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Abstract—The observer design problem is investigated in the
context of linear left shift invariant discrete behaviors, whose
trajectories have supports on +. Necessary and sufficient
conditions for the existence of a dead-beat observer of some
relevant variables from some measured ones, in the presence
of some unmeasured (and irrelevant) variables, are introduced,
and a complete parametrization of all dead-beat observers is
given. Equivalent conditions for the existence of causal dead-beat
observers are then derived. Finally, several classical problems
addressed for state–space models, like state estimation, the design
of unknown input observers or the design of fault detectors and
identifiers (possibly in the presence of disturbances), are cast
in this general framework, and the aforementioned equivalent
conditions and parametrizations are specialized to these cases.

Index Terms—Behaviors, fault detection and isolation (FDI),
nilpotent autonomous systems, observability, observers, recon-
structibility, unknown input observers (UIO).

I. INTRODUCTION

THE original theory of state observers was concerned with
the problem of estimating the state from the corresponding

inputs and outputs. This problem has been later generalized in
various ways, and in relatively recent years there has been a
great deal of research aiming at designing state observers in the
presence of unknown inputs (disturbances) [11], [12], [19].

Another research issue, which originated in the 1980s and
flourished in the 1990s [4], [5], [10], but still represents a very
lively research topic [3], [6] is the fault detection and isolation
(FDI) problem. The problem of detecting and identifying the
faults affecting the functioning of the system (possibly in the
presence of disturbances) can be stated in a natural way and
addressed as an estimation problem.

In the last few years, we have witnessed a renewed interest in
these two issues. In some recent papers, estimation problems
and observer synthesis, in a deterministic context, have been
investigated for wider classes of dynamic systems, described
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either in a behavioral setting or by means of polynomial/ra-
tional models, thus obtaining interesting connections between
the problem solutions obtained via different approaches [7], [8],
[21], [22].

This paper aims to extend the analysis started in [21] and
[22], thus producing a powerful setting, where all classical es-
timation problems for (discrete-time) state–space models can
be cast. Specifically, in the first part of this paper we explore
the observer design problem for linear time-invariant (discrete-
time) dynamic systems that are described in behavioral terms
by means of a set of difference equations. Moreover, the con-
cept of (nonconsistent) dead-beat observer (DBO) is introduced,
several new equivalent conditions for the existence of a consis-
tent/nonconsistent DBO are given, and a complete parametriza-
tion of consistent/nonconsistent DBOs is also provided.

In the second part of the paper, these general results are ap-
plied to state–space models for formalizing, and hence solving,
a wide variety of classical estimation problems (state estima-
tion, state estimation in the presence of disturbances, fault de-
tection and isolation, etc.). Comparisons with previous results,
specifically obtained for state–space models, are also presented.
A preliminary version of this paper results can be found in [1].

We remark that the choice of dealing with dead-beat ob-
servers instead of asymptotic observers (possibly under some
additional robustness constraint, which may confine the system
zeros within some open circle , )
is just motivated by the sake of simplicity. Indeed, the analysis
carried on here could be easily adjusted to deal with the asymp-
totic case, by simply replacing everywhere in the paper the
right monomicity property with the full column rank property
in every point with (with in the robust
case). All the results could be immediately extended to this
setting, but the proofs and the details would be a little more
tedious.

Also, we would like to underline that the analysis would not
change at all if we assumed that all the system trajectories take
values on any (possibly finite) field. In this way, the results could
be immediately used in other contexts, like convolutional coding
(see [18]). In convolutional coding, the dead-beat estimation
problem is of higher relevance with respect to asymptotic es-
timation.

Before entering the main part of this paper, we introduce
some notation. We consider here polynomial matrices with en-
tries in and, occasionally, Laurent polynomial (L-polyno-
mial, for short) matrices, having entries in . A polyno-
mial matrix is right monomic [7], [9] if rank
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for every . This means that is
of full column rank and the GCD of its maximal order minors
is a monomial. is right monomic if and only if it admits
a Laurent polynomial left inverse or, equivalently, the diophan-
tine equation , in the unknown polynomial
matrix , is solvable for some nonnegative integer .

is right prime if rank for every
. Right prime matrices are special cases of right monomic

matrices. Actually, right primeness characterizations can be ob-
tained by simply replacing in the previous equivalent conditions
the word “monomial” with “unit” and the integer by zero. Left
monomic and left prime matrices are similarly defined and char-
acterized.

The concepts of left annihilator and, in particular, of minimal
left annihilator (MLA, for short) of a given polynomial matrix

have been originally introduced in [16] and can be sum-
marized as follows: If is a polynomial matrix of
rank , a polynomial matrix is a left annihilator of if

. A left annihilator of is an MLA
if it is of full row rank and for any other left annihilator
of we have for some polynomial
matrix . It can be easily proved that, unless is of full
row rank, an MLA always exists (if is of full row rank,
its left annihilators are zero matrices with an arbitrary number
of rows), it is a left prime matrix and is uniquely
determined modulo a unimodular left factor. Right annihilators
and minimal right annihilators (MRAs) can be similarly defined
and enjoy analogous properties.

In the following, for the sake of simplicity, the size of any
vector will be denoted by means of the same typewritten letter
that is used for denoting the vector itself. In other words,

, , , , etc.

II. BASIC RESULTS ABOUT BEHAVIORS WITH TRAJECTORIES

IN w

In this paper, all trajectories will be assumed defined on the
time set of nonnegative integers. The left (backward) shift
operator on v , the set of trajectories defined on and
taking values in v, is defined as

v v

If is a polynomial matrix,
we associate with it the polynomial matrix operator

. Results about polynomial matrix operators acting
on can be found in [23], where these results have been
derived with (and compared to) those about the more common
setup of polynomial matrix operators acting on . Further
comparisons between these two settings have been later carried
on in [18] and in [20], where the few differences between the two
settings have been pointed out. In this section, we only recall
a few basic results. In particular, it can be proved that
describes an injective map from to if and only
if is a right prime matrix, and a surjective map if and only
if is of full row rank.

In this paper, by a behavior w we mean the linear
and left shift invariant set of solutions of a
system of difference equations

(1)

with w. This system is equivalently described as

(2)

where belongs to w, and this leads
to the short-hand notation . It has been shown
in [23] that if and only if

for some polynomial matrix .
A behavior w , with w,

is said to be autonomous if it is a finite dimensional vector sub-
space of w , and this happens if and only if is of full
column rank [21], [23]. Every autonomous behavior in w

can be expressed as for some nonsingular square poly-
nomial matrix . Autonomous behaviors for which there ex-
ists some such that (s.t.) all their trajectories have
(compact) supports included in are called nilpotent
autonomous and they are kernels of polynomial matrix oper-
ators corresponding to right monomic matrices [21]. In
particular, if is nonsingular square, is nilpotent
if and only if , for some and
some . If an autonomous behavior is not nilpotent, it
includes at least one infinite support trajectory. It is worthwhile
to remark that when dealing with behaviors defined on , nilpo-
tency cannot arise [21]. In fact, the only finite support trajectory
of an autonomous behavior defined on is the zero one, and
the kernel (on ) of a monomic matrix coincides with the zero
behavior.

A behavior described as , for some left
prime polynomial matrix w, also admits an
image representation. Indeed, for every polynomial matrix

w of rank which is a right annihilator
of (or, equivalently, having as an MLA), one gets

. This type of behaviors is called con-
trollable and admits several different characterizations [23],
[24]. Our interest here, however, is only in the mathematical
relationship between kernel and image representations, which
will turn out to be useful in the sequel.

III. OBSERVABILITY AND RECONSTRUCTIBILITY

Consider a dynamic system w , whose be-
havior is described as in (2), for some polynomial matrix

. Independently of the physical meaning of the system vari-
ables which are grouped together in the vector , when dealing
with any type of estimation problem a first natural distinction is
introduced between measured variables, denoted by , and
unmeasured variables. These latter, in turn, may be naturally
split into the subvector of all system variables which are (un-
measured and) the target of our estimation problem (the “rele-
vant” variables for the specific estimation problem), , and the
subvector of all variables which are both unmeasured (for in-
stance because they represent disturbances or modeling errors)
and “irrelevant” for our estimation problem. We refer to such a
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subvector as . As a consequence, the vector naturally splits
as

The polynomial matrix can be accordingly block-parti-
tioned, thus leading to the following description of the behavior
trajectories:

(3)

or, equivalently

(4)

With respect to this partition of the system variables, the notions
of observability and reconstructibility are easily introduced as
follows.

Definition 1: [21], [22] Given a dynamic system
w whose behavior is described as

in (4), we say that is reconstructible from , if
implies that there ex-

ists such that . In
particular, when , is said to be observable from .

is said to be reconstructible (observable) if every trajectory
is reconstructible (observable) from the corresponding .

Characterizations of reconstructibility and observability have
been obtained in [21]. It is worthwhile to remark that, when
a system is reconstructible, a common nonnegative integer
can be found such that all relevant trajectories can be exactly
evaluated (from the corresponding measured trajectories) after

steps. So, the index does not depend on the specific pair
, but represents a system property.

Consider the dynamic system described by (4), with
the measured variable, the to-be-estimated variable and
the irrelevant one. A DBO of from is a system that,
corresponding to every trajectory in , produces
an estimate of the trajectory (based on the measured
variable alone), that coincides with the sequence except,
possibly, in a finite number of initial time instants. In particular,
a dead-beat observer for which produces an estimate of

which coincides with at each time instant (and
hence is not affected by any “estimation error”) is an “exact”
observer.

Definition 2: [21] Consider the dynamic system , whose
behavior is described as in (4). The system represented by
the difference equation

(5)

with and polynomial matrices of suitable dimen-
sions, is said to be

• a DBO of from for if
a) for every there exists such

that satisfies (5);

b) there exists such that for every
in and satisfying (5), we

have for every .
• A consistent DBO (cDBO) of from for if it is a

dead-beat observer and for every in the
trajectory always satisfies (5).

• An exact observer (EO) of from for if a) holds,
and b) holds for .
Remarks:

i) For an observer described by (5), the difference variable
represents the estimation error. So, the

previous definitions can be paraphrasized by saying that
an observer is dead-beat (exact) if the estimation error
trajectories belong to a nilpotent autonomous behavior (to
the zero behavior).

ii) The concept of consistent DBO may sound somewhat
strange and redundant. Simple examples prove that this
is not the case. In fact, consider the simple system

(6)

It is easily seen that , and hence
, represents a DBO for the system.

However, it is not consistent, since all the trajectories
which are identically zero for , but

such that , belong to
the system behavior but do not satisfy the observer equa-
tions. As we will see, however, if a DBO exists then also a
cDBO may be found. Of course, this distinction does not
make sense when dealing with exact observers, which are
by definition consistent.

The following theorem provides an extensive characteriza-
tion of those systems which admit DBOs, thus significantly ex-
tending the results obtained in [21] and [22].

Theorem 3: Consider a dynamic system, whose behavior
is described as in (4), and let denote an MLA of .
The following facts are equivalent:

ia)there exists a consistent DBO for ;
ib)there exists a DBO for ;

ii) is reconstructible.
iii) is right monomic;
iv) there exist and a polynomial matrix s.t.

w (7)

Proof: Obvious.
If were not reconstructible, there would be

two trajectories in such that
is an infinite support sequence. If is

any pair satisfying (5), by condition (b) of a DBO, the trajectory
should differ in a finite number of time instants both from
and from . This is clearly impossible.

If were not right monomic, there would
be an infinite support trajectory . Con-
sequently, by the definition of and the relationship
between kernel and image representations previously recalled,
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. So, there would be
such that . This would imply that both
(0, 0, 0) and belong to , thus contradicting the
reconstructibility assumption.

If is right monomic, there exists a polynomial
matrix such that w for some .
So, the matrix satisfies (7).

Let be a polynomial matrix satisfying
(7). We aim to show that by assuming

w we get a
cDBO. If is any trajectory in , and
hence satisfying (4), premultiplication by leads to

(8)

So, condition a) is satisfied by simply choosing (this
also ensures consistency). On the other hand, for any other
satisfying (8) we have , thus proving
condition b).

Corollary 4 is easily proved along the same lines of the pre-
vious theorem.

Corollary 4: Consider a dynamic system, whose behavior
is described as in (4), and let denote an MLA of .
The following facts are equivalent:

i) there exists an EO for ;
ii) is observable;

iii) is right prime;
iv) there exists a polynomial matrix such that

w .
Remark: It is worth enlightening two limit cases of the

previous results.
1) When no irrelevant variables are involved in the behavior

description (i.e., there is no ), then reduces to the
identity matrix and hence the existence of a DBO (EO) is
equivalent to the right monomicity (primeness) of .

2) When is of full row rank, then is not defined. When
so, Theorem 3 (and henceforth Corollary 4) can be read in
a negative sense, since none of the equivalent conditions
can be satisfied.

IV. A PARAMETRIZATION OF ALL DEAD-BEAT (EXACT)
OBSERVERS

Given a DBO for , its behavior is the set of all solu-
tions of the difference equation (5). Among all the
trajectories of , however, we are interested only in those pro-
duced corresponding to the trajectories of , namely in the set

, where
. So, by assuming this point

of view, it is reasonable to regard as equivalent two observers
(5), for the same system, not if their behaviors and co-
incide, but if they produce the same estimates corresponding to
all measured variable trajectories of , i.e.,

Of course, two equivalent observers are either both consistent
or both nonconsistent. We can now introduce the following re-
sult about equivalent observers.

Lemma 5: [22] If is a DBO (an EO) for
, there exists an equivalent DBO (EO)

with square monomic (unimodular).
Thanks to this lemma, we may now focus on the parametriza-

tion of all those observers whose matrix is square mo-
nomic. Aiming at this goal, it is convenient to reduce the original
behavior description to a more suitable one. Assume, without
loss of generality, that the behavior is described as in (3) with

of full row rank . If satisfies
any of the equivalent conditions of Theorem 3, and we let

be a (left prime) polynomial matrix such that

is unimodular, then can be equivalently described as

(9)
where is (easily proved to be) of full row rank,

and . If is a
unimodular matrix such that

with square monomic (unimodular), we can conformably
partition as

The behavior can then be equivalently described as follows:

(10)
Since defines a surjective map, then

where

Notice that both and are of full row rank,
by the full row rank assumption on the initial system description
(3). Once we have singled out , by keeping in mind that
the DBOs (EOs) do not involve , we may resort to [21, Th.
5.4], thus obtaining the following parametrization of all consis-
tent DBOs (EOs)1.

Theorem 6: [21] Consider a system whose behavior
is described as in (10), with of full row rank and

square monomic (unimodular). If and are polynomial

1It is worthwhile to remark that in [21], [22] the possibility of resorting to
nonconsistent DBOs had not been contemplated. So, all results and parametriza-
tions appearing there implicitly assume consistency.
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matrices, with nonsingular square, then
is a consistent dead-beat (exact) observer for if and only if

(11)

with a monomic (unimodular) polynomial matrix and
a polynomial matrix.

We can now provide an extension of the previous
parametrization to the whole class of DBOs, thus including
also nonconsistent DBOs.

Theorem 7: Consider a system whose behavior is de-
scribed as in (10), with of full row rank and
square monomic. If and are polynomial matrices, with
nonsingular square, then is a DBO for
if and only if

(12)

with and L-polynomial matrices such that
is (square polynomial and) monomic.

Proof: Assume first that the polynomial pair
satisfies (12) and is square monomic, and let

be any trajectory in . Clearly, defines a
surjective map and, hence, corresponding to the assigned ,
there exists such that . We aim, now, to
show that condition b) holds. To this end, let be a nonnegative
integer s.t. and
are both polynomial matrices. Clearly, any such satisfies
the difference equation , which
defines, by Theorem 6, a consistent DBO. Consequently,
coincides with after a finite number of steps.

Conversely, suppose that the polynomial pair
defines a DBO and, according to Definition 2, let be a non-
negative integer such that , or,
equivalently, . Clearly, each
trajectory satisfying , also sat-
isfies

(13)

thus ensuring . So, (13) represents a
consistent DBO and this implies, by Theorem 6, that polynomial
matrices and can be found such that

Consequently, (12) holds for and
.

Remarks:
i) Since is of full row rank, (12) establishes a bijective

correspondence between polynomial pairs
and the corresponding pairs w w

w in (12), denoting the number of rows of
.

ii) An equivalent parametrization of all DBOs can be easily
obtained by referring to the behavior description (9). In-
deed, the polynomial pair , with nonsin-
gular square, defines a DBO (5) for if and only if

(14)

with an L-polynomial matrix such that
is square polynomial and monomic,

while is polynomial. On the other hand,
if we are interested in consistent DBOs, the above
parametrization is still true, provided that is, in addi-
tion, strictly polynomial.

Of course, one may wonder when the class of DBOs parame-
trized in Theorem 7 coincides with the class of cDBOs described
in Theorem 6, namely when a behavior , described as in (10),
admits only consistent DBOs.

Theorem 8: Consider a system whose behavior is de-
scribed as in (10), with of full row rank and
square monomic.The following facts are equivalent:

i) the class of DBOs coincides with the class of consistent
DBOs;

ii) is of full row rank;
iii) is of full row rank.

Proof: If were not of full row rank,
(the full row rank matrix) could be expressed as

, for some square monomic (but not
unimodular) and some polynomial matrix such that

is of full row rank. It is a matter of simple calculations to
show that we can assume w.l.o.g.

and

with , and square monomic. If is
singular, corresponding to the strictly L-polynomial pair

we get a nonconsistent DBO (12). On the other hand, if
is nonsingular, then is singular. So, a nonconsistent
DBO is obtained corresponding to the strictly L-polynomial
pair w .

If is of full row rank, it admits a right in-
verse, say . Then for every L-polynomial pair in

w w w s.t. the corresponding pair

is polynomial, with monomic, we get

As the left-hand side is finite, so is the right-hand side. Thus,
w w w .

Obvious.
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Remarks:
i) For the example described by (6), provided in Section III,

it was

So, condition iii) of the previous Theorem is not satisfied
and in fact, as already seen, the system admits a noncon-
sistent DBO.

ii) One may wonder why we are interested in nonconsis-
tent DBOs when, under the same conditions, we can al-
ways resort to consistent ones. The only reason that may
lead to choose this solution is lower complexity. Indeed,
by choosing L-polynomial matrices and , instead of
polynomial ones, we may reduce the degree of the poly-
nomial matrices and , and this leads to an autore-
gressive model of lower complexity. This fact is enlight-
ened, for instance, by the simple example (6). Further ex-
amples, supporting this claim, will be provided in Sec-
tion VI.

Theorem 8 shows that, when is not of full row rank,
cDBOs constitute a proper subclass of DBOs. Even in that case,
however, the class of cDBO transfer matrices coincides with
the class of DBO transfer matrices, as one may always obtain
(cfr. the proof of Theorem 7) from any DBO a consistent DBO
endowed with the same transfer matrix. So, the DBO transfer
matrices may be parametrized, according to (11) (for instance),
as

as and vary over the set of all polynomial ma-
trices of suitable sizes (under the constraint that , and
hence , is square monomic). Upon set-
ting , which can be seen as a
“particular” (L-polynomial) transfer matrix, and noting that

is an arbitrary Laurent
polynomial matrix2 (by the monomicity of ), the
previous parametrization becomes

w (15)

Notice that is always an L-polynomial matrix. Similarly,
if we refer to the DBO parametrization (14) and assume w.l.o.g.
that the matrix appearing in (14) is polynomial, we obtain the
following parametrization of the DBO transfer matrices:

(16)

with a polynomial matrix such that is square
and monomic.

V. CAUSAL DEAD-BEAT OBSERVERS

If the task we have in mind is simply that of obtaining a “be-
havioral approach” to the solution of various types of estimation

2Indeed, if� is monomic and T is an arbitrary L-polynomial matrix, then we
can always find polynomial matrices X and Y , with Y square monomic, such
that�(z)T (z; z ) = Y (z)X(z). Consequently, the correspondingQ and
P are polynomial matrices with Q square monomic. The converse is obvious.

problems and a parametric (kernel or transfer matrix) descrip-
tion of all available solutions, the results of the previous sections
already provide satisfactory answers. If we aim at applying the
previous general results to the state–space setting, however, it
is extremely important to investigate the existence of a DBO
which admits a state–space realization. This requires the ob-
server L-polynomial transfer matrix to
be proper and this is the case if and only if it is a polynomial
matrix in the negative powers of (i.e., an F.I.R. filter). If we
assume the behavior description (9), is described by

(17)

and we may resort to the parametrization of the observer transfer
matrices given in (16), where is any polynomial matrix
such that is square and monomic.

The characterization of those behaviors which admit a
(w.l.o.g. consistent) DBO endowed with a proper transfer
matrix, obtained in [22], can be easily adjusted to the case when
irrelevant variables are involved in the behavior description,
thus leading to the following result.

Theorem 9: [22] Consider a dynamic system with behavior
described as in (9), with reconstructible from . Sup-

pose without loss of generality, that

w w w (18)

is row reduced [14] with row degrees w , so that

. . .
w

(19)

where is a full row rank constant matrix and
is a polynomial matrix whose entries in the

th row have degrees smaller than , . A
necessary and sufficient condition for the existence of a consis-
tent DBO endowed with a proper transfer matrix is that

is of full column rank.
Remark: It is worthwhile remarking (see [22] for the de-

tails) that the assumption that the polynomial matrix (18) is row
reduced plays a role only in the necessity part of the proof of
the previous theorem. Actually, if we start with a representation
corresponding to a polynomial matrix (18) which is not row re-
duced, but is of full column rank, then a causal DBO exists.
Notice that since the proof is a constructive one, it is easy to ex-
plicitly obtain such a DBO. Clearly, if is not of full column
rank in a row reduced description, it cannot exhibit this property
in any other representation.

VI. APPLICATIONS TO STATE–SPACE MODELS

In this section, we will show how the observer theory, here
developed within the behavioral approach, allows to treat in
a homogeneous way several classical estimation problems for
state–space systems. To this end we will consider the most
general expression of a state–space model (in a deterministic
setting), including not only the usual state, input and output
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variables, but also disturbances and additive faults. Additive
faults are typically adopted in the literature for modeling
abrupt changes in the system functioning, like changes in the
entries of the system matrices, sensor and/or actuator failures,
etc. [2]–[5]. Once we will cast the state–space model in the
behavioral framework, by differently choosing the measured,
the relevant and the irrelevant variables, we will be able to
formalize the following traditional problems:

1) the state estimation when neither disturbances nor faults
affect the system;

2) the state estimation when only disturbances affect the
system. This leads to the well-known concept of unknown
input observer (UIO);

3) the fault detection and isolation when no disturbance af-
fects the system (but faults, of course, do) (FDI);

4) the fault detection and isolation in the presence of distur-
bances (dFDI).

A general state–space model is described by the following
equations:

(20)

(21)

where , denotes the state, the controlled input,
the measured output, the disturbance (i.e., the uncontrollable
input) and the fault. The state–space model (20)–(21) can be
rewritten in behavioral form as

x

y

(22)

with . It is worthwhile to remark that the polynomial
matrix in (22) is always of full row rank.

Before proceeding, an algorithm for obtaining a DBO (an
EO), possibly described by means of a standard state–space
model, may be fruitfully sketched:

1) Check whether is right monomic (right prime). If not,
a DBO (an EO) is not available.

2) If the answer is positive, put the polynomial matrix (18) in
row reduced form and evaluate the column rank of .

3) If is of full column rank, the transfer matrix of a causal
DBO (EO) can be obtained (see [22]), and this transfer function
can be realized by means of a finite memory system of the form

4) When causal DBOs are not available, by resorting to the
parametrization of the DBO transfer matrices given in (15),
we can obtain some transfer matrix ,
with a polynomial matrix in the variable and

a positive integer. By realizing by means of a
state–space model, we obtain a “delayed” DBO, as the DBO
output is , instead of . In other words, the
estimation is performed with a fixed delay of steps.

A. Standard State Estimation

If neither faults nor disturbances affect the system, we are
reduced to the case of plain state estimation from the controlled
input and the measured output. When so, the relevant variable
is , the available measurements are ,
and there are no irrelevant variables . The behavioral equation
takes the form

x

y

(23)

In this case, there is no and hence x y,
while , the PBH observability matrix. So,
reconstructibility (observability), and hence the existence
of a dead-beat (an exact) state observer, corresponds to the
right monomicity (primeness) of , a well-known result
[14], [15], [17]. When so, both causal and noncausal DBOs
(EOs) can be constructed. Indeed, the polynomial matrix

is row reduced and the

constant matrix x is of full column rank. Conse-

quently, DBOs endowed with a proper transfer matrix always
exist. A subclass of all cDBOs endowed with a proper transfer
matrix is represented by Luenberger (full-order) observers,
which are obtained by assuming in the parametrization (14)

x for some suitable such that is
nilpotent (equivalently, x is square monomic).

We may wonder whether nonconsistent DBOs exist. Since
is of full row rank if and only if is,

nonconsistent DBOs exist if and only if the state can be par-
titioned (possibly after a change of basis) as ,
where the evolution of the first subvector is independent of

and it vanishes in a finite number of steps. Indeed, in this
case, the choice , together with a DBO for
alone, allow to implement a nonconsistent DBO of lower com-
plexity w.r.t. the complexity of any consistent DBO. In partic-
ular, when is a nilpotent matrix and , repre-
sents a (static) nonconsistent DBO of minimal complexity (see
Remarks in Section IV). Clearly, this result finds no counterpart
in the classical Luenberger observer design.

Example 1: Consider a state–space model (23) with

, , and assume that no controlled input acts

on the system. As , it follows that

By applying the unimodular matrix
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one may obtain the behavior description (10) with

Notice that the constraint , namely
, , is just the autoregressive equation

satisfied by the free output evolution. The DBO transfer matrix
parametrization leads to

where and are arbitrary Laurent polyno-
mials. The causality condition is satisfied (as it may be seen by
direct inspection) if and only if
and , with , arbitrary polynomials in
the variable alone. As interesting special cases, it is worth
mentioning the following.

1) When , then . Cor-

respondingly, we obtain the noncausal EO

;

2) When , then . Corre-

spondingly, we obtain the causal DBO (coinciding with the
classical reduced order dead-beat observer)

.

3) When , then .

Correspondingly, we obtain the causal DBO (coinciding
with the classical Luenberger DBO of gain matrix

) described by .

B. Unknown Input Observers (UIOs)

When faults are not contemplated, but disturbances af-
fect the system dynamics, we are reduced to the problem of
designing an UIO: the relevant variable is , while the
available measurements are . The irrelevant
variables are of course represented by the disturbances .
The behavioral equations can be block-partitioned in the fol-
lowing form:

x

y

(24)

Upon introducing an MLA of , which can

always be assumed to be a constant matrix so that
, a dead-beat (an exact) UIO exists if and only if

the polynomial matrix x

is right monomic (prime). In this case

x

y

is not necessarily row reduced. Moreover, causal (dead-beat or
exact) UIOs may not exist, as shown in the following example.

Example 2: Consider a state–space model (24) with

which represents an observable system devoid of controlled in-
puts but affected by disturbances. In this case

Since is unimodular, ,

, while does not exist. The

DBO transfer matrix is

uniquely determined and is not a proper rational matrix, so a

corresponding DBO is a noncausal EO

(actually, the only one available).
A comparison with the well-known Hautus characterization

[12] (see also [13], [19], where equivalent conditions were ob-
tained by means of slightly different techniques) of the existence
of UIOs for a given state–space model, suitably adjusted for the
dead-beat case, seems now appropriate. In [12], it was proved
that a dead-beat UIO, described by a proper state–space model,
exists if and only if

1) rank rank rank , and

2) rank x rank for every

, .

Since may be assumed of full column rank, w.l.o.g.,

the previous conditions become

a) rank rank , and

b) x is of full column rank for every

, .
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Let be a nonsingular square matrix such that

d . Then, we may always assume and

correspondingly get

x x d

which clearly enlightens that condition b) holds if and only if
is right monomic.

Similarly, but we skip the technical details which are rather
long, it is possible to prove that condition a) is equivalent to
the causality property of the dead-beat UIO and hence to the
condition for the existence of proper UIOs derived in Sec-
tion V. Indeed, it can be proved that the polynomial matrix

thus obtained is row reduced, and condition
a) holds if and only if the corresponding is of full column
rank.

Another interesting problem, even though less explored in
the literature, is that of obtaining estimates both for the state
and for the disturbance: In this case, the relevant variable is

, the measured variable is
and no irrelevant variables are involved in the system descrip-
tion. This situation coincides, as a matter of fact, with the first
FDI problem analyzed in Section VI-C provided that the distur-
bance is regarded as a fault.

C. Fault Detection and Isolation (FDI)

Suppose, firstly, that disturbances may be neglected. When
so, we may face to two interesting problems: the first problem is
the design of an observer-based FDI, which corresponds to as-
suming as relevant variables both and , i.e., ,

while using as measurements . If so, no irrel-
evant variables appear in the system description and
x y. The behavioral description can be block-partitioned as fol-

lows:

x

y

and a dead-beat (exact) FDI exists if and only if the system ma-
trix [17]

x

is right monomic (prime).
The second problem one may want to address is the design of

an FDI which allows to estimate just the faults, disregarding the
state evolution (standard FDI). In this case becomes the only
relevant variable , while becomes the irrelevant variable

y

x

Now, is just the PBH observability matrix and
once we select any left coprime matrix fraction descrip-
tion of the state to output transfer matrix

x , we get as an
MLA of . Consequently, a dead-beat (exact) FDI exists if

and only if

is right monomic (prime).
This characterization may be easily compared with the analo-

gous one derived in [4]. Actually, by suitably tailoring the result
of [4] to the dead-beat discrete-time case, we can say that Ding
and Frank proved that a causal dead-beat FDI exists if and only
if the fault-to-output transfer matrix

x

admitsa left inversewhichisanFIRfilter (and,hence, isdescribed
by a polynomial matrix in the negative powers of ). This con-
dition, however, pertains the forced evolution alone, while disre-
garding the free evolution. As a consequence, the condition ob-
tainedbyDingandFrankworkseffectivelyonlywhentheoriginal
systemisoffinitememory.Byexplicitly introducingthisassump-
tion, it may be proved that the two conditions we derived for the
existence of a dead-beat FDI, realized by a proper state–space
model, are more powerful, since they show that such an FDI ex-
ists even when the conditions derived in [4] are not satisfied.

D. Fault Detection and Isolation in Presence of Disturbances
(dFDI)

Similarly to the previous subsection, two different FDI prob-
lems in the presence of disturbances may be considered: one
may be interested in estimating both and (observer-based
dFDI problem), i.e., , making use of the mea-

surements , and disregarding . When
so, the behavioral equation takes the form

x

y
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Upon denoting by (a constant matrix)
an MLA of , the existence of an observer-based FDI which
produces exact estimates of both the state and the fault after a
finite number of steps (after 0 steps) corresponds to the right
monomicity (primeness) of

x

The other case corresponds to the problem of estimating
the faults, from the input and output measurements, by ne-
glecting the state dynamics and the disturbances (standard
dFDI problem). In this case , and

. Consequently

y

x

The polynomial matrix represents, in this case, an MLA
of the system matrix , and the existence of a (nonob-
server based) dead-beat (exact) FDI in the presence of distur-
bances is equivalent to the right monomicity (primeness) of

.
The results of this section may be easily compared with those

obtained in [5], [10]. The parity relation approach and the fac-
torization approach lead to quite similar results as far as (non
observer-based) dFDI is concerned. The main differences re-
lying in the following facts: a) all conditions are expressed in
terms of the rational transfer matrices from the disturbance and
from the fault to the system output, and , respec-
tively; and b) such conditions are not translated, as we did in this
paper, into a single algebraic condition to be tested, but always
reduce to “check the existence of an L-polynomial matrix
such that and is a square matrix in
the negative powers of .” Again, in [5], [10] the free evolution
is not explicitly addressed, so the obtained conditions may work
only when the original system is of finite memory. Also, in this
case, it can be shown that the conditions we derived are less re-
strictive and hence more powerful.

In order to better enlighten various aspects of the FDI and
dFDI problems (both in their observer-based and in their stan-
dard versions), which can be obtained in this behavioral frame-
work, let us consider the following concluding example.

Example 3: Consider a state–space model (22) with

, , , , ,

and , and assume that no controlled
input acts on the system. Let us firstly consider the case when
disturbances may be neglected (and hence there are no and

). For determining whether an observer-based FDI exists, we
evaluate

and since det , is monomic
(and, hence, the problem is solvable) if and only if or

. Notice, however, that for , 1, is square
monomic but not unimodular, and hence EOs are not avail-
able. Also, , , . So,
the DBO transfer matrix is uniquely determined as

.

If , then , which corresponds
to , . This is a causal DBO, and in fact

is row reduced, with

of full column rank. On the other hand, for ,

, , , which

represents a noncausal DBO, in agreement with the fact that

is now not of full column rank.

If we are interested in estimating the fault alone (namely,
we search for a standard FDI), we can choose as a left coprime
matrix fraction description of x

the one associated with and .
Consequently, . As
earlier, a necessary condition for the problem solvability is that
the real parameter takes only the values 0 or 1.

If , then , i.e., , which represents
a causal DBO (but not an EO). In fact, is trivially of
full column rank. On the other hand, if , then
and , which is a noncausal EO (indeed, in this
case, ).

In this specific example, therefore, estimating or
alone lead to the same result for , but in general the case
can occur that cannot be estimated (for instance, if the
pair does not correspond to a reconstructible system)
while can (see, also, the example regarding dFDI).

Finally, we consider the disturbed FDI problem. For the ob-

server-based dFDI, we have , so

that . As this matrix is not of full

column rank, the estimation problem for the pair is not
solvable.

We may now try to estimate alone. This requires
to determine an MLA of the polynomial matrix

. A possible choice is

. Correspondingly, we get
. Therefore, the problem is solvable,

again, only for , 1.
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If , and, in fact, represents a
causal DBO (but not an EO). For , , a causal
DBO does not exist, however represents a noncausal
EO.

Remark: To conclude, it is worthwhile noticing that all the
characterizations provided in this section never involve the two
constant matrices and which weight the controlled input
contribution to the system dynamics. This result is well-known
and very intuitive, as the effect of the controlled input can al-
ways be compensated when trying to estimate the other vari-
ables.
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