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SUMMARY

A new definition of dissipativity is proposed. It is purely in terms of the rate of supply that goes in and out
of a dynamical system. It is proven that dissipativity is equivalent to the existence of a non-negative
storage. Several results regarding the dissipativity of systems defined by quadratic differential forms are
given, and some open questions are mentioned. These ideas are applied to the question of stability of
interconnected systems. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is a pleasure to contribute this article to a special issue on the occasion of the 80th birthday of
V. A. Yakubovich, and to wish him a happy birthday and many more years in good health. This
article deals, among other things, with issues of frequency domain inequalities, an area of
control theory which was founded by V. A. Yakubovich and that has become one of the most
influential research areas in the field of systems and control.

Lyapunov functions are pervasive in many areas of applied mathematics, especially in systems
and control. It is the main technique for proving stability. However, the trademark of systems
theory is that it studies systems that are ‘open’ and ‘connected’, but neither of these aspects is
present in the notion of a Lyapunov function, which aims at the autonomous dynamics of closed
systems. The notion that generalizes Lyapunov functions to open systems is that of a ‘dissipative
system’. The aim of this article is to present a modern view of this concept, and apply it to
stability of interconnected systems.
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The notion of a dissipative system that was introduced by Willems [1] refers to input/state/
output models

’x ¼ f ðx; uÞ; y ¼ hðx; uÞ

The definition involves

(i) a memoryless function of the input and the output variables, sðu; yÞ; called the supply rate
(ii) a non-negative memoryless function of the state, VðxÞ; called the storage and
(iii) an inequality that involves the system trajectories, the supply rate, and the storage, called

the dissipation inequality. It states that the increase in the storage in a time interval
cannot exceed the integral of the supply rate

Vðxðt1ÞÞ � Vðxðt0ÞÞ4
Z t1

t0

sðuðtÞ; yðtÞÞ dt

for all t04t1; and all trajectories ðuð�Þ; yð�Þ;xð�ÞÞ that satisfy the dynamical equations, i.e.
such that ðd=dtÞxðtÞ ¼ f ðxðtÞ; uðtÞÞ; yðtÞ ¼ hðxðtÞ; uðtÞÞ:

When the input is absent, and s ¼ 0; the dissipation inequality reduces to the Lyapunov
condition ðd=dtÞVðxð�ÞÞ40: Hence, dissipativity generalizes the idea of a Lyapunov function to
‘open’ systems. This idea has found applications in many areas of systems theory.

There are issues that can be raised regarding the definition just given. One is the question if
one really wants non-negativity (equivalently, boundedness from below) of the storage. Indeed,
there are many applications (stored energy in mechanics, the negative of the entropy in
thermodynamics) where this is not a desirable assumption. On the other hand, in the context of
stability, non-negativity of the storage is often needed. We will therefore pay particular
attention to the case in which the storage is non-negative. Other issues with this definition are
that it starts with an input/output partition of the variables that carry the supply rate, and with
a state representation of the dynamical system. Also, it assumes from the start that the storage is
a function of the state. As we have discussed elsewhere before, and will return to later, the input/
output partition is not a natural assumption when applied to physical systems, and knowledge
of the state space is an awkward assumption, for example, for a first principles model, or when
applied in the context of uncertain systems. Finally, it is desirable to understand if, and, if so, in
what sense, the storage is a state function. In other words, it is desirable to make the issue that
the storage is a memoryless function of the state a matter of proof, not an assumption.

A few words about the mathematical notation used. We use standard symbols for R; C; Rn;
Rn�m; etc. � denotes complex conjugation. When the number of rows or columns is immaterial
(but finite), we use R�; R��n; etc. R½x� denotes the set of polynomials with real coefficients in the
indeterminate x; and RðxÞ denotes the set of real rational functions in the indeterminate x: R½z; Z�
denotes the set two-variable polynomial matrices in the indeterminates z and Z: C1ðR;RnÞ
denotes the set of infinitely differentiable functions from R to Rn: D1ðR;RnÞ denotes the subset
of C1ðR;RwÞ consisting of the functions that have compact support. We use j � j for a norm on a
finite dimensional space, and jj � jj for a norm on a function space.

In the behavioral approach, a dynamical system is characterized by its behavior. The behavior
is the set of trajectories which meet the dynamical laws of the system. Formally, a dynamical
system S is defined by S ¼ ðT;W;BÞ; with T � R the time-set, W the signal space and B �WT

the behavior. See [2, 3] for motivation and details. In the continuous-time setting, the behavior of
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a dynamical system is typically defined by the set of all solutions to a system of differential
(-algebraic) equations.

A latent variable dynamical system is a refinement of the notion of a dynamical system, in
which the behavior is represented with the aid of auxiliary variables, called latent variables.
Formally, a latent variable dynamical system is defined by SL ¼ ðT;W;L;BfullÞ with T � R the
time-set, W the signal space, L the space of latent variables and Bfull � ðW� LÞT the full
behavior. Bfull consists of the trajectories ðw; ‘Þ : T!W� L which are compatible with the laws
of the system. These involve both the manifest variables w and the latent variables ‘: SL induces
the dynamical system S ¼ ðT;W;BÞ with manifest behavior

B ¼ fw : T!Wj9‘ : T! L such that ðw; ‘Þ 2 Bfullg

The motivation of this is that in first principle models, the behavioral equations invariably contain
auxiliary (‘latent’) variables (state variables being the best known examples, but interconnection
variables the most prevalent ones) in addition to the (‘manifest’) variables the model aims at. We will
soon see that latent variable representations function very effectively in the context of dissipative
systems, for distinguishing the ‘external’ supply rate from the ‘internal’ storage.

2. DISSIPATIVE SYSTEMS

We now give a new, ‘no frills’, definition of dissipativity. It is stated in the language of
behaviors, and it is exceedingly direct. The basic idea is the following (see Figure 1). We assume
we have a dynamical system that exchanges supply (of energy, or mass, or whatever is relevant
for the situation at hand) with its environment. This exchange is expressed by a (real-valued)
supply rate, which is taken to be positive when supply flows into the system. Dissipativity states
that the maximum amount of supply that is ever extracted along a particular trajectory is
bounded. More precisely, for any trajectory, and starting at a particular time, the net amount of
supply that flows out of the system cannot be arbitrarily large. In other words, supply cannot be
produced in infinite supply by the system. Everything that can be extracted more than has been
supplied must in a sense have been stored at the initial time.

Definition 1
Let S ¼ ðR;R;BÞ be a dynamical system. A trajectory s : R! R; s 2 B; models the rate of
supply absorbed by the system. S is said to be dissipative if (i) B � LlocðR;RÞ and (ii)

8s 2 B and 8t0 2 R; 9K 2 R; such that �
Z T

t0

sðtÞ dt4K for T5t0

s
rate of supply   

absorbed
by the system 

SYSTEM

Figure 1. The system and the supply rate.
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A special case that leads to dissipativity is when [s 2 B]) [
R t
�1 sðt0Þ dt050 8t 2 R]: This

situation is relevant when all trajectories s 2 B have compact support on the left (this can be
viewed as systems that start ‘at rest’), or, more generally, when all s 2 B are integrable on any
left half-line. More generally, dissipativity follows if for all s 2 B there exists s0 2 B such that
sðtÞ ¼ s0ðtÞ for t50; and with

R t
�1 s0ðt0Þ dt050 for all t 2 R:

We will soon prove a proposition which states that this definition is equivalent to the existence
of a non-negative storage. The notion of storage is stated in the language of latent variable
representations of dynamical systems.

Definition 2
Let SL ¼ ðR;R;R;BfullÞ be a latent variable dynamical system. The component s : R! R of a
trajectory ðs;VÞ 2 Bfull models the rate of supply absorbed by the system, while the component
V : R! R models the supply stored. V is said to be a storage if 8ðs;VÞ 2 Bfull and
8t0; t1 2 R; t04t1; the dissipation inequality

Vðt1Þ � Vðt0Þ4
Z t1

t0

sðtÞ dt ð1Þ

holds.

We now prove that dissipativity is equivalent to the existence of a non-negative storage.

Proposition 3
The dynamical system S ¼ ðR;R;BÞ is dissipative iff there exists a latent variable dynamical
system SL ¼ ðR;R;R;BfullÞ with manifest behaviorB such that the latent variable component of
ðs;VÞ 2 Bfull is a non-negative storage.

Proof
(if): Assume that SL ¼ ðR;Rþ;R;BfullÞ satisfies (1), has manifest behavior B; and V50: Let
s 2 B: Then 9V such that ðs;VÞ 2 Bfull; and hence

8t0 2 R; �
Z T

t0

sðtÞ dt4Vðt0Þ � VðTÞ4Vðt0Þ for T5t0

This shows that S ¼ ðR;R;BÞ is dissipative (take K ¼ Vðt0Þ in Definition 1).
(only if): Conversely, assume that S ¼ ðR;R;BÞ is dissipative. Now define, for each trajectory

s 2 B; an associated trajectory V : R! R; as follows:

VðtÞ ¼ sup �
Z T

t

sðtÞ dtjT5t

� �

Obviously (take T ¼ t in the sup), V50: Since S ¼ ðR;R;BÞ is dissipative, VðtÞ51 (in fact,
Vðt0Þ4K ; with K as in Definition 1). Hence, with the ðs;VÞ’s so defined, we obtain a latent
variable dynamical system SL ¼ ðR;R;R;BfullÞ with manifest behavior B: For w 2 B
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and t04t1; there holds

Vðt0Þ ¼ sup �
Z T

t0

sðtÞ dtjT5t0

� �

5 �
Z t1

t0

sðtÞ dtþ sup �
Z T

t1

sðtÞ dtjT5t1

� �

¼ �
Z t1

t0

sðtÞ dtþ Vðt1Þ

This proves the dissipation inequality. &

Note that the construction of V in this proof, leads to a non-negative V50:Moreover, if the
system is time invariant, i.e. if stB ¼ B for all t 2 R (st denotes the backwards t-shift:
ðstf Þðt0Þ :¼ f ðt0 þ tÞ), then the constructed full behavior of ðs;VÞ’s is also time-invariant. We do
not know a simple condition for the existence of any storage (not necessarily non-negative, or
what is equivalent, not necessarily bounded from below). We state this as an open problem.

Open problem 1
Under what conditions on the behavior of the time-invariant dynamical system S ¼ ðR;R;BÞ
does there exists a time-invariant latent variable dynamical system SL ¼ ðR;R;R;BfullÞ with
manifest behavior B such that the latent variable component of ðs;VÞ 2 Bfull is a storage, i.e.
such that the dissipation inequality is satisfied?

3. QUADRATIC DIFFERENTIAL FORMS (QDF’S) AS SUPPLY RATES

Definition 1 gives an unencumbered, clean definition of dissipativity. It simply looks at the rate
at which supply goes in and out of a system, and by considering all possible supply rate histories,
comes up with a definition of dissipativity. The question arises: Is this definition too general?
Does it recover the Kalman–Yakubovich–Popov (KYP)-lemma, positive realness, bounded
realness? What does it say in the linear-quadratic case? Is it effective in stability analysis?

In this section, we examine the situation when the supply rate is generated by a quadratic
form in a vector-valued trajectories and its derivatives. However, it is convenient to recall first
some basic notions and notation concerning linear time-invariant differential systems. A linear
time-invariant differential system is a dynamical system S ¼ ðR;W;BÞ; with W ¼ Rw a finite-
dimensional (real) vector space, whose behavior consists of the solutions of a system of
differential equations of the form

R0wþ R1
d

dt
wþ � � � þ Rn

dn

dtn
w ¼ 0

with R0;R1; . . . ;Rn matrices of appropriate size that specify the system parameters and w :
R! R; the vector of system trajectories. It is convenient to denote the above system of
differential equations using a polynomial matrix as Rðd=dtÞw ¼ 0; with RðxÞ ¼ R0 þ R1xþ
� � � þ Rnx

n 2 R��w½x� a real polynomial matrix with w columns. The behavior of this system is
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defined as the set of solutions of this system of differential equations, i.e.

B ¼ w : R! RwjR
d

dt

� �
w ¼ 0

� �

The precise definition of when we consider w : R! Rw to be a solution of Rðd=dtÞw ¼ 0 is an
issue that is often of secondary importance. For the purposes of the present paper, it is
convenient to consider solutions in C1ðR;RwÞ: This asks for more smoothness than is strictly
required, but it avoids difficulties which are not germane to the issues raised in this paper. Since
B is the kernel of the differential operator Rðd=dtÞ; we often write B ¼ kerðRðd=dtÞÞ; and call
Rðd=dtÞw ¼ 0 a kernel representation of the associated linear time-invariant differential system.
We denote this set of differential systems or their behaviors by L�; or by Lw when the number
of variables is w:

We know a great deal about linear time-invariant differential systems. Important for the
purposes of the present paper are the following facts. We refer the uninitiated reader to [2, 3] for
definitions, proofs, and other details.

1. The elimination theorem which states that the manifest behavior of Rðd=dtÞw ¼Mðd=dtÞ‘
with R;M 2 R���½x� is itself an element of L�:

2. A system in L� is controllable (defined in the appealing way this is done in the
behavioral setting) iff it admits an image representation w ¼Mðd=dtÞ‘; i.e. its behavior is
B ¼ imðMðd=dtÞÞ for some M 2 R���½x�:

3. Every system in Lw admits a componentwise input/output partition, a finite-dimensional
state representation, and an input/state/output representation.

Definition 4
A QDF is a finite sum of quadratic expressions in the components of a vector-valued function
w 2 C1ðR;RwÞ and its derivatives

Sr;k
dr

dtr
w

� �>
Fr;k

dk

dtk
w

� �

with the Fr;k 2 Rw�w: Note that this defines a map from C1ðR;RwÞ to C1ðR;RÞ:

Two-variable polynomial matrices lead to a compact notation and a convenient calculus for
QDF’s. Introduce the two-variable polynomial matrix F given by

Fðz; ZÞ ¼ Sr;kFr;kz
rZk

and denote the expression in Definition 4 by QFðwÞ: Hence

QF : C
1ðR;RwÞ ! C1ðR;RÞ; w/QFðwÞ :¼ Sr;k

dr

dtr
w

� �>
Fr;k

dk

dtk
w

� �

Call F$; defined by F$ðz; ZÞ :¼ F>ðZ; zÞ; the dual of F; F 2 Rw�w½z; Z� is called
[symmetric] :, [F ¼ F$]: Obviously, QFðwÞ ¼ QF$ðwÞ ¼ Q1=2ðFþF$ÞðwÞ; which shows that in
QDF’s we can assume, without loss of generality, that F is symmetric. The QDF QF is said to be
[non-negative] (denoted QF50) :, [QFðwÞð0Þ50 for all w 2 C1ðR;RwÞ]: QDF’s have been
studied in depth by Willems and Trentelman [4].
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Associate with F ¼ F$ 2 Rw�w½z; Z�;Fðz; ZÞ ¼ Sr;kFr;kz
rZk; the matrix

*F ¼

F0;0 F0;1 � � � F0;k � � �

F1;0 F1;1 � � � F1;k � � �

..

. ..
. ..

...
...
. ..

. ..
...
...
.

Fr;0 Fr;1 � � � Fr;k � � �

..

. ..
. ..

...
...
. ..

. ..
...
...
.

2
66666666664

3
77777777775

The matrix *F is symmetric, and, while infinite, it has only a finite number of non-zero entries.
Consider its number of positive and negative eigenvalues and its rank and, since they are
uniquely determined by F; denote these by pðFÞ; nðFÞ and rankðFÞ ¼ pðFÞ þ nðFÞ; respectively.
*F can be factored as *F ¼ *F>þ

*Fþ � *F>�
*F�; with *Fþ and *F� matrices with an infinite number of

columns but a finite number of rows. In fact, the number of rows of *Fþ and *F� can be taken to
be equal to pðFÞ and nðFÞ; respectively: rowdimð *FþÞ ¼ pðFÞ and rowdimð *F�Þ ¼ nðFÞ iff the rows

of *F ¼
*Fþ
*F�

h i
are linearly independent over R: Define FþðxÞ ¼ *Fþ½Iw Iwx Iwx

2 � � ��>;

F�ðxÞ ¼ *F� Iw Iwx Iwx
2 � � �

� �>
: This yields the factorization Fðz; ZÞ ¼ F>þ ðzÞFþðZÞ � F>� ðzÞF�ðZÞ;

with Fþ 2 R��w½x�;F� 2 R��w½x�; yielding a decomposition of a QDF into a sum and difference of
squares

QFðwÞ ¼ Fþ
d

dt

� �
w

����
����
2

� F�
d

dt

� �
w

����
����
2

The (controllable) linear time-invariant differential system with image representation

fþ

f�

" #
¼

Fþ
d

dt

� �

F�
d

dt

� �
2
6664

3
7775w

plays an important role in the sequel. The above also holds, mutatis mutandis, for non-
symmetric F 2 Rw�w½z; Z�; by replacing F by its symmetric part 1=2ðFþ FnÞ: We will use the
notation pðFÞ ¼ pð1=2ðFþ FnÞÞ; and nðFÞ ¼ nð1=2ðFþ FnÞÞ also in the non-symmetric case.

In the LQ case, dissipativity involves a supply rate that is a QDF. Thus, we consider the
dynamical system with behavior B defined by a two-variable polynomial matrix F 2 Rw�w½z; Z�
as

B ¼ fs : R! R j 9w 2 C1ðR;RwÞ such that s ¼ QFðwÞg

Since this behavior is the image of the map QF; we denote it by imðQFÞ: The system SF :¼
ðR;R; imðQFÞÞ obtained this way is time-invariant but clearly nonlinear. We do not know of a
more direct way of defining a system whose behavior is generated by a QDF. We state this as an
open problem.

Open problem 2
Under what conditions on B � C1ðR;RÞ does there exists a polynomial matrix F 2 Rw�w½z; Z�
such that B ¼ imðQFÞ?
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The question which we now deal with is to give conditions on the polynomial matrix F such
that SF ¼ ðR;R; imðQFÞÞ is dissipative. The paper [4] deals extensively with this dissipativity
question. Our results follow very much the tradition of the work of Yakubovich [5, 6], Popov [7],
and Kalman [8]. We first establish the following necessary condition for dissipativity.

Proposition 5

[SF ¼ ðR;R; imðQFÞÞdissipative]) [Fðl; %lÞ þ F>ð%l; lÞ50 8l 2 C;ReðlÞ50]

) [Fðio;�ioÞ þ F>ð�io; ioÞ50 8o 2 R]

Proof
In the proof, we assume that F ¼ F$: Denote by n complex conjugate transpose. Consider the
complexification of QF

QC
F : w 2 C

1ðR;CwÞ / Sr;k
dr

dtr
w

� �n

Fr;k
dk

dtk
w

� �
2 C1ðR;RÞ

Note that for w1;w2 2 C1ðR;R
wÞ; QFCðw1 þ iw2Þ ¼ QFðw1Þ þQFðw2Þ: Hence, ðR;R; imðQFÞÞ is

dissipative iff ðR;R; imðQC
FÞÞ is. So, we may as well consider complex-valued w’s in order to

prove the proposition.
Let a 2 C

w; l0 2 C and w0 : t 2 R/el0ta 2 C
w: Then QC

Fðw0ÞðtÞ ¼ anFð %l0; l0Þaeðl0þ
%l0Þt 2 R; an

exponential. If SF ¼ ðR;R; imðQFÞÞ is dissipative, then l0 þ %l050 must imply anFð%l0; l0Þa50:
This proves the proposition. &

We have seen that every QDF can be factored as a sum and difference of squares

QFðwÞ ¼ Fþ
d

dt

� �
w

����
����
2

� F�
d

dt

� �
w

����
����
2

Define F ¼ Fþ
F�

h i
2 R��w½x�: It is easy to see that for SF ¼ ðR;R; imðQFÞÞ with F 2 Rw�w½z; Z�; we

can always assume that rankðFÞ ¼ w; in the sense that there exists F0 2 Rw0�w0 ½z; Z� such that
imðQF0 Þ ¼ imðQFÞ and rankðF 0Þ ¼ w0; with F 0 ¼ F 0þ

F 0�

h i
corresponding to the factorization of

QF0 ðw0Þ ¼ jF 0þðd=dtÞw
0j2 � jF 0�ðd=dtÞw

0j2 into a sum and difference of squares. Assume that rank
ðFÞ ¼ w: It can then be shown, using Proposition 5, that dissipativity implies that we can always
assume that pðFÞ5w: Of special interest is the situation in which there is a minimum number of
positive squares: pðFÞ ¼ w: Then Fþ is square with detðFþÞ=0: In this case, we can obtain a
complete characterization of dissipativity of a QDF.

Recall the definition of the L1 and H1 norms of G 2 RðxÞ���

jjGjjL1 :¼ supfjGðioÞjjo 2 Rg; jjGjjH1
:¼ supfjGðsÞjjs 2 C;ReðsÞ50g

where j � j denotes the matrix norm induced by the Euclidean norms. Note that jjGjjL151 iff G
is proper and has no poles on the imaginary axis, and that jjGjjH1

51 iff G is proper and has no
poles in the closed right half of the complex plane.

Theorem 6
Consider F 2 Rw�w½z; Z�: Assume that 1=2ðFþ F$Þ is given in terms of Fþ;F� 2 R��w½x� by
F>þ ðzÞFþðZÞ � F>� ðzÞF�ðZÞ; with Fþ 2 Rw�w½x�;F� 2 R��w½x�; and detðFþÞ=0: Define G 2 RðxÞ��w
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by G ¼ F�F
�1
þ : The following are equivalent:

(i) SF ¼ ðR;R; imðQFÞÞ is dissipative,
(ii) there exists C 2 Rw�w½z; Z�;QC50; such that ðd=dtÞQCðwÞ4QFðwÞ 8w 2 C1ðR;R

wÞ;
(iii)

R 0
�1QFðwÞ dt50 8w 2 C1ðR;RwÞ of compact support,

(iv) Fðl; %lÞ þ F>ð%l; lÞ50 8l 2 C;ReðlÞ50;
(v) jjGjjH1

41:

Proof
The equivalence of (ii), (iii), (iv) and (v) is proven in [4, Theorem 6.4].

(ii) ) (i): Consider the latent variable system ðR;R;R;BfullÞ; with

Bfull ¼ fðs;VÞ : R! R� R j 9w 2 C1ðR;RwÞ such that ðs;VÞ ¼ ðQFðwÞ;QCðwÞÞg

This latent variable system has imðQFÞ as its manifest behavior. Moreover, (ii) implies that V is
a non-negative storage. The implication (ii) ) (i) is therefore an immediate consequence of
Proposition 2.

(i) ) (v): For simplicity of notation, assume that F ¼ F$: By Proposition 5

Fðl; %lÞ ¼ F>þ ðlÞFþð%lÞ � F>� ðlÞF�ð%lÞ50 8l 2 C; ReðlÞ50

Hence, G>ðlÞGð%lÞ4I ;8l 2 C;ReðlÞ50: Equivalently, jjGjjH1
41: &

Theorem 6 applies to all situations in which the positive signature of F is equal to its
dimension w: The following theorem deals with another such situation.

Theorem 7
Assume that F 2 Rw�w½z; Z� is given by Fðz; ZÞ ¼ F>1 ðzÞF2ðZÞ; with F1;F2 2 Rw�w½x�; and detðF1Þ
=0: Define G 2 RðxÞw�w by G ¼ F2F

�1
1 : The following are equivalent:

(i) SF ¼ ðR;R; imðQFÞÞ is dissipative,
(ii) there exists C 2 Rw�w;QC50; such that ðd=dtÞQCðwÞ4QFðwÞ 8w 2 C1ðR;R

wÞ;
(iii)

R 0
�1QFðwÞ dt50 8w 2 C1ðR;RwÞ of compact support,

(iv) G is positive real, i.e. GðlÞ þ G>ð%lÞ50 for ReðlÞ > 0:

This theorem can be proven along the lines of the proof of Theorem 6. We omit the details. Of
course, the situations of Theorems 6 and 7 are very much related. This can be seen from the
relation

ðF>1 ðzÞF2ðZÞ þ F>2 ðzÞF1ðZÞÞ

¼ 1
2
ðF1ðzÞ þ F2ðzÞÞ

>ðF1ðZÞ þ F2ðZÞÞ � ðF1ðzÞ � F2ðzÞÞ
>ðF1ðZÞ � F2ðZÞÞ

which shows that Theorem 6 is the more general one.

4. THE STORAGE AS A STATE FUNCTION

In order to relate the dissipativity of QDF’s to the KYP-lemma, we mention a result that relates
storage to state. Assume that a behavior B 2Lw is given in terms of the latent variables x by

Bwþ Axþ E
d

dt
x ¼ 0
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with A;B;E 2 R��� constant matrices. The variables x are called state variables. We usually do
not define state representations this way, but by a ‘splitting’ property, but it can be shown that
the appropriate state definition [3] is equivalent to the existence of a representation by means of
a differential equation that is first order in x and zeroth order in w:

The expansion of QF as QFðwÞ ¼ jFþðd=dtÞwj
2 � jF�ðd=dtÞwj

2 leads to a state representation
of a QDF, as follows. Let Bf þ Axþ Eðd=dtÞx ¼ 0 be a state representation of the system in
image representation

f ¼
fþ

f�

" #
¼

Fþ
d

dt

� �

F�
d

dt

� �
2
6664

3
7775w

Then

B
fþ

f�

" #
þ Axþ E

d

dt
x ¼ 0; s ¼ jfþj2 � jf�j2

is a state representation of QF: In fact, by further partitioning the variables fþ and f�
componentwise in inputs and outputs, we arrive at the following input/state/output
representation of a QDF:

d

dt
x ¼ Axþ B

uþ

u�

" #
;

yþ

y�

" #
¼ CxþD

uþ

u�

" #
; s ¼ juþj2 þ jyþj2 � ju�j2 � jy�j2

In [9] the notion of state is brought to bear on the storage. Assume that QC satisfies the
dissipation inequality

d

dt
QCðwÞ4QFðwÞ 8w 2 C1ðR;R

wÞ

Then it can be shown that QC is actually a memoryless state function, i.e. there exists a matrix
K 2 R��� such that

[
fþ

f�

" #
;x

 !
satisfies B

fþ

f�

" #
þ Axþ E

d

dt
x ¼ 0 and

fþ

f�

" #

¼

Fþ
d

dt

� �

F�
d

dt

� �
2
6664

3
7775w] ) [QCðwÞ ¼ x>Kx]

Moreover, ifQC50; then K can be taken to be symmetric and non-negative definite: K ¼ K>50:
Summarizing, consider the following seven statements concerning the system SF ¼ ðR;R;

imðQFÞÞ defined by a QDF.

(i) SF is dissipative,
(ii) SF admits a latent variable representation with a non-negative storage,
(iii) SF admits a latent variable representation with a non-negative QDF as storage,
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(iv) SF admits a latent variable representation with a non-negative memoryless state
function as storage,

(v) SF admits a latent variable representation with a non-negative memoryless quadratic
state function as storage,

(vi)
R 0
�1QFðwÞ dt50 8w 2 C1ðR;RwÞ of compact support,

(vii) The frequency domain and Pick matrix condition of [4, Theorem 9.3] on F:

The following implications have been shown, or are easily shown: (i), (ii)( (iii), (iv), (v)
, (vi) ‘,’ (vii) (‘,’) because there are additional assumptions in (vii). This raises the question if
(ii)) (iii), i.e. if, assuming that the supply rate is a QDF, the existence of a non-negative storage
is equivalent to the existence of a non-negative storage that is also a QDF. We conjecture that
this is the case. Stated very precisely in terms of QDF’s, this conjecture reads as follows.

Conjecture
The following are equivalent for F 2 Rw�w½z; Z�:

1.
R 0
�1QFðwÞ dt50 8w 2 C1ðR;RwÞ of compact support,

2. 8w 2 C1ðR;RwÞ; 9K 2 R; such that �
R T
0 QFðwÞ dt4K 8T50:

The first statement implies the second. Indeed, let w 2 C1ðR;RwÞ; and choose v 2 C1ðR;RwÞ of
left compact support, such that vðtÞ ¼ wðtÞ for t50: If the first statement holds, thenZ T

�1
QFðvÞ dt50 8T50

Hence, for T50

�
Z T

0

QFðwÞ dt ¼
Z T

0

QFðvÞ dt4
Z 0

�1
QFðvÞ dt

This proves the second statement. The conjecture questions the validity of the converse. &

If the signature condition pðFÞ ¼ dimðFÞ of Theorem 6 holds, we have proven that all these
conditions are equivalent, in fact, with the frequency domain condition (vii) made more precise
as an H1-norm condition.

It is useful to contrast this with the situation in which non-negativity of the storage is not
required. This is actually the situation considered by Yakubovich [5]. Consider the following six
statements concerning the system SF ¼ ðR;R; imðQFÞÞ defined by a QDF.

(i)0 SF admits a latent variable representation with a storage,
(ii)0 SF admits a latent variable representation with a QDF as storage,
(iii)0 SF admits a latent variable representation with a memoryless state function as storage,
(iv)0 SF admits a latent variable representation with a memoryless quadratic state function

as storage,
(v)0

Rþ1
�1 QFðwÞ dt50 8w 2 C1ðR;RwÞ of compact support,

(vi)0 Fðio;�ioÞ þ F>ð�io; ioÞ50 8o 2 R:

The following implications have been shown, or are easily shown: (ii)0 ( (iii)0 , (iv)0 , (v)0

, (vi)0 , (vii)0: This raises the question if (ii)0 ) (iii)0; i.e. if assuming that the supply rate is a
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QDF, the existence of a storage is equivalent to the existence of a storage that is a QDF. We
conjecture that also this is the case, but it is unclear how to formulate this conjecture in a
‘non-existential’ way in terms of QDF’s.

5. LINEAR SYSTEMS AND QUADRATIC SUPPLY RATES

The theory presented in the previous two sections is not only relevant for supply rates that are
QDF’s driven by a free signal w 2 C1ðR;RwÞ; leading to the supply rate s ¼ QFðwÞ: In fact, it is
applicable whenever we have a QDF that acts on variables that are constrained by a controllable
linear time-invariant differential systems, and supply rates acting on these variables through
quadratic expressions involving polynomials or rational functions.

Let us clarify this a bit. Assume that we start with variables whose time behavior is constrained
to belong to a linear system with behavior B 2Lw: There are many models that are of this type.
The immediate situation is the one in which the variables are described by linear constant
coefficient differential equations: Rðd=dtÞw ¼ 0; with R 2 R��w½x�: Other situations that frequently
occur can be reduced to this one. For example, when the model for w involves auxiliary variables
(as the state in the ubiquitous state space models): Rðd=dtÞw ¼Mðd=dtÞ‘ with R;M 2 R���½x�:

But, by appropriately interpreting the solution, we can also consider equations involving
rational functions. Indeed, let R 2 RðxÞ��w; and consider the ‘differential equation’
Rðd=dtÞw ¼ 0: What is meant by its behavior, i.e. by its set of solutions? Since R is a matrix of
rational functions, it is not evident how to define solutions. This may be done in terms of co-
prime factorizations, as follows. R can be factored R ¼ P�1Q with P 2 R���½x� square,
detðPÞ=0;Q 2 R��w½x�; and ðP;QÞ left co-prime. We define the behavior of Rðd=dtÞw ¼ 0 as that
of Qðd=dtÞw ¼ 0; i.e. as kerðQðd=dtÞÞ: It is easy to see that this behavior is independent of which
co-prime factorization is taken. Alternatively, we can write R ¼ Pþ G with P polynomial and G
strictly proper, make a controllable/observable state representation of GðsÞ ¼
CðIs� AÞ�1B; and consider the behavior defined by ðd=dtÞx ¼ Axþ Bw; 0 ¼ Cxþ Pðd=dtÞw:
Hence Rðd=dtÞw ¼ 0; with R 2 RðxÞ��w a matrix of rational functions, is a well-defined
behavior in Lw: And, of course, once we have this, if follows from the elimination theorem
that the manifest behavior of the system involving latent variables, Rðd=dtÞw ¼Mðd=dtÞ‘ with
R;M 2 RðxÞ���; also belongs to Lw:

It follows from all this that the classical linear system models

d

dt
x ¼ Axþ Bu; y ¼ CxþDu; w ¼

u

y

" #

with A;B;C;D matrices, and

y ¼ Gu; w ¼
u

y

" #

with G a transfer matrix of rational functions, lead to a behavior 2Lw: These are both special
cases of the more general model involving latent variables and rational functions

R
d

dt

� �
w ¼M

d

dt

� �
‘

with R;M 2 RðxÞ��� matrices of rational functions (not necessarily proper).
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It should be noted that the system described by the transfer function y ¼ Gðd=dtÞu;w ¼ ðu; yÞ
is automatically controllable. Transfer functions are inadequate to deal with systems that are
not controllable. The main difference for y ¼ Gðd=dtÞu between the case that G is a polynomial
matrix versus a matrix of rational functions, is that in the polynomial case there is unique y
corresponding to every u 2 C1ðR;RmÞ; while in the rational functions there is no uniqueness
(notwithstanding the numerous statements in the literature to the effect that a transfer function
defines a map from inputs to outputs). Finally, the w behavior defined by w ¼Mðd=dtÞ‘; with
M 2 RðxÞw�� is always controllable.

Further, suppose that we have a supply rate that is equal to a quadratic expression, like
s ¼ jw1j

2 � jw2j
2 or s ¼ w>1 w2; with w1 and w2 related to underlying system variables w in such a

way that joint behavior of ðw;w1;w2Þ is an element of L�: The relation between these variables
could therefore involve linear differential equations, rational transfer functions, auxiliary
variables, etc. It comprises every QDF by defining w1 and w2 appropriately, say

w1 ¼ w;
d

dt
w;

d2

dt2
w; . . .

� �

w2 ¼ SkF0;k
dk

dtk
w;SkF1;k

dk

dtk
w;SkF2;k

dk

dtk
w; . . .

� �

and s ¼ w>1 w2: But w1 and w2 could also be defined by w1 ¼ G1ðd=dtÞw;w2 ¼ G2ðd=dtÞw with
G1;G2 2 RðxÞ��w; and w 2 B; B 2Lw: Or by F1ðd=dtÞw1 ¼ G1ðd=dtÞw;F2ðd=dtÞw2 ¼ G2ðd=dtÞw;
with F1;G1;F2;G2 2 RðxÞ��� (not necessarily proper).

Now, assume that the resulting behavior of the variables ðw1;w2Þ (with all other variables
eliminated) in s ¼ jw1j

2 � jw2j
2 or s ¼ w>1 w2 is controllable. Then there exists an image

representation

w1

w2

" #
¼

M1
d

dt

� �

M2
d

dt

� �
2
6664

3
7775w

leading to s¼ jðM1ðd=dtÞwÞj2 � jðM2ðd=dtÞwÞj2 or s ¼ ðM1ðd=dtÞwÞ
>ðM2ðd=dtÞwÞ;w 2 C1ðR;R

wÞ:
These supply rates are hence also QDF’s.

All this shows that the situation discussed is very general indeed. It only requires: linear
differential relations, quadratic supply rates and a controllability assumption. Needless to add,
however, that it may not be a simple matter to translate the conditions of, for example,
Theorems 6 and 7, to a representation in which the supply rate is not given directly as a ‘pure’
QDF.

The literature on the linear quadratic problem focuses on the state space representations like

d

dt
x ¼ Axþ Bu; s ¼ u>Ruþ u>Lxþ x>Qx

However, one may as well deal with the resulting QDF’s by simply studying (symmetric)
2-variable polynomial matrices F 2 Rw�w½z; Z�:

In closing this section, we mention two straightforward results involving a supply rate that is
defined by rational transfer functions.
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Theorem 8
Consider the supply rate s given by s ¼ jfþj

2 � jf�j
2; with fþ; f� generated by the transfer

functions fþ ¼ Fþðd=dtÞw; f� ¼ F�ðd=dtÞw;w 2 C1ðR;R
wÞ; with Fþ 2 RðxÞw�w;F� 2 RðxÞ��w; and

detðFþÞ=0: Define G 2 RðxÞ��w by G ¼ F�F
�1
þ : Then the resulting system is dissipative iff jjGj

jH1
41:

Theorem 9
Consider the supply rate s given by s ¼ f >1 f2; with f1; f2 generated by the transfer functions
f1 ¼ F1ðd=dtÞw; f2 ¼ F2ðd=dtÞw;w 2 C1ðR;R

wÞ; with F1;F2 2 RðxÞw�w; and detðF1Þ=0: Define
G 2 RðxÞw�w by G ¼ F2F

�1
1 : Then the resulting system is dissipative iff G is positive real.

These theorems are immediate consequences of Theorems 6 and 7.
In addition to QDF, there are other quadratic forms on C1ðR;RwÞ and DðR;RwÞ that are

important in LQ theory. We mention here one for the sake of completeness.

Definition 10
A quadratic integral form (QIF) is defined by a matrix of rational functions, P 2 RðxÞw�w with
no poles on the imaginary axis, as the map

IP : w 2 DðR;R
wÞ/

1

2p

Z þ1
�1

#wð�ioÞ>PðioÞ #wðioÞ do 2 R

where #w denotes the Fourier transform of w:

IP is a shift-invariant quadratic form on DðR;RwÞ: QDF’s and QIF’s (and their half-line
versions) are intimately related. This relation is one of the main themes in [4] for the case that P
is purely polynomial. We do not pursue this relationship here.

6. STABILITY OF SYSTEMS

Stability is one of the main issues in applied mathematics. It is of special importance in control,
where one of the central problems is to design a regulated system that maintains stability under
a set of perturbations. Robust stability is the problem discussed in the remainder of this paper.

As a mathematical question in control theory, the stability problem first emerged in the
context of linear constant coefficient scalar differential equations, through the work of Maxwell
[10]. A system described by pðd=dtÞw ¼ 0; with p 2 R½x�; is defined to be stable if all its solutions
converge to 0 as t!1:Maxwell related stability to negativity of the real part of the roots of the
polynomial p: Later, Routh [11] and Hurwitz [12] obtained conditions that characterize
negativity of these real parts by a finite set of algebraic inequalities involving the coefficients of
the polynomial p: See [13, Section 3.4] for a recent exposition.

Convergence, as t!1; of the solution to 0 (or, more generally, to a nominal trajectory) is
also the basic idea underlying Lyapunov stability. In Lyapunov stability, the focus is on systems
described by the flow ðd=dtÞxðtÞ ¼ f ðxðtÞ; tÞ and the behavior of the state trajectories
x : R! X; with X the state space, the manifold on which the flow is defined. Once convergence
of the state is proven, one readily obtains convergence of a reasonable function of the state
as well.
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A second angle from which to view the stability question, is by considering a system as an
input/output map, and aiming at boundedness of this map. Consider, for example, in the linear
time-invariant case, the convolution yðtÞ ¼

R t
�1Hðt� t0Þuðt0Þ dt0 relating the input u : R! Rm to

the output y : R! Rp: If H 2LlocðRþ;R
p�mÞ; this convolution is a well-defined map, taking

inputs u 2LlocðR;RmÞ with compact support on the left, to outputs y 2LlocðR;RpÞ (also with
compact support on the left). We can now define input/output stability in terms of the
boundedness of this map, say that u 2L2ðR;R

mÞ should yield y 2L2ðR;R
pÞ: It is easily seen that

this is the case if H 2LðRþ;R
p�mÞ: This notion of input/output stability is readily generalized to

more general, nonlinear time-varying, systems. In this input/output setting, stability is basically
equated with L2 into L2; or with finite gain.

An important aspect of stability studied in control theory is robust stability. This problem is
usually approached by viewing the system as consisting of two interconnected parts: a nominal
system (called the plant) interconnected with an uncertain system. The robust stability problem
then requires to prove that the overall system remains stable for an appropriate family of
uncertain perturbations. Robust stability articulates the essence of good regulation.

It is not evident, however, how to formulate robust stability mathematically. If we wish to
deal with it from a classical Lyapunov point of view, we need to assume a state model, not only
for the plant, but also for the uncertain perturbation. But it is obviously undesirable to assume a
great deal of insight into the nature of an uncertain perturbation, and, in particular, knowledge
of its state space may be unrealistic. This, it appears, is the main reason why some researchers
strongly object to state space methods in robust stability analysis. A good theory of robust
stability should view the uncertain perturbations as a black box, and require only very rough
qualitative knowledge of the uncertain perturbations.

7. INPUT/OUTPUT FEEDBACK STABILITY

The most successful theory of robust stability considers the feedback system shown in Figure 2.
In this architecture, the plant is in the forward loop and the uncertain perturbation in the return
loop. The problem is to prove conditions under which the closed loop system remains stable for
a class of uncertain systems in the feedback loop. Stability is defined as input/output stability,
with the additive ‘noise’ signals d1; d2 viewed as inputs, and the internal loop signals u1; y1; u2; y2
viewed as outputs.

+
+ +

d

2

y

d

2 u2

y11u1
Plant

System
Uncertain

Figure 2. Feedback system.

DISSIPATIVITY AND STABILITY OF INTERCONNECTIONS 577

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:563–586

DOI: 10.1002/rnc



It has proven not to be a sinecure to come up with a satisfactory input/output stability
formulation for this feedback system. Crucial in this development has been the introduction of
extended spaces by Sandberg [14, 15] and Zames [16]. Define, for example,

L2;eðR;R
nÞ :¼ f : R! Rn

Z t

�1

���� jf ðt0Þj2 dt051 8t 2 R

� �

Assume that the signals d1; u1; y2 take values in Rm and d2; u2; y1 in Rp:L2-input/output stability
of the feedback system shown in Figure 2 is defined by the requirement that for any d1 2
L2ðR;R

mÞ; d2 2L2ðR;R
pÞ; every corresponding solution to the feedback equations in the

extended spaces, u1; y1 2L2;eðR;R
mÞ; u2; y2 2L2;eðR;R

pÞ; should actually belong to the non-
extended L2-spaces themselves: there holds u1; y1 2L2ðR;R

mÞ; u2; y2 2L2ðR;R
pÞ: This

formulation side-steps the existence (and uniqueness) question. Indeed, in general, it is not
true that to every d1 2L2ðR;R

mÞ; d2 2L2ðR;R
pÞ; there exists a (unique) corresponding solution

u1; y1 2L2;eðR;R
mÞ; u2; y2 2L2;eðR;R

pÞ: However, it can be shown that under reasonable
conditions for every d1 2L2;eðR;R

mÞ; d2 2L2;eðR;R
pÞ with compact support on the left, there

exists a unique corresponding solution u1; y1 2L2;eðR;R
mÞ; u2; y2 2L2;eðR;R

pÞ; also with
compact support on the left. This property, related to the notion of well-posedness, shows
that under these conditions L2-input/output stability implies that there exists, for every d1 2
L2ðR;R

mÞ; d2 2L2ðR;R
pÞ with compact support on the left, a unique corresponding solution

u1; y1 2L2;eðR;R
mÞ; u2; y2 2L2;eðR;R

pÞ; also with compact support on the left, and that this
solution actually belongs to L2: u1; y1 2L2ðR;R

mÞ; u2; y2 2L2ðR;R
pÞ: One may wish to take

this formulation including well-posedness and with the restriction to left compact support inputs
d1; d2; as part of the definition of L2-input/output stability.

This input/output approach to stability of feedback systems was developed in the 1960s and
1970s in the work of Zames [16], Sandberg [14, 15] (and his subsequent papers) and numerous
others, e.g. [2, 17, 18]. Textbooks that deal with this theory are, for example, [19, 20]. In [21], this
approach to robust stability has been demonstrated to be also very effective to deal with issues
as the parametrization of all stabilizing controllers, simultaneous stabilization, etc.

Notwithstanding all its merits, the input/output stability theory just described suffers from
number of drawbacks. We discuss the two main ones:

1. The input/output structure of the plant, the uncertain system, and the interconnection.
2. The additive inputs d1; d2 in terms of which stability is defined.

Does this input/output structure and do these additive inputs describe realistic physical
interconnections?

The limitations of input/output thinking has been a main motivation for the development of
the behavioral approach to system theory [3, 22, 23]. Physical systems are not signal processors.
The interconnection of physical systems occurs through sharing variables, the common
variables on the terminals that are interconnected. By interconnecting two terminals of two
electrical circuits, we equate two voltages and equate two currents (or, depending on the positive
directions chosen, we put their sum equal to zero). These two terminals henceforth share their
voltage and current. It may be that we can consider one of the terminals as voltage driven, and
the other as current driven. If this is the case, it is just a fortuitous accident, which allows
viewing the interconnection as an input-to-output assignment. But there is no reason
whatsoever why this could be elevated to a general principle. By interconnecting two pins of
two mechanical systems, we equate two forces (or, depending on the positive directions chosen,
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we put their sum equal to zero) and equate two positions (or two angles and two torques).
The two pins henceforth share the same force and the same position. It may be that
we can consider one of the pins as force driven, and the other as position driven. If this
is the case, it is just a fortuitous accident, which allows viewing the interconnection as an
input-to-output assignment. But there is no reason whatsoever why this could be elevated
to a general principle. By interconnecting two pipes of two fluidic systems, we equate
two flows (or, depending on the positive directions chosen, we put their sum equal to zero)
and two pressures. The two pipes henceforth share the same flow and the same pressure
at the connection point. There is no reason whatsoever why this could or should be viewed
as an input-to-output assignment. This listing can go on and on, nor is it limited to physical
systems.

A second, somewhat related, point is the presence of additive perturbations d1; d2 in the
feedback loop of Figure 2. These inputs serve a useful purpose for coming up with a workable
definition of stability, but they cannot be justified from a physical point of view. Typically the
uncertain part of a system involves model approximations, for example, the neglected dynamics
of a wire in electrical circuits, the elasticity of a mechanical part that is modelled as rigid,
changing system parameters due to ageing, saturation effects, etc. The assumption that these
perturbations involve additive inputs (and therefore need an infinite energy source of their own)
is usually not physical. The assumption of additive perturbations to capture model
imperfections is pervasive in system theory, for example, in system identification. It can
be justified from a pragmatic point of view as a way of introducing and dealing with uncertainty
in the model, but it is seldom a good description of reality. These additive inputs seem
to be inspired by the sensor and actuator noise sometimes encountered in sensor-to-actuator
feedback control, but they do not fit well into a physical description of an uncertain
interconnection.

In setting up a stability concept, one is faced with the choice of aiming either at a form of
input/output stability, or at convergence of certain variables to an operating point, a Lyapunov
type of stability. The first point of view is only convincing if the external inputs are physically
realistic. We do not think that there many situations, where the uncertainty is as suggested in
Figure 2. However, if we wish stability to refer to the system state, then we have the difficulty
that we have to postulate knowledge of the state space of the uncertain system, not a very
realistic situation either.

In the remaining sections, we present a theory of robust stability that

* does not assume a state model of the uncertain system,
* does not assume additive inputs at the interconnection points, and
* avoids input/output representations.

We use the following ‘Lyapunov like’ concept of stability.

Definition 11
S ¼ ðR;W;BÞ is said to be stable if [w 2 B]) [wðtÞ ! 0 as t!1]:

Whenever we deal with stability, we (implicitly) assume that 0 2W � V; with V a normed
vector space (this is done for simplicity of exposition: it is straightforward to extend to more
general situations).
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8. STABILITY OF UNCERTAIN INTERCONNECTED SYSTEMS

We will study the stability of the interconnected system shown in Figure 3. In this architecture,
we assume that the plant and the uncertain system interact by sharing certain variables, denoted
by w: Stability is defined in terms of convergence to 0 of the ‘external’ variables x: We now
formalize this set-up in the behavioral language.

The plant is a dynamical system Splant ¼ ðR;X�W;BplantÞ: Note that the plant involves two
types of variables: those associated with x (the notation x suggests ‘state’, since later we will take
them to be the state variables of the plant), and those associated with the interconnection
variables w: We assume that 0 2 X is (a subset of) a real vector space. Each trajectory in the
plant behavior is a pair ðx;wÞ : R! X�W: The variables x are those which we aim to prove
stability for. The variables w are the shared variables on the interconnection terminals. The
uncertain system is a dynamical system Suncertain ¼ ðR;W;BuncertainÞ: The interconnected system
is obtained by letting the plant and the uncertain system share the variables w

Sinterconnected ¼ Splant^ Suncertain ¼ ðR;X;BÞ

with

B ¼ fx : R! X j 9w : R!W such that ðx;wÞ 2 Bplant and w 2 Buncertaing

In a typical application, Splant and Suncertain are interconnected through some terminals, as
shown in Figure 3. Each of these terminals carries some variables. By interconnecting, we
impose equality of the variables that live on the terminals viewed as belonging to the plant or to
the uncertain system. Examples are electrical interconnections, leading to equality of voltage
and current, mechanical interconnections, leading to equality of positions and forces or torques
and angles, thermal interconnections, leading to equality of temperatures and heat flows, etc.

The question addressed now is

Find conditions on Splant and Suncertain such that Splant^ Suncertain is stable

9. STABILITY OF DISSIPATIVE INTERCONNECTIONS

The principle that underlies the stability results that have emerged from the feedback stability
literature is the observation that the interconnection of dissipative systems is stable. This is the
basis of the small gain theorem, the positive operator theorem, the conic operator theorem (see
the references given above), and the internal quadratic constraint (IQC)-based results.

x

w

System

Interconnected
System

Plant Uncertain

Figure 3. Interconnected system.
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In Figure 3, the plant and the uncertain system are not defined with associated supply rates.
In fact, choosing appropriate supply rates is the key to the stability results. Usually, the supply
rate is assumed to be a memoryless function of the system variables or a QDF in the system
variables. This is also the situation found in physical systems. In electrical circuits, the external
variables are voltages and currents, and the supply rate (of energy, i.e. the power) is the sum of
the product of the terminal currents and voltages. In mechanical systems, the external variables
are forces and positions, the supply rate (of energy, i.e. the power) is the sum of the product of
the terminal forces and velocities, i.e. the derivative of the positions. However, for stability
considerations, we also need to allow situations where the supply rate is not a function of the
system variables, but is related to the system variables through a behavior. This is the case, for
example, when the supply rate involves a transfer function. In order to formalize all this, we
need some more notation.

Let S ¼ ðR;W1 �W2;BÞ be a dynamical system involving the variables w1 and w2: Define the
projections pW1

S and pW2
S as pW1

S :¼ ðR;W1;pW1
BÞ with

pW1
B :¼ fw1 : R!W1j9w2 : R!W2 such that ðw1;w2Þ 2 Bg

pW2
S is analogously defined. This notation is readily generalized to the situation when there are

more than two components in the signal space. We now introduce supply rates for the plant and
the uncertain system, in the spirit of what is shown in Figure 4.

Consider a system S0plant ¼ ðR;X�W� R;B0plantÞ such that the projection on the X�W

component is the plant: pX�WS0plant ¼ Splant: Denote the projection onto the third component,
the supply rate, sP; by psPS

0
plant: Similarly, consider a system S0uncertain ¼ ðR;W� R;B0uncertainÞ

such that the projection on the W component is the uncertain system: pWS0uncertain ¼ Suncertain:
Denote the projection onto the second component, the supply rate, sU; by psUS

0
uncertain:

The proposition which follows states that if both psPS
0
plant and psUS

0
uncertain are dissipative, and

if, roughly speaking, sP þ sU is (strictly) non-negative along trajectories of the interconnected
system, then in the interconnected system, trajectory w is square integrable. However, the
trajectories sP and sU need not be a function of the trajectory w: They are, if, for example, these
supply rates are memoryless functions or QDF’s in the w variables. They are not in the
(common) case that the definitions of sP and sU involve, for example, transfer functions acting
on the w’s. Keeping this and Figure 5 in mind, we obtain the following proposition which is the

Figure 4. Dissipative plant and uncertain system.

Ps

x

U

w

s

Plant System
Uncertain

Figure 5. Dissipation in the interconnected system.
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key to stability by dissipative interconnections. We assume that 0 2W; with W (a subset of) a
real vector space.

Proposition 12
We use the notation introduced in the pre-amble. Assume that

(i) psPS
0
plant is dissipative,

(ii) psUS
0
uncertain is dissipative,

(iii) 9e > 0 such that 8w 2 pWBplant \Buncertain; 9sP; sU : R! R such that:

(a) ðw; sPÞ belongs to the behavior of pW�RS0plant;
(b) ðw; sUÞ belongs to the behavior of S0uncertain;
(c) sPðtÞ þ sUðtÞ þ ejwðtÞj240 8t 2 R:

Then 8w 2 pWBplant \Buncertain; there holds
R1
0 jwðtÞj

2 dt51:

Proof
Dissipativeness implies that for any sP in the behavior of psPS

0
plant; and for any sU in the behavior

of psPS
0
uncertain; there holds

9KP 2 R such that �
Z T

0

sPðtÞ dt4KP for T50

9KU 2 R such that �
Z T

0

sUðtÞ dt4KU for T50

This implies that

�
Z T

0

ðsPðtÞ þ sUðtÞÞ dt4KP þ KU for T50

Let w 2 pWBplant \Buncertain: Then, with sP; sU as in the statement of the proposition, we obtainZ T

0

jwðtÞj2 dt4
KP þ KU

e
for T50

The conclusion
R1
0 jwðtÞj

2 dt51 follows. &

Once we have established that
R1
0 jwðtÞj

2 dt51; we have to look at the structure of the plant
behavior in more detail, in order to conclude that xðtÞ ! 0 as t!1: It is a common situation
that square integrability of the external system variables implies convergence to zero of internal
state-like system variables. We will deal with this in the next section when the plant is assumed
to be a linear time-invariant differential system.

In many applications of Proposition 12, the supply rates are defined by maps from w to sP and
sU: In this case statement (iii) of the proposition can be simplified to read: 9e > 0 such that
8w 2 pWBplant \Buncertain; the corresponding sP; sU satisfy condition (c). Also, whenever, for
example, these maps are memoryless, say, w/ðsPðwÞ; sUðwÞÞ condition (c) will be satisfied if
9e > 0 such that ðcÞ0: sPðwÞ þ sUðwÞ þ ejwj240 8w 2W: The conditions of Proposition 12 then
reduce to (i) dissipativity of psPS

0
plant; (ii) dissipativity of psUS

0
uncertain; and ðcÞ

0:
We illustrate how the Proposition 12 leads to the small gain theorem and the positive

operator theorem for the plant Splant ¼ ðR;X� U� Y;BplantÞ; and the uncertain system
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Suncertain ¼ ðR;U� Y;BuncertainÞ: For the small gain theorem, introduce the supply rates
sPðtÞ ¼ juðtÞj

2�jyðtÞj2 þ eðjuðtÞj2 þ jyðtÞj2Þ and sUðtÞ ¼ jyðtÞj
2 � juðtÞj2: The conditions of Proposi-

tion 12 are then (i) dissipativity of the plant with respect to the supply rate juðtÞj2�
jyðtÞj2 þ eðjuðtÞj2 þ jyðtÞj2Þ; i.e. (a form of) strict contractivity of the plant, and (ii) dissipativity of
the uncertain system with respect to the supply rate �juðtÞj2 þ jyðtÞj2; i.e. contractivity of the
uncertain system. For the positive operator theorem, introduce the supply rates sPðtÞ ¼
uðtÞ>yðtÞ þ eðjuðtÞj2 þ jyðtÞj2Þ and sUðtÞ ¼ �uðtÞ

>yðtÞ: Stability then requires (a form of) strict
passivity of the plant and passivity of the uncertain system.

10. STABILITY WITH A LINEAR TIME-INVARIANT PLANT

In this section, we assume that the plant is a linear time-invariant differential system with
variables w; and with x the state of the w-behavior. With slight abuse of notation, we denote this
plant as Splant ¼ ðR;R

w;BplantÞ 2Lw; with x the minimal state associated with B: In this case, it
is easy to prove that w 2 B and

R1
0 jwðtÞj

2 dt51 imply xðtÞ ! 0 as t!1: Indeed, in a suitable
input/output partition, the plant variables ðw;xÞ are described by

d

dt
x ¼ Axþ Bu; y ¼ CxþDu; w ¼

u

y

" #

with ðA;CÞ observable (because of minimality). Then
R1
0 jwðtÞj

2 dt51 and Cx ¼ y�Du implyR1
0 jCxðtÞj

2 dt51: Take L 2 R��� such that A� LC is Hurwitz. Then ðd=dtÞx ¼ ðA� LCÞxþ
LCxþ Bu: Since A� LC is Hurwitz, and

R1
0 jCxðtÞj

2 dt51;
R1
0 juðtÞj

2 dt51; we obtainR1
0 jxðtÞj

2 dt51: Combined with ðd=dtÞx ¼ Axþ Bu; we obtain
R1
0 jxðtÞj

2 dt51: This yields,
since

R1
0
jxðtÞj2 dt51 and

R1
0
jd=dt xðtÞj2 dt51; xðtÞ ! 0 as t!1:

The purpose of this section is to prove stability results based on supply rates generated by
transfer functions that act on the variables w (see Figure 6).

Proposition 13
Let F 2 RðxÞ��w and S ¼ S> 2 R��� be such that for some e > 0

sP ¼ v>PSvP � ejwPj2; vP ¼ F
d

dt

� �
wP; wP 2 Bplant

sP sU

w

x

w

UncertainLinear

Plant

F F

System

Figure 6. Linear plant and quadratic supply rate.
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and

sU ¼ �v>USvU; vU ¼ F
d

dt

� �
wU; wU 2 Buncertain

are both dissipative. Then Splant^ Suncertain is stable.

This proposition is an immediate consequence of Proposition 12. Indeed, for w 2 Bplant \
Buncertain; there exist corresponding responses vP ¼ vU; leading to sP þ sU þ ejwj2 ¼ 0:

The question now is how to make these conditions more concrete, for example, by reducing
the dissipativity of the first system to conditions on the transfer function of the plant, and
dissipativity of the second system to an IQC on the uncertain system. Define the dual of
F 2 RðxÞ���; denoted as Fn; by FnðxÞ :¼ F>ð�xÞ: This dual is sometimes called the para-
hermitian conjugate.

Definition 14
P ¼ Pn 2 RðxÞw�w defines an IQC for the system S ¼ ðR;Rw;BÞ ifZ þ1

�1
#wð�ioÞ>PðioÞ #wðioÞ do50

for all w 2 B\L2ðR;R
wÞ such that the integral exists. #w denotes the Fourier transform of w:

Note that, in terms of Definition 10, an IQC basically requires that IPðwÞ50 for w 2 B:
IQC’s are used in [18, Theorem 1] to obtain very general and very sharp stability results. We
now use Proposition 13 to obtain a special case, a stability result in an input/output setting
based on a weighted loop gain condition and IQC’s. The full generalization of [18, Theorem 1]
within the context of Proposition 13 and without assuming input/output structure is left as
future work.

We consider the situation shown in Figure 7. Bplant is described by the input/state/output
representation

d

dt
x ¼ Axþ Bu; y ¼ CxþDu

with A Hurwitz. Denote the transfer function by G; GðsÞ ¼ CðIs� AÞ�1BþD 2 RðxÞp�m:
Assume that Buncertain is the graph of a non-anticipating map D that maps y : R! Rp with

u vuvyvvy

x
u

yy
u

uyF yF uF

G

F

Figure 7. Linear plant with input and output supply rates.
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R t
�1 jyðt

0Þj2 dt0 for all t 2 R into u ¼ DðyÞ : R! Rm; with
R t
�1 juðt

0Þj2 dt0 for all t 2 R: Assume
moreover that D maps L2ðR;R

pÞ into L2ðR;R
mÞ: [y 2L2ðR;R

pÞ]) [ u ¼ DðyÞ 2L2ðR;R
mÞ]:

We have the following stability result. No attempt has been made to make the conditions as
tight as possible in the sense of strict inequalities, or boundedness assumptions.

Assume that there exist Pu ¼ Pn

u 2 RðxÞm�m and Py ¼ Pn

y 2 RðxÞp�p; for which 9k;K 2 R;
k > 0; with kI4PuðioÞ;PyðioÞ4KI 8o 2 R; such that

(i) Suncertain satisfies the IQC defined by P ¼
�Pu 0
0 Py

� 	
;

(ii) 9e > 0 such that G>ð�ioÞPyðioÞGðioÞ4ð1� eÞPuðioÞ 8o 2 R:

Then the interconnected system is stable.
The proof goes as follows. Factor Pu ¼ Fn

u Fu and Py ¼ Fn
y Fy; such that Fu;Fy;F�1u ;F�1y are

proper and have no poles in the closed right half of the complex plane. It is well-known that (as
a consequence of boundedness and strict positivity) such a spectral factorization exists. Consider
vu ¼ Fuðd=dtÞu; vy ¼ Fyðd=dtÞy: We now prove that there exists e > 0 such that the systems
defined by, respectively,

sP ¼ jvu;Pj
2 � jvy;Pj

2 � eðjuPj2 þ jyPj2Þ; vu;P ¼ Fu
d

dt

� �
uP; vy;P ¼ Fy

d

dt

� �
yP;

uP

yP

" #
2 Bplant

and

sU ¼ �jvu;Uj2 þ jvy;Uj2; vu;U ¼ Fu
d

dt

� �
uU; vy;U ¼ Fy

d

dt

� �
yU;

uU

yU

" #
2 Buncertain

are both dissipative. The result then follows from Proposition 13. We only prove the second
dissipativity condition (the first one is proven analogously). Observe that the IQC implies that
for yU 2L2ðR;R

pÞ; there holds jjFuðd=dtÞDðyUÞjjL2ðR;RmÞ4jjFyðd=dtÞyUjjL2ðR;RpÞ: Now use the fact
that Fu;D; and F�1y are non-anticipating to conclude that

R t
�1 ðjFyðd=dtÞyUj

2 � jFuðd=dtÞD
ðyUÞj

2Þ dt50 8t 2 R: This implies the second dissipativity claim.

11. CONCLUSIONS

In this paper we have proposed a new definition of dissipativity directly based on the behavior of
the rate of supply absorbed by a system. We showed that this definition is equivalent to the
existence of a non-negative storage.

Quadratic differential forms are a concrete class of supply rates for which dissipativity can be
investigated. We obtained frequency domain conditions for dissipativity of SF ¼ ðR;R; imðQFÞÞ:
In particular, we showed that Fðl; %lÞ þ F>ð%l; lÞ50 for l 2 C;ReðlÞ50 is a necessary condition.
In the case that the dimension of F is equal to its positive signature, we obtained several
equivalent necessary and sufficient conditions.

In the second part of the paper, we studied the stability of interconnected systems. We
presented a simple proof for a result that states that an interconnection of dissipative systems is
stable if the sum of their supply rates is strictly negative. We applied this principle to obtain a
frequency weighted IQC-based loop gain stability condition for a feedback system.
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