q||^2$ not stored (kinetic, motion) energy ???

Kinetic energy and invariance under uniform motions



What is the kinetic energy?

$$\mathscr{E}_{\mathbf{kinetic}} = \frac{1}{2} M ||v||^2$$

Willem 's Gravesande 1688–1742

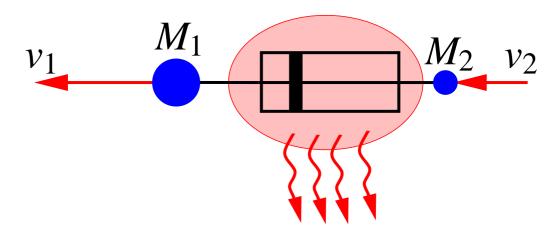
Émilie du Châtelet 1706–1749

This expression is not invariant under uniform motion. Physical significance dubious! Motion energy

What is the motion energy?

What quantity is transformable into heat?

Calculate by considering



Motion energy

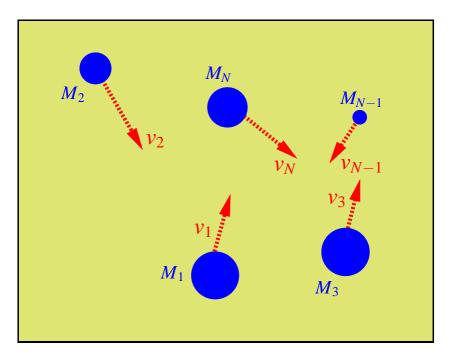
What is the motion energy?

What quantity is transformable into heat?

$$\mathscr{E}_{\text{motion}} = \frac{1}{2} \frac{M_1 M_2}{M_1 + M_2} ||v_1 - v_2||^2$$

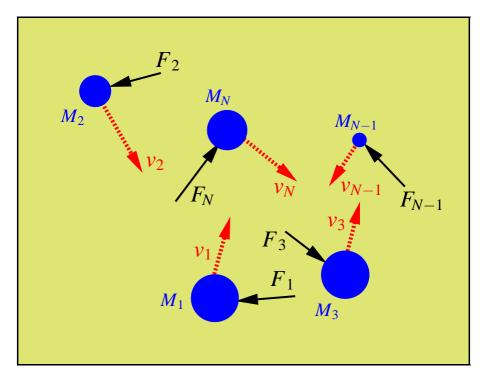
Invariant under uniform motion.

Generalization to *N* **masses.**



$$\mathscr{E}_{\text{motion}} = \frac{1}{4} \sum_{i,j \in \{1,2,...,N\}} \frac{M_i M_j}{M_1 + M_2 + \dots + M_N} ||v_i - v_j||^2.$$

With external forces.



$$\mathscr{E}_{\text{motion}} = \frac{1}{4} \sum_{i,j \in \{1,2,\dots,N\}} \frac{M_i M_j}{M_1 + M_2 + \dots + M_N} ||v_i - v_j||^2.$$

(**KFL**) $\sum_{i \in \{1,2,\ldots,N\}} F_i = 0 \Rightarrow \frac{d}{dt} \mathscr{E}_{\text{motion}} = \sum_{i \in \{1,2,\ldots,N\}} F_i^\top v_i.$

Motion energy

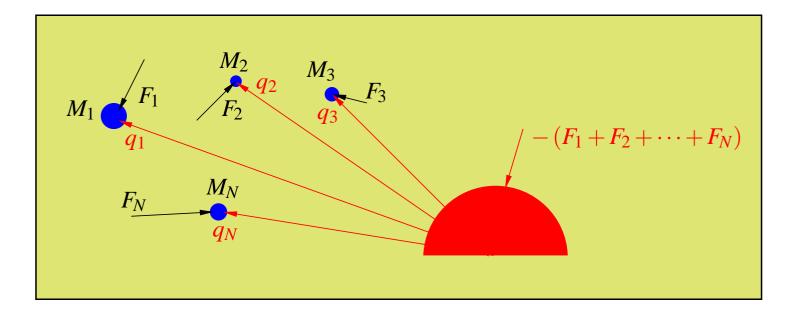
$$\mathscr{E}_{\text{motion}} = \frac{1}{4} \sum_{i,j \in \{1,2,\dots,N\}} \frac{M_i M_j}{M_1 + M_2 + \dots + M_N} ||v_i - v_j||^2.$$

Distinct from the classical expression of the kinetic energy,

$$\mathscr{E}_{\text{kinetic}} = \frac{1}{2} \sum_{i \in \{1,2,...,N\}} M_i ||v_i||^2.$$

Motion energy

<u>**Reconciliation:**</u> $M_{N+1} = \infty, F_{N+1} = -(F_1 + F_2 + \dots + F_N),$



measure velocities w.r.t. this infinite mass ('ground'), then

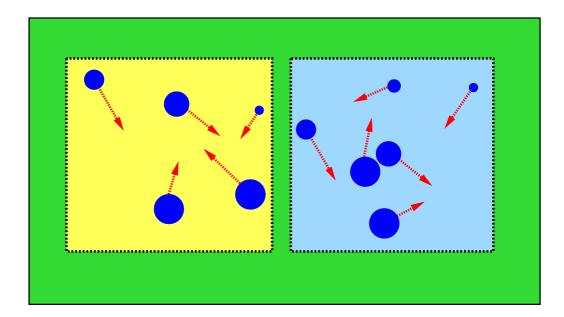
$$\frac{1}{4} \sum_{i,j \in \{1,2,...,N,N+1\}} \frac{M_i M_j}{M_1 + M_2 + \dots + M_N + M_{N+1}} ||v_i - v_j||^2 \\ \longrightarrow \frac{1}{2} \sum_{i \in \{1,2,...,N\}} M_i ||v_i||^2$$

- p. 29/36

Energy as an extensive quantity

Motion energy

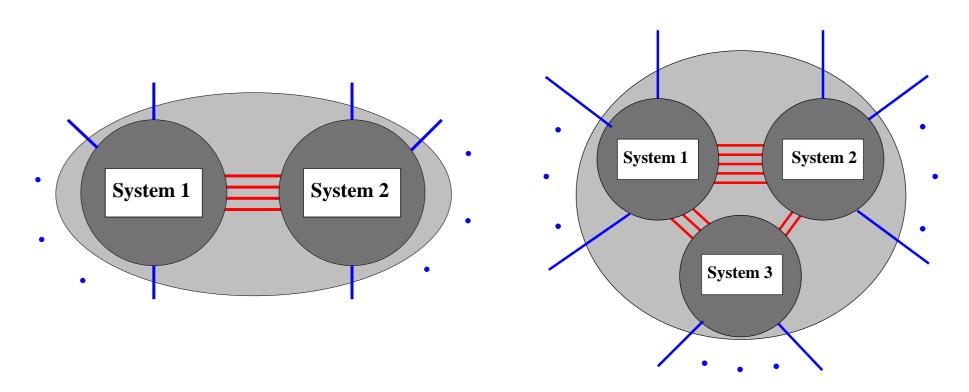
Motion energy is not an extensive quantity, it is not additive.



Total motion energy \neq **sum of the parts.**

Concluding remarks

Energy transfer



One cannot speak about

"the energy transferred from system 1 to system 2" or "from the environment to system 1",

unless the relevant terminals form a port.

Power and energy as extensive quantities

Power and energy are not 'local', they involve 'action at a distance'.

Ports and terminals

Terminals are for interconnection, ports are for energy transfer.

Copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.be http://www.esat.kuleuven.be/~jwillems

