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Knowledge can be communicated by teaching, � � � , but all teaching starts from facts
previously known, as we state in the Analytica Posteriori, since it proceeds either by
way of induction, or else by way of deduction.

Aristotle, Ethica Nicomachia VI. iii. 3.

Summary

The present paper provides the original formulation and a joint response of a group of statistically
trained scientists to fourteen cryptic issues for discussion, which were handed out to the public by
Professor Dr. D.R. Cox after his Bernoulli Lecture 1997 at Groningen University.
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Introduction

On the occasion of the (Johann) Bernoulli Lecture 1997 at Groningen University on The Nature of
Statistical Inference, the last author handed out fourteen cryptic issues for discussion to the public.
The original formulation of these issues is presented as well as the answers provided by a group of
scientists after internal discussion.

1. How is overconditioning to be avoided?
2. How convincing is A. Birnbaum’s argument that likelihood functions from different experiments

that happen to be proportional should be treated identically �the so-called strong likelihood
principle�?

3. What is the role of probability in formulating models for systems, such as economic time series,
where even hypothetical repetition is hard to envisage?

�Part of this work was funded by a collaboration between IPP and Euratom. The contents of this work is the sole
responsibility of the authors. In particular, the views expressed therein are not to be construed as being official and do not
necessarily reflect those of the European Commission or the Max-Planck-Gesellschaft.
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4. Should nonparametric and semiparametric formulations be forced into a likelihood-based
framework?

5. Is it fruitful to treat inference and decision analysis somewhat separately?
6. How possible and fruitful is it to treat quantitatively uncertainty not derived from statistical

variability?
7. Are all sensible probabilities ultimately frequency based?
8. Was R.A. Fisher right to deride axiomatic formulations �in statistics�?
9. How can the randomisation theory of experimental design and survey sampling best be ac-

commodated within broader statistical theory?
10. Is the formulation of personalistic probability by De Finetti and Savage the wrong way round?

It puts betting behaviour first and belief to be determined from that.
11. How useful is a personalistic theory as a base for public discussion?
12. In a Bayesian formulation should priors constructed retrospectively, after seeing the data, be

treated distinctively?
13. Is the only sound justification of much current Bayesian work using rather flat priors the

generation of �approximate� confidence limits? Or do the various forms of reference priors
have some other viable justification?

14. What is the role in theory and in practice of upper and lower probabilities?

These cryptic issues nailed at the door of the Aula of Groningen University provided a nagging
challenge to many people, the poser of the questions not excluded. Two groups of students wrote to
Professor Cox who kindly responded. Several tentative individual reactions were given and issued as
internal reports [36, 75]. It was decided to combine efforts and formulate a well-discussed reaction
as a group. Through L.J. Smid [142, 125], who taught at Groningen University, some members of
the group were influenced by D. van Dantzig [60] and the Significa Movement [93]. This movement
was inspired by the ideas of Victoria Welby [148] and, more recently, has been reported to have
anticipated Austin’s ‘speech acts’ [6, 8]. The people of the Significa Movement thought that making
precise definitions would help to resolve controversies. Their positivistic attitude is sometimes de-
scribed as that of the modernists, in statistics exemplified by R.A. Fisher and K. Pearson.

The role of the last author (D.R.C.) needs some comments. After having devised the original
questions, he has been involved in correspondence to clarify the issues and to deal with some of
the points that did arise. The paper represents primarily what can be called ‘a Groningen view of
statistics’. While D.R.C. is very sympathetic to many of the answers given, there are inevitably
differences, mostly of shades of emphasis but sometimes of more substance. It has seemed most
fruitful to leave the paper as a statement of the view of a distinctive school and not to attempt to
resolve the points of difference in every detail.

This paper is an attempt to formulate some sort of communis opinio among several specialists,
with a common as well as a somewhat different background, about the issues formulated. In the
view of the authors, a purely subjectivistic and personalistic approach to the world around us is not
of much value. A purely objectivistic approach, on the other hand, is also not entirely satisfactory,
since it fails to recognise explicitly the role of judgement at various stages and interpretation and
typically deals only with uncertainty arising from a certain kind of ‘statistical’ variation. Even within
this framework, it does not provide compelling statistical solutions: if it establishes a procedure to
be ‘optimal’, it does so only by simplifying the context. Hence, an eclectic attitude is preferred,
even if the danger is realised that this can blur the underlying issues. Perhaps there are even many
situations where a statistician’s proposed recommendation depends so much on the choices he makes
that he should rather return the problem to its owner without being explicit about a solution. The
role of statistical theory and indeed of the individual statistician is to provide a broadly acceptable
framework of concepts and methods to aid the analysis and interpretation of data and, in suitable
cases, to provide a basis for decision making. The public acceptability of these ideas as a base for
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communication is important. Therefore the freedom to choose ad libitum from the various meta-
statistical ‘schools’ has its limitations, since a ‘professional’ answer is required. Everybody can
make statements about tomorrow’s weather, a patient’s disease, etc., but it is the meteorologist or
the pathologist whose statements we should respect: they are the experts who are engaged to codify
their behaviour, to calibrate their opinions, to discuss basic principles, and thus form well-balanced
conclusions that are to be considered as ‘scientifically sound’. They are the professionals in their
domain. We, applied and theoretical statisticians, try to be professional as well. The fact that the
subject matter does not admit unicity of solutions does not delimit personal responsibility. To the
contrary, it implies that personal (or group) responsibilities are involved in deciding whether or not
a solution should be imposed and, if so, which solution should be recommended. In this respect
the statistician’s work resembles that of a pathologist for instance. What we can do however, in the
absence of unique solutions, is to aim at some form of intersubjectivity by combining opinions and
by sharing earlier experiences. In statistical science we try to come to peace with ‘Pearson’, ‘Fisher’,
‘Neyman’, ‘Jeffreys’, ‘Savage’, and other scientists who were motivated by real-world issues and
have in common that they thought deeply about methods of making inferences on the basis of data
in conjunction with models containing unknown parameters. The metaphysical and epistemological
character of the situation excludes the possibility of compellingness of the inferences or infallibilism
of their maker. Popper has made the statement that induction is a myth. He was referring to situations
where the first n elements of a sequence had to be used to make a statement about the elements not
yet seen. We share his doubts. On the other hand, as statisticians we know that induction is a must.
The statistical character of “a sample of n elements from some population” and the probabilistic idea
of “independent repetition” are the paradigms that show that induction is not always a myth though,
of course, it will always be a matter of approximation: epist ēmē (true knowledge) will neither be
possible on the basis of a sample nor on the basis of the first n elements of a sequence.

Statisticians are usually more fascinated by the concrete paradigm of a sample from some pop-
ulation (for instance patients in a hospital) than by the mathematical paradigm of a sequence of
independent repetitions. It is quite natural for mathematically oriented probabilists to favour in-
dependent repetitions of some random experiment because this allows the establishment of nice
mathematical theorems, such as the laws of large numbers and the Glivenko–Cantelli theorem. In
Loève’s book [92] this mathematical approach to the problems of statistics is expressed by referring
to Glivenko–Cantelli as The Main Statistical Theorem. This probabilistic attitude is somewhat alien
to that expressed by the schools of thought attached to the names of Fisher, Neyman, Jeffreys, and
Savage, though, of course, none of these will seriously belittle the importance of asymptotic theory
or of establishing mathematical theorems. The only difference is that the four schools indicated pay
more attention to ‘exact’ small-sample inference, which is more adapted to the situation where a
given set of data has to be evaluated. The real difference between the group indicated by the names
of Fisher, Neyman, Jeffreys and Savage, and that indicated by the names of Borel, Kolmogorov and
Loève, is, perhaps, less pronounced than just suggested. Both will agree that induction is a myth as
well as a must. The group Fisher et al. will emphasize that mathematics has a task in developing
appropriate intuitions for exact small-sample inference. The group Borel et al. regards this task as a
“mission impossible”. They, of course, have their own intuitions which they can share with others or
derive from work of the first group. Anyway, both groups have in common that they try to explore
the probabilistic context as well as they can.

There are many situations, cryptic issue 3 is referring to some of these, where the ‘stochasticity’
and ‘linearity’ assumptions incorporated in a statistical model have their origin rather in the mind of
the data analyst than in the real world. One of us (JW) has a background in Mathematical Systems
Theory [105]. While being sceptic about such assumptions he responded to cryptic issue 3. The other
authors share many of his concerns, even though some of them (in particular AS) participated in the
analysis of a multiple time series representing the Dutch economy. This analysis led to predictive
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statements about features of next-year’s Dutch economy in the form of an estimate � standard
error. Evaluation afterwards taught that the standard errors were not meaningless. In [41] a table is
presented with actual outcomes, predictions and standard errors of the national consumption growth
from 1981 to 1990. The ratios between the absolute error and the standard error were

����� ����� ����� ����� ����� ����� ����� ����� ���� �����

They resemble a sample of the absolute value of a standard-normal variable as well as a sample of
a log-normal distribution, 	
� X � N������� �����. In the latter case, the observation 0.0, actually
0.006 [41], seems to be an outlier. Another area of investigation to which issue 3 bears is the scaling,
based on present-day experiments, of the confinement time (a numerical expression of the quality
of thermal isolation), related to the prediction of the performance (‘fusion power yield’) [79] of
heated plasmas in a prospective magnetic fusion device [77, 11, 131, 10], oriented towards a future
source of energy [101]. For this topic, the reader is referred to [152, 27, 72, 106, 76, 77, 78, 87].
Related to this is the question whether or not a particular type of confinement regime is reached at
the reference operating point [72, 73, 117, 77, 133], and the prediction of plasma temperature and
density profiles [71, 94, 77, 97]. Some statistical areas the authors have been involved in are variable
selection and model screening, discriminant analysis, growth curves, multivariate analysis, survival
analysis, meta-analysis, design of experiments, size and shape analysis, distributional inference and
other foundational issues, such as ‘structuring the inferential contest’ [41, 3].

After this introduction we will now turn to a joint response to the cryptic issues formulated
by the last author. Since they are intended to stimulate further investigation by discussion, we do
suggest the reader to put the article away for a moment and to try to answer these questions—even
if provisionally—by himself, before continuing to read and to contrast his findings with ours.

1 How is Overconditioning to be Avoided?

If the phenomenon of overconditioning is restricted to its most primitive form then the question
corresponds to the problem of the reference class formulated by Reichenbach [113], after his PhD
thesis [112]. In the section about the ‘Frequency Interpretation of the Probability of the Single Case’
he stipulates that we should consider the narrowest class for which reliable statistics can be compiled.
That this qualitative statement does not really settle the issue, is apparent from [48, 86, 145] and is
illustrated by the following example, which was presented by the last author during his Bernoulli
Lecture. Assume that you have an urn with one hundred balls numbered � � ���. Some are black
and the others are white. A random sample of 50 taken without replacement shows 25 black balls.
Because of the random sampling there is no difficulty in inferring that of the 50 balls unobserved,
roughly 25 are black, and a confidence interval could be calculated if required.

Now suppose that you have the following additional information. Some balls are made of wood,
some of steel, the rest of copper. Some balls are made in Groningen, some in Amsterdam, and the
other ones in Eindhoven. Some are small, some are medium, the rest is large. Some are old, some
are of medium age, and the rest is new, and so on. Also, the person who painted the balls is known
to have treated different kinds of balls differently. For example, he or she may have painted black
all the large balls from Amsterdam that are new, etc. However, what he or she actually did is totally
unknown. Now consider the following situation. Suppose there are a few (exact number unknown)
in the un-sampled set from Eindhoven, of copper, and old, but none of these have been sampled.
Therefore there is not any empirical information about this particular group of balls. This influences
the probability of blackness of a ball sampled from Groningen. The magnitude of this influence
is unknown. Therefore, by conditioning over all conceivably relevant information, one can in the
end still not construct a reliable interval estimate of the probability to draw (in future) a black ball
from Groningen, in view of the (unknown) fractions of unsampled balls in the population. This is
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an extreme instance of a difficulty that you would get into by over-conditioning. The simplicity
of the above formulation should not disguise the fact that this is one of the most difficult of the
cryptic issues formulated. Overconditioning has its counterpart in oversimplification. Hence it is a
Scylla–Charybdis situation. It may happen that sailing between these monsters is so dangerous and
the reward, in terms of accomplishment, is so small that the statistician had better return the problem
to its owner and wait for better weather.

Overconditioning is not an isolated subject. It is related to incorporating too many variables in an
analysis and to overfitting, i.e., using models with too many parameters. Sometimes the use of too
many variables or parameters manifests itself in the numerical analysis, e.g. when matrices become
ill-conditioned.The real issue, however, is much deeper and has a statistical nature. In his letter to two
econometrics students (M. Timmermans and K.J. Veltink) the last author discussed the phenomenon
of overfitting. He drew a distinction between the fitting of purely empirical models and of those
where some reasonably established theory is involved, where it may be wise to include explanatory
terms even though their precision is rather poorly evaluated. The other authors wholeheartedly agree
though they feel that the prevalence of models based on ‘reasonably established’ theory should not
be overestimated: many situations from practice are so complicated that opinions diverge because
of the fact that a number of different theories and models exist, each of which is only in theory
reasonably well-established. Even in experimental physics the models fitted to the data are often
largely constructions in the mind of a group of investigators rather than the result of already empiri-
cally well established theory. This occurs especially in practically complicated situations where the
avoidance of oversimplification has resulted in rather complicated models and one needs to worry
about ill-conditioning and overfitting.

If one tries to go to the bottom of this cryptic issue then there are various levels for the discussion:

(1) the fundamental level where one tries, in accordance with the ideals of the Significa Move-
ment, to specify the meaning of words like “overconditioning” and “overfitting”, and the lack of
performance these niceties generate (lack of calibration, display of overconfidence, lack of accuracy
and reliability). Briefly speaking one may state that overconditioning reduces too strongly the size of
the reference class by taking too many (discrete) variables into account. Overfitting means choosing
a member from too rich a model class or, equivalently, adapting too flexible a model to the available
data. This usually leads to unreliable extrapolations and sometimes even to unreliable interpolations.
Estimating equations, e.g. based on least squares or maximum likelihood, of the model parameters
will be ill-conditioned in the sense that their (unknown) confidence regions tend to be very large in
some directions. (These confidence regions are unknown and can only inaccurately be estimated.)
At least in linear models one can geometrically see that such a situation occurs if in the space
of the regression variables (IR p for p variables) the range of the available data is not large with
respect to the actually possible measurement errors, for simplicity modelled as random ones. This
leads to an unstable behaviour of some directional derivatives of the regression plane, i.e. of certain
linear combinations of the regression coefficients. Notably ordinary least squares regression yields
in that situation biased point estimates and inaccurate (often too narrow) interval estimates. (It is
noted that methods based on errors-in-variable models may provide here some relief, at least if the
ill-conditioning is not too strong.)

(2) the pragmatic level where specific proposals are made to avoid overconditioning (and overfit-
ting), for instance by testing in a two-group discriminant analysis context the null hypothesis that the
population Mahalanobis distance is not increased by incorporating a number of additional variables,
see [108]. If such a null hypothesis is not rejected, then one may proceed on the basis of the less
complex model where these additional variables are simply ignored. This testing-of-null-hypotheses
approach is considerably appealing because of the clearness of its prescription. There are some diffi-
culties, however.Which additional variables or parameters should be chosen to govern the alternative
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hypotheses? Which significance level should be chosen? At an elementary multiple-regression level:
should we delete explanatory variables if the corresponding regression coefficients are not signifi-
cantly different from 0? In his letter to the two econometrics students, the last author formulated his
viewpoint as follows: ‘it may be wise to include explanatory terms even though their precision is
rather poorly evaluated’. This is in line with an experience of Rao [109] with a data-based discrimi-
nant function which displayed a very good discriminatory performance in an evaluation set, though
the coefficients were extremely unreliable. An attempt to improve the discriminatory performance by
inserting � for the insignificant or illogical discriminant function coefficients (for some of them the
sign was wrong) was counterproductive: instead of an increase of performance a substantial decrease
was observed. Such experiences (and the fact that they are communicated) are extremely important
to develop appropriate intuitions.

A more parsimonious model formulation may damp out the effect of ill-conditioning from over-
fitting. Such a model formulation may for instance be based on testing hypotheses as discussed
above, or alternatively by introducing ‘stiffness’, with respect to some predetermined value(s) of the
directional derivative(s), in the direction(s) where the data variation is scarce. This does not always
help however, especially not if the dependence of the response variable in those ill-determined direc-
tions is of special interest for the investigation. Amelioration is in such a situation possible by using
estimation techniques based on errors-in-variable models, see [5, 62, 28], and from the experimental
side by either reducing the measurement errors in the regression variables or by extending the range
of the data in the direction(s) where it is most needed.

(3) the mathematical level where one tries to specify exactly how to sail between this Scylla and
Charybdis such that, on the average, certain characteristics of performance are most satisfactory.
Such attempts are, perhaps, counterproductive from a practical point of view. In the context of vari-
able selection in discriminant analysis we refer to [111], especially because its original motivation
came from the physical anthropologist G.N. van Vark whose computations (in the early seventies)
suggested the existence of an ‘optimal’ number of variables in a discriminant analysis. Incorporating
more variables resulted in a decrease of discriminatory performance.

2 How Convincing is A. Birnbaum’s Argument that Likelihood Functions from Different
Experiments that Happen to be Proportional Should be Treated Identically (the So-Called
Strong Likelihood Principle) ?

In objectivistic parametric statistics (especially the Neyman–Pearson interpretation) the likelihood
ratio is a quantity of primary interest. In subjectivistic statistics (Jeffreys as well as De Finetti),
posterior densities, based on proper or improper priors, are of intrinsic interest. Multiplying the
likelihood with a constant does not influence the transition, by Bayes’s theorem, from prior to
posterior probabilities. From this point of view the (strong) likelihood principle (as formulated in the
question) seems reasonable. Nevertheless, we have good reasons to reject this principle since, for
instance, the context of the experimental design is ignored. If, for example, 3 successes are observed
in 12 Bernoulli experiments (a situation discussed in Berger–Wolpert [20]) it makes a difference
whether the total number of experiments (12) or the total number of successes (3) is fixed in advance.
Nevertheless, the likelihood is proportional in the two cases. Bayesians are sometimes suggesting
that, in their view, it is a merit of their approach that the posterior does not depend on the design
[44]. It is noted, however, that especially in the case of absence of prior information, the specification
of the design may provide relevant additional information about the concrete situation. Since the
question refers to Birnbaum’s argument, we concentrate the attention to the argument itself. While
presenting here our own account to this question, we will not enter into the more extended discussion
presented in [68]. As described in [20] the strong (or formal) likelihood principle follows from
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(1) the weak conditionality principle which can be regarded as a formalisation of an example
by the last author referring to the measurement of a location parameter � either by device 1
or by device 2: the evidence about � from the combined experiment (choosing the device at
random and performing the measurement with the device chosen) is just the evidence from the
experiment actually performed,

(2) the weak sufficiency principle: if T � t �X� is a sufficient statistic for � then t �x �� � t �x��
implies that the evidence about � , involved by the observations x � and x�, respectively, is the
same.

Before continuing we like to express our gratitude that such principles exist. We have nothing
against likelihood inference, conditional inference or the reduction by sufficiency, provided that
deviations are tolerated, and dogmatism is avoided.

What is wrong with the likelihood principle? Statistical inferences are mixtures of facts (the data
x actually available) and fictions (the model P � �P� � �� ��, even though it has a factual core and
other contextual ingredients). Now suppose that experiment h designed by statistician (or scientist)
h resulted in data xh which, according to the fictions statistician h decided to incorporate, provided
a likelihood function l xh ����h � �� ��. Suppose that these likelihood functions happen to be propor-
tional. Does this imply that the two statisticians should come up with the same inferences? Obviously
not. A reasonable suggestion would be that the statisticians should combine the information they
have, discuss the reliability of the functions involved, and try to arrive at some joint opinion, for
instance in the form of a confidence interval or a distributional inference. This type of approach,
however, is beyond the scope of the formal likelihood principle.

As we reject the likelihood principle, we shall have to reject at least one of the two principles
Berger–Wolpert [20] used as its basis. In fact, we shall reject both principles.

What is wrong with the weak conditionality principle? Almost nothing, except for the fact that the
word “evidence” is not well defined. Berger and Wolpert suggest a very general definition including
“any standard measure of evidence, or something entirely new”. The last author has used the ex-
ample to criticise unconditional methods of inference induced by a Neyman–Pearson formulation,
see [29]. The example can also be used in the opposite direction. If one has to test H � � � � �

against H� � � � � at a prescribed level �, say � � ����, then the optimal level-� test is not
conditionally (given the device used) of level �. This might be regarded as an argument against the
Neyman–Pearson–Wald testing theory, but a more reasonable reaction is that it is wrong to use the
weak conditionality principle as a dogma.

What is wrong with the weak sufficiency principle? Almost nothing, except for the fact that it is less
compelling than it would seem at first sight. In the Neyman–Pearson–Wald approach it is established
that the reduction by sufficiency does not affect risk-function properties if randomisation is allowed
(and the loss does not depend on latent outcomes of random variables: in a predictive context one
has to be careful). The weak sufficiency principle refers to a mysterious but important concept of
evidence. If this is made operational then one should expect that some form of randomisation will be
involved. This affects the idea that t �x �� � t �x�� � evidence carried by x� � evidence carried by
x�, unless the same randomisation is involved. That the reduction by sufficiency is less obvious than
is often suggested becomes clear by studying Scheff é’s solution to the Behrens–Fisher problem, see
e.g. [116]. This solution provides exact confidence intervals but violates the weak sufficiency prin-
ciple. We can appreciate the exactness of the Scheff é result and, hence, use this to criticise the weak
sufficiency principle. The opposite is also possible: criticise the Scheff é solution because it violates
the weak sufficiency principle. The Scheff é solution can be replaced by a randomised version. The
‘exactness’ will then be retained. A further Rao–Blackwell type of improvement is possible such
that the weak sufficiency principle is complied with, but this affects the exactness.

Summary. We can enjoy the existence of many principles such as the likelihood principle, the
conditionality principle, and the sufficiency principle in particular, and make use of these principles,



printed December 2, 2003

284 O.J.W.F. KARDAUN et al.

even if we are critical with respect to their compellingness.
Exact small sample inference is a mission impossible since compelling solutions do not exist

and one always has to sail between Scylla and Charybdis. The principles we use may look very
reasonable but there is always some extrapolation involved which, if disregarded, may lead to ‘a
fallacy of misplaced concreteness’ (a concept introduced by Whitehead, see [150]). Induction is a
must but compellingness of results, logical validity, is a myth. It would be wrong, however, to belittle
such principles. They are the guidelines we need to structure our discussion which, in a sense, is
about the quantitative specification of meta-physical considerations. The connotation of the word
epistemology is less negative (to mathematicians and physicists) than the word metaphysics. Yet we
should not betray ourselves: the work of statisticians is in these nasty areas which are full of fallacies,
rationalisations which become misleading if the extrapolations they involve are too bold.

In the present context we distinguish between three fallacies of misplaced concreteness:
(1) the idea of Fisher, see e.g. [49], to use the class P � �P� � � � �� as the basis of the statistical
analysis; even if the assumption P � P is acceptable we have the difficulty that P is a peculiar
mathematical ‘extension’ of �P�, needed because P itself is unknown to us, but peculiar in the sense
that only P is factual,
(2) the idea of De Finetti [40, 13] to subject epistemic probabilities to axioms similar to those of
Kolmogorov’s theory,
(3) the idea expressed by the three metaphysical principles occurring in Birnbaum’s argumentwhich,
stripped to its essentials, states that induction is a must and, hence, methods “should” be developed
prescribing the inferences one “should” make. Next one continues as if such methods exist. This
is the fallacy behind the sufficiency principle and behind reductions by invariance. One discusses
the possible outcomes x� and x� related by a common value of the sufficient statistic or by some
transformation. Next one requires that the statistician who observed x � should arrive at the same
conclusion as the statistician who observed x �. We are attracted by the lure of appealing simplicity
behind such requirements and yet we feel that it is a matter of wishful thinking.

3 What is the Role of Probability in Formulating Models for Systems, Such as Economic
Time Series, Where Even Hypothetical Repetition is Hard to Envisage?

Some elements of the first problématique, the role of probability in modelling systems from data,
are very prevalent in the area called system identification. We will address this issue in this context.
System identification is primarily aimed at modelling industrial processes. However, the methods
used are very similar to what is done in econometrics.

In order to fix ideas in our remarks about system identification, one can think of two examples
from our daily experience. Assume that measurements are taken of the height of the road surface
and the vertical motion of a person in the driver’s seat of a car moving at fixed forward speed. How
would one use these measurements in order to come up with a dynamic relation, for instance in the
form of a differential equation, connecting these two variables? As the second example, assume that
measurements are taken of the outside temperature and of the temperature in the living room of a
house, and that we aim at using these measurements in order to obtain a dynamic law relating these
two temperatures.

The procedure that is typically followed in system identification is to choose a model class for
relating these variables, say, an ARMAX model (which stands for an auto-regressivemoving-average
model with additional input variables). Thus some of the measured variables are considered to be
exogenous and some endogenous. Their linear dynamic relation is corrected by stochastic terms,
whose time-structure is modelled through the MA-part. (With stochastic we mean variables with
a probabilistic interpretation. Of course, here we meet the difficulty that different schools have a
different interpretation of this interpretation, but we will kindly gloss over this.) Subsequently, statis-
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tical procedures are invoked to estimate the parameters of this ARMAX model, whose order is kept
reasonably low in order to avoid, among other things, over-fitting. Identification algorithms [91],
as implemented for instance by MATLAB’s System Identification Toolbox (developed by Lennart
Ljung from Linköping University in Sweden) or by SAS in the module Econometric Time Series
(ETS) [120], provide such procedures. Using sophisticated ideas involving statistical estimation,
frequency-domain thinking, approximation, and recursive optimisation, a model is computed. The
central idea (although there are other possibilities) is to choose the parameters of the ARMAX
model such that the sum of the squares of the one-step ahead prediction errors is minimised. Recent
refinements involving for example Neural Networks incorporate nonlinear models in this setting as
well.

There is no doubt that this work is among the most important achievements of systems theory.
Moreover, because of its immediate relevance to modelling, the all-important issue in applyingmath-
ematics, this work is highly relevant for industrial applications. Nevertheless, it is appropriate to ask
questions about the relationship between the identified (or estimated) stochastic model and the real
system that it tries to capture.

When one faces the problem of fitting a model to an observed vector time series by means of,
say, a linear time-invariant model of moderate order, then the difficulty occurs that none of these
models will fit the data exactly. How should one proceed? In ARMAX models, we choose to as-
sume that in addition to the exogenous inputs, there are some additional (unobserved) inputs, let us
call them latent inputs. These latent inputs are assumed to drive the system also, and to influence
the measurements (often additively). The next step is to assume that these latent variables form
stochastic processes [30]. However, in the applications that we have in mind, the systems are simply
(predominantly) deterministic, see [127, 105]. If, in the car example, we drive an identical car over
the same road, then we will roughly see about the same motion for the driver. Also, it is unlikely that
they are the much advertised measurement errors that justify the introduction of stochastic aspects
in the model. Most modern measurement devices are very precise and their inaccuracies are for all
practical purposes negligible. If there are deviations between the sensor output and the intended
measurement, then these are more likely due to nonlinear and dynamic effects than to the pick-up
of random disturbances. It is hard to envision sensors that process measurements in a signal plus
additive noise fashion.

These and other considerations lead to the conclusion that in most identification problems the lack
of fit between the deterministic part of the model and the measured data will be due to approxima-
tions [61] and not to the presence of random inputs. These approximations will be due to such things
as the use of linear models for nonlinear systems, of low order models for high order systems, of
time-invariant models for time-varying systems, and of neglecting unmeasured inputs. The question
is whether it is reasonable to signal these approximations through stochastic terms in the model.

Statistical system identification is an effective way to deduce models from data. The deterministic
part of the model can be expected to provide a reasonable idea of the relation between the exogenous
inputs and the endogenous outputs. The stochastic part of the model provides a reasonable idea of
how to assess the misfit between the data and this relation. Moreover, since the stochastic part is
dynamic (MA), it also subtly provides this misfit with memory, which is a very reasonable thing
to do. Thus as an approximation, the deterministic part of the model gives us a sort of optimal
(weighted) least squares fit, while the stochastic term tells us how to assess the misfit. Thus, all is
well as long as one does not become mesmerised by the interpretation of the stochastic terms as
providing a measure of the relative frequency of future events, of percentages of probabilities that
certain things will happen, or of degree of belief in a model one doesn’t believe anyway. As a data
reduction algorithm, summarising the observations, the ARMAX model is very effective. As a model
of reality, it is more difficult to justify. Issues as falsification, etc., are philosophically hardly relevant:
the model is not meant to be more than an approximation. The situation is different and needs even
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more care if the individual coefficients and their inclusion or exclusion is of intrinsic subject-matter
interest or if certain individual parameters are to be given a provisional causal interpretation [34].

A related question that results from this is the sense of studying questions as consistency and
asymptotic efficiency in system identification. We offer but one thought on this. When an ARMAX
model is fitted to a time series, then it is logical to demand that the resulting fit will as quickly as
possible become exact (or optimal) in the purely theoretical case that the time series happens to be
produced by an element of the model class. In other words, algorithms should work well with sim-
ulated data, which are modelled in such a way that they rather accurately mimic the corresponding
actual measurements. While we view this as the only possible justification of much of the theoretical
work that goes on in identification theory, we have ambivalent feelings on the value of this justifi-
cation when specifically applied to the practice of ARMAX modelling. On the one hand, it seems
reasonable and it will guide the setting up and the evaluation of algorithms. It has certainly been
the topic of numerous journal articles. On the other hand, consistency, for example appears a some-
what irrelevant issue when one consciously decides to fit a finite-dimensional linear time-invariant
stochastic model to an infinite-dimensional nonlinear slowly time-varying deterministic reality.

The premise: algorithms should work well with simulated data seems to be the only feasible
paradigm for justifying the algorithms used in system identification (and in adaptive control). Per-
haps it is even the only way to think about assessing such algorithms scientifically (although it is
good to keep an open mind about alternative philosophical approaches). This implies one should
appreciate the importance of much of the theoretical work that goes on in system identification (in-
cluding algorithms that are based on the idea that one should start by searching for the most powerful
unfalsified model). But there are two caveats: first, what class of ‘simulated data’ should one consider
as the testbed, and, secondly, what does ‘work well’ mean? And these caveats, particularly the first
one, are all too easily glossed over. Why is it reasonable, when fitting a very simple model to a very
complex reality, to test an algorithm against stochastically generated data, and why is it reasonable
to take consistency as the first requirement for good performance?

The above considerations are very relevant to the role probability has to play in modelling econo-
metric time series. For interesting monographs on time series analysis we refer to [30, 102, 147, 39].
In econometrics, we are definitely fitting a simple model to a complex reality. To interpret the lack
of fit stochastically should not be done, unless very very cautiously.

But perhaps there are other origins of stochastic randomness in econometrics. Of course econo-
metric data are influenced by more inputs than are taken into account in the model while the latent
inputs are to some extent real. (Of course, the same is true for our car example: the wind is also an
input, the driver may be nervous and not hold the speed constant, the fuel quality may be variable,
etc.) There are things as unmodelled political events, swings in consumer confidence, technological
innovations, the euphoria of the financial markets, and what have you. Maybe it are these effects,
much more than the lack of fit, that account for the stochastic part of the model. Perhaps, but we doubt
it. But even if “perhaps” becomes “surely”, the question remains why these latent inputs should be
modelled using probability and statistics. Why does the sum of technological innovations, political
events, and consumer mood behave like random variables?

We now turn to the final issue, the impossibility of even hypothetical repetition. Of course, it is
usually impossible to experiment in macro-econometric systems and repeated observations under
identical circumstances are difficult to conceive. However, is this really the difficulty in econometric
modelling? Let us speculate a bit. Imagine that in 100 worlds (or countries) we would have observed
for a large number of consecutive years identical economic time series. Is it not more reasonable to
expect that the next year we will observe about the same value, than to expect that we will observe
a scatter due to stochastic effects? It is obviously unclear why we would see a scatter and hence
repetition, even if it were possible, may teach us very little new. Of course, it may still be difficult
to predict the next event, and different theories, different statistical modelling techniques, different
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political insights, and different sayers will come up with different predictions. But that is due to
ignorance, not to an intrinsic scatter. However, all this is mere speculation.

On the other hand, is it really impossible to experiment in economics? Certainly, in the sense that
it is impossible to do “controlled” experiments. However, “nature” repeatedly experiments for us:
each quarter and in each country a new experiment is performed. The question seems more why
these experiments are not adequate in order to come up with a good model, than that experiments
are not done. Of course, economists will object that the UK economy should not be considered as
an experiment on the cherished Polder-model, and that the Dutch economy 10 years ago does not
yield an experiment for today’s. We agree, but, obviously, it does not follow that declaring an event
“unique” automatically leads to stochastic models.

In conclusion, there is a good case to be made for statistical system identification algorithms and
stochastic models, as providing a good approximation method and a pragmatic way of assessing the
lack of fit. However, one should remain cautious not to take all this too literally and not to overinter-
pret in actual practice concepts like statistical significance, consistency, efficiency, and asymptotic
normality.

4 Should Nonparametric and Semiparametric Formulations be Forced into a Likelihood-
based Framework?

The likelihood approach, anticipated by Daniel Bernoulli [21], enjoys the qualities of asymptotic
efficiency as well as, nowadays, practical computability for large classes of parametric problems.
These advantages are severely dimmed if the number of parameters increases proportional to the
number of observations. Inconsistency results and identifiability problems (among others for errors-
in-variable models) are known since the fifties [82]. This suggests that a likelihood-based framework
is inadequate if non- or semiparametric models are considered. Nevertheless various versions of
partial likelihood [31, 32, 151] provided asymptotically valid and useful results for certain semipara-
metric models in the context of survival analysis [31, 69, 83].

Instead of the likelihood function it can sometimes be useful to optimise some other objective
function, less dependent on the probabilistic assumptions. In his Theoria Motus [54], Gauss used
normality assumptions to generate least squares theory. In his later work [55] he preferred to follow
Legendre by simply minimising the sum of squares without postulating normality for the error distri-
bution, see also [137]. Hence, potential functions of which the gradients yield estimating equations
that produce consistent estimates, possibly at the loss of some efficiency, are useful anyhow, whether
or not they live in an infinite dimensional space, see e.g. [88].

Since the eighties, research interest in general semiparametric models has increased and the the-
ory of likelihood, empirical likelihood and estimating equations has been developed further, see e.g.
[90, 43, 95, 114, 107, 59, 18, 141].

Whether semiparametric methods should be forced into such a framework depends on the purpose
of the analysis. If the robustness of procedures (against deviations of the specified model assump-
tions) is an important purpose then, obviously, one will have to go beyond the likelihood framework.
Some of us have worked in the area of nonparametric density estimation [25]. The idea was to start
from some initial guess of the density. This initial guess may very well be based on a parametric
model and, for instance, a maximum likelihood estimate of its parameters. Subsequently, however,
a process of nonparametric fine-tuning of the initial guess is carried out which goes beyond a
likelihood-based framework. The conclusion is that some, but not all, formulations should be forced
into a likelihood-based framework.

5 Is it Fruitful to Treat Inference and Decision Analysis Somewhat Separately?

Our answer is definitely yes. Statistical inference is oriented towards the scientific goal of describ-
ing, explaining and predicting Nature’s behaviour on the basis of a set of data x . This is largely a
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matter of discussion. Statistical inferences can have various forms. The specification of a statistical
modelP � �P�� � � �� is part of it. In decision analysis the discussion is focused on the objective to
take a decision or to perform an action on the basis of the data x . This involves a variety of discussions
and specifications, e.g. that of perceived loss or utility functions accompanying the various a priori
possible actions.

Wald’s theory of statistical decision functions [143] established that concepts from decision anal-
ysis and, especially, the theory of games offer a perspective for a number of situations from statistical
inference. This loss-function perspective provides a basis for comparing methods of inference. In
statistical inference, however, loss functions are mainly constructions of the mind. That is why related
concepts of unbiasedness, exactness, similarity, etc., cannot be dispensed with. The theory of best
unbiased estimators is paradigmatic because it provides methods of inference “valid” for a large
family of loss functions. In distributional inference a similar theory can be developed.

After these preliminary reflections we turn to the question formulated, which we divide into three
issues:

(1) is it fruitful to develop a theory of statistical inference without specifying aims in terms of
future actions, utilities, etc.?

(2) is it fruitful to develop a theory of decision functions concentrating on future actions in general,
ignoring the issue of statistical inference?

(3) is it fruitful to develop these theories somewhat separately?

The answer to (1) is yes because the discussion about future actions requires specifications of utility
functions, etc., which themselves are subject of a discussion. This discussion would benefit from
the existence of preliminary statistical inferences, assessments of probability, interval estimates,
distributional inferences, made independently from the specific goals and utility considerations of
the field of application. The answer to (2) is yes because the issues in deriving the preliminary
statistical inferences are different from those in the context of general decision analysis. Hence, in
spiritual accordance with Montesquieu’s Trias Politica, also our answer to (3) is yes.

Finally, we remark that treating the above two areas of scientific endeavour somewhat distinctly
is, among others, also useful to describe the conflict of interest that may arise between the goals of
practical decision analysis (e.g. how to treat a particular patient or to optimise the performance of a
particular nuclear fusion device) and of statistical inference (how to estimate accurately, and reliably,
the physical effect of a certain treatment), see e.g. the introduction of [70, Ch. 15, part 2], which was
inspired by [129].

6 How Possible and Fruitful is it to Treat Quantitatively Uncertainty not Derived from
Statistical Variability?

Before answering this question, we should first specify the meaning of ‘statistical variability’. We
understand this expression in the sense of variability due to random fluctuations and, hence, open to
probabilistic modelling and statistical analysis.

Usually the statistical analysis does not follow directly from the probabilistic model because this
lacks either unicity or practical adequacy. The uncertainty involved, e.g. with respect to the choice
of prior in a Bayesian context, is of the same kind as other forms of uncertainty not derived from
statistical variability. Probabilistic terminology can be exploited to express such (epistemological)
uncertainties. In practice many numerical assessments of probability are obtained by merging facts
and fictions. It is then questionable whether probabilistic terminology is the most appropriate one.
If the proportion of fiction is large then these probabilities should certainly not be treated as if they
were of the type studied in Kolmogorov’s theory. In fact, alternative ways to express uncertainty
may be exploited. In fuzzy logic, artificial intelligence, mathematical sociology, but also in daily life,
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attempts are made to quantify uncertainty, and related concepts such as ambiguity and discord [84].
Some of these approaches are based on plausibility and belief measures rather than on probability
measures, see [130, 51]. We have already expressed concern about probabilistic terminology in the
answer to cryptic issue 3 and will return to the aspect of the belief measures just mentioned in our
answer to cryptic issue 14.

A simple answer to the present question is that it is always possible to express uncertainty by using
numbers between � and �. How fruitful it is depends on the situation and on the answer to the question
whether scientific purposes are aimed at or other ones. In some situations different research workers,
using the same information, make assessments of probability which show almost no agreement. In
such cases it is not fruitful, from a scientific viewpoint, to treat uncertainty quantitatively, and it is
better to say that “nobody knows”. From a non-scientific viewpoint the situation may be different.
From his Nicomachian Ethics [7], one may infer that Aristotle would be inclined to state that
the prudent (‘phronimos’) man will adapt his statements of probability to the purposes he has:
winning a battle or political dispute, healing or, at least, comforting a patient, etc. In a different
context, a pathologist visiting one of us (WS) for statistical consultation, while being confronted
with “expressing uncertainty in probability” exclaimed that he did not like this at all: “I do not need
such expressions of uncertainty. I never use probabilities since I want my voice be heard”.

Hence, it is always possible but the fruitfulness depends, from a scientific point of view, on the
agreement among the inferences when different, well educated, statisticians are performing analyses
of the data which are available to them all. It will happen very often that consensus exists about
extreme cases (hypotheses or patients) whereas the intermediate cases are doubtful, not only in the
sense that probabilities are far from � and � but also in the sense that different experts make different
assessments of probability. This leads to the somewhat paradoxical statement that “probabilities
are very fruitful if they are close to � and � but almost useless if they are in the range for which
they are intended”. This statement does not imply that statistical analyses are useless: one will have
to do various analyses and make the associated computations before one can decide whether the
probabilities are close to � and � or in the range between.

7 Are All Sensible Probabilities Ultimately Frequency Based?

First, we state that we are in favour of using consistently a word distinct from ‘probability’ for each
type of uncertainty not based on any frequency aspect, for instance, in broad agreement with [36] and
extending somewhat [15], ‘degree of conviction’ for a ‘personalistic probability’ (De Finetti, Savage),
‘verisimilitude’ for a personal probability of an ideally coherent and objective person (Jeffreys) and
‘credence’ or perhaps even ‘epistemic probability’ for an intersubjective (non-frequentist) probability,
a ‘reasoned degree of belief’ formed by careful scientific investigation, discussion and evaluation of
various aspects of a problem. An instance of the latter is provided in [79]. Shafer [130] proposes to
use the word ‘chance’ for objective (aleatory) probability, and the word ‘probability’ for all kinds of
non-objective (epistemic) probabilities. The important point is here that different names should be
given to different concepts. This linguistic convention is sensibly adhered to in [130, 84, 145], among
others. Of course, if it is clear from the context, then, par abus de langage, one may use the word
probability in all these cases. However, one should not be surprised that this usage leads to crypticism
and misunderstanding in those situations that this condition is not fulfilled. Secondly, we remark that
the issue bears a cryptic character because of the lack of precise definitions of the words “sensible”,
“probability”, “ultimately”, and “frequency-based”. Obviously, the answer to the question depends
on the clarification of these meanings. Instead of presenting a lengthy analysis of each of these
concepts, we just mention that the word probability is used to describe several different notions.
Some are mathematically well defined: the probabilities from the games of chance whose numerical
specification is a matter of accepting some axiom of equiprobability and the aleatory probabilities
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from the theory of probability which are well defined but unknown and yet real numbers and derive
their meaning from the theoretical laws of large numbers. Thirdly, we have the assignment of a
concrete number between 0 and 1 for any form of epistemic probability. Finally, it is noted that in
the usual treatment of quantum mechanics, the notion of probability is used as an intrinsic property
of, for instance, electrons and that in statistical mechanics probabilities are expressed in terms of
ensembles, which are idealised, hypothetical populations.

In contrast to mathematics-oriented probabilists and theoretical statisticians who want to restrict
their attention to ideal situations, epistemologists, many applied statisticians as well as research
workers from many other areas, such as medicine and the empirical sciences, usually have little
difficulty in accepting the usefulness of “epistemic probabilities”, even though they may use other
words to indicate such concrete numbers between � and � estimating the (unknown) truth value (either
� or �) of an uncertain proposition or event. Such epistemic probabilities are (almost) always mixtures
of facts and fictions. Actual data have to be used, as well as a number of theoretical constructions
and normative principles. The data can, in many situations, be regarded as frequency based but the
fictions are constructions of the mind. A difficulty with such type of probabilities is for instance
illustrated by considering the statement that animal experiments show that residential EMF fields,
see e.g. [1], are far too weak to cause cancer in humans. Ignoring for the moment epidemiological
types of evidence, the question ‘what is the probability that this statement is wrong?’ bears to the
reasonableness of the extrapolation of animal to human experiments. It is certainly arguable that
probability cannot usefully be applied quantitatively to such a situation. A personalistic Bayesian
proponent has (at any moment) such a probability elicited in principle in the usual way. But how
can such a probability be regarded as intersubjectively “reasonable”? Presumably, in part at least,
by thinking of roughly similar instances where extrapolation from animal experiments to humans
have proved correct, and in that sense thinking, of course in a very approximate way, of a relative
frequency in a similar situation.

If “ultimately frequency based” means that observed frequencies are part of the specification of
the sensible probabilities then the answer to the question is clearly yes. But if “ultimately frequency
based”means that only observed frequencies and frequency-theoretic considerations (pure probability
theory) are involved then the answer is definitely no. Some kind of rationalisation or intuition is
involved in the specification of the methods of inference which provide the “sensible” probabilities
needed. (That such sensible probabilities are not necessarily reasonable goes without saying, see for
example the discussion of cryptic issue 1.)

8 Was R.A. Fisher Right to Deride Axiomatic Formulations (in Statistics)?

Supposing that Fisher indeed occasionally did so, our answer is of course that he was not entirely
right, even though we feel that over-emphasis of axiomatisation can lead to too rigorous simpli-
fications and an ensuing loss of mental flexibility. Axiomatisation is useful (a) as an intellectual
game, (b) as a didactically efficient way of summarising a number of different results, while, at the
same time, (c) imposing a certain mathematical structure as ‘the most appropriate one’ for a certain
frame of discernment. However, we are inclined to think that he did not deride such formulations in
general. Although Fisher held definite views, a balanced comparison between the role of deductive
reasoning (in probability theory) and inductive reasoning (in statistics) is given in his paper read
before the Royal Statistical Society in 1934, see [47]. He sometimes referred to axiomatic theory in
mathematics as a source of inspiration. His position is nicely expressed as follows (see [48], Section
V):

“The axiomatic theory of mathematics has not been, and ought not to be, taken very
seriously in those branches of the subject in which applications to real situations are in
view. For, in applied mathematics, it is unavoidable that new concepts should from time
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to time be introduced as the cognate science develops, and any new definition having
axiomatic implications is inevitably a threat to the internal consistency of the whole
system of axioms into which it is to be incorporated”.

We have a lot of sympathy with this phrase, which has given us much food for thought, as well
as controversy. It is true that Fisher attacked the method of inverse probability as developed by
Jeffreys (see D.A. Lane in [46]) and work of Karl Pearson, sometimes in a deriding way “only
a saint could entirely forgive” [124, 154], albeit it is also reported that Fisher had good personal
relations with Jeffreys and that, after Fisher succeeded Pearson as Galton Professor at University
College in London, ‘he would make a point of respectful conversation with “KP” whenever the
latter came into the common room for tea’ [14]. Fisher did often not appreciate the work of Neyman
and Egon Pearson [104], who displayed a ‘wooden attitude’, and was critical with respect to Wald
[143]. Neyman replied with [98] and with [99]. We can now enjoy the polemic style Fisher used,
but not without reservation [140]. With some more respect for axiomatisation, i.e. of the precise
mathematical specification of the premises in a series of arguments, and for some of his adversaries,
Fisher might have perceived more easily the fact that he himself manipulated epistemic probabilities
as if they were Kolmogorovian, and, possibly, he would have been less authoritative and more in
line with the eclectic attitude many of us display nowadays [37, 110]. But, of course, we would have
missed some interesting sentences and some intriguing controversies.

9 How Can the Randomisation Theory of Experimental Design and Survey Sampling Best
be Accommodated Within Broader Statistical Theory?

We are not sufficiently familiar with these subjects to provide a satisfactory answer. For technical
details related to this question, we refer the reader to [81, 26, 119, 38], and—in the framework of
clinical trials—to [134].While leaving amore adequate answer to the ‘younger generation’, see [110],
we would like to express here solely a concern with respect to the idea that medical investigations
should always be performed according to a randomised design. Statistics should be considered as
Science’s servant, not as its master; more like Gifi, Galton’s butler, than like Galton himself. Other
aspects than using a randomised design may be more important. For instance, in a medical context:
will the patient know which treatment he gets? In the present juncture in which the principle of
informed consent is highly valued, an affirmative answer seems often to be regarded as even a moral
obligation. However, sometimes, also with a carefully randomised design, this knowledge may prove
fateful for the patient. At a certain occasion, one of us (WS) was asked to comment on an (obviously
positive) effect of radiotherapy, after surgery, on the (marginal) survival probability of patients with
a certain type of brain tumour. During the statistical consultation, the unpleasant suspicion arose
that part of the observed effect could have been caused by requests of euthanasia by those who did
not receive the therapy: receiving the therapy precluded complying or at least interfered with such
requests.

10 Is the Formulation of Personalistic Probability by De Finetti and Savage the Wrong Way
Round? It Puts Betting Behaviour First and Belief to be Determined from that.

In first instance, betting behaviour seems to be a reasonable operational way of eliciting, i.e. mak-
ing explicit to other people (possibly including the betting person himself), personal probabilities.
However, the theory of De Finetti and Savage puts betting behaviour before belief and axiomatic
theory before betting behaviour.

By requiring that epistemic probabilities satisfy axioms similar to those satisfied by physical
probabilities, De Finetti established that coherent behaviour requires the formulation of a prior
distribution. (In fact he required that in addition to the usual Kolmogorovian axioms certain ex-
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changeability properties are satisfied.) The snake in the grass is that there is no compelling reason for
epistemic probabilities to behave the same as the physical ones studied in probability theory (usually
without specifying their actual values). In our view, it is a fallacy of misplaced concreteness to treat
these epistemic probabilities as if they were physical. Hence, this is the answer to the question:
the personalistic approach of De Finetti and Savage, eloquently advocated by Lindley [89], itself is
wrong; it upgrades the status of subjective personal opinion to that of physical evidence. Fisher did
something similar when he said that, in the case of absence of information a priori, the making of
an observation had the effect that the epistemological status of � changed from one where nothing
is known about it and no probability statement can be made, into one where it has the status of the
outcome of a random variable. He failed to note that the specification of such fiducial distribution a
posteriori involves the mixing of some fact (the observation) with some fiction. It is easy to criticise
the Bayesian approach of De Finetti, Savage and Lindley but such criticism is not fair if nothing is
offered to replace this Utopia [50]. The only thing we have to offer is that the derivation of statistical
decisions, statistical inferences, distributional ones in particular, etc., should be based on a careful
examination of the separate issues. Probabilistic coherency is a nicety which can be aimed at [67],
but which should not be pursued indiscriminately. The incoherent behaviour thus displayed [155]
will, hopefully, lead to a higher degree of verisimilitude than the coherent behaviour advocated by
De Finetti, Savage, Lindley, and others. An analogy is that a system of local linear approximations
may be closer to the truth than a single global linear approximation. The theory of eliciting personal
degrees of belief has an important spin-off in the concept of properness of a utility or loss function
[85, 80]. In this respect Savage’s Elicitation Paper [123], though difficult to read, is evocative and
rewarding.

11 How Useful is a Personalistic Theory as a Base for Public Discussion?

For our critical attitude with respect to the personalistic theory propounded by De Finetti and
Savage, we refer to the response on the previous question. Here we will answer the question whether,
nevertheless, a personalistic theory can be used as a base for public discussion. The public usually
requires statements made by “the profession”. This goes beyond personalistic theory restricted to
one person. As scientists, statisticians should try to let the data speak. In this respect the De Finetti–
Savage approach is not completely useless. A considerable degree of intersubjectivity can be attained
by studying a variety of prior distributions and the corresponding posteriors. If the sample size is
sufficiently large and the prior distributions are not too weird, then the posterior distributions are quite
similar and the public may, perhaps, be impressed by the high degree of inter-statistician agreement
displayed. This, however, would be somewhat misleading if no attention is paid to other possibilities
of varying the context, e.g. the (parametric) model. Anyway, in a generalised sense, personalistic
theory can be useful to some extent as a base for public discussion, especially if a variety of ‘persons’
is allowed to express their ‘opinions’ in a probabilistic or possibilistic [130] form. Its use is limited,
of course, especially if the strive for coherence and internal consistency is considered to be more
important than conformity with the real world [36].

12 In a Bayesian Formulation Should Priors Constructed Retrospectively After Seeing the
Data be Treated Distinctively?

This is a cryptic formulation because the meanings of the words “Bayesian” and “distinctively”
have to be inferred from the context. We shall answer this question in the context that inferences
are made in the form of “probability” distributions. In Groningen this area of research is referred to
as “distributional inference” [85, 80, 2]. It contains those parts of Bayesian inference, conditional
inference, data analysis, fiducial inference, likelihood inference, predictive inference, structural
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inference, etc., where inferences are made in the form of a probability measure. The “probabilities”
assigned by such distributional inference (sometimes called inferential distribution) are epistemic
mixtures of facts and fictions. To organise this somewhat chaotic field we like to use a Neyman–
Pearson–Wald approach with proper loss functions and restrictions on the class of procedures. The
Bayesian approach has the virtue of providing a convenient framework. It often leads to procedures
that are admissible, at least if the loss function is proper, i.e. Bayes-fair [85]. A disadvantage is
that the choice of a prior distribution is awkward. Priors constructed retrospectively may lead to
inadmissibility in a strict and somewhat narrow decision-theoretic sense. On the other hand, we
recognise that there are many ways to construct distributional inferences and to make probability
statements. The theoretical inadmissibility of a procedure may be compensated by advantages of
unbiasedness, invariance, equivariance, similarity, simplicity, etc. The notion of relevance may be
included in this list: it is obviously not an appropriate approach to use a prior which is in conflict
with the data. Situations exist where the null hypothesis that such a conflict does not exist can be
formulated and tested. If the null hypothesis is rejected and, possibly, in some other cases as well, one
would like to adapt the prior before applying Bayes’s theorem. Such an “empirical” Bayes approach
should neither be considered with distinction nor with disdain. Some suspicion is necessary because
the data are used twice, firstly for manipulating the prior and secondly for updating the prior. It is
obvious that underlying assumptions of independence (of sources of information) will be violated if
the data are, for instance, not randomly divided into two subsets. Much depends on the way the data
are used to adapt the prior before using it in Bayes’s theorem.

We will usually prefer some other construction of a method of inference. These other constructions
also suffer from the fact that they are based on assumptions which, in practice, are usually violated.
In this respect, two assumptions deserve special attention: (1) the assumption that the model has
been specified a priori (in practice the model will be often selected on the basis of a preliminary
inspection of the data), (2) the assumption that no information whatsoever is available a priori
about the ‘true’ value of the parameter. In some instances, a comparative analysis will lead to some
intersubjectively acceptable and, hence, “reasonable” and “sensible” procedure. It is also possible
that such a comparative analysis indicates that the problem does not allow a sufficiently compelling
method of inference. In that case situations may exist where, in spite of the general lack of agreement,
the factual data are such that the inferences based on different methods are sufficiently similar for
making a dependable statistical statement. Other situations will be such that the case should be
dismissed and the problem returned to its owner without making a specific inference, possibly
referring to ‘the limits of reason’ [2]. Statisticians are not hired to guess or suggest, but to make
scientifically sound statistical inferences in the light of the data and in spite of some unavoidable
uncertainty.

13 Is the Only Sound Justification of Much Current Bayesian Work Using Rather Flat
Priors the Generation of (Approximate) Confidence Limits? Or do the Various Forms of
Reference Priors Have Some Other Viable Justification?

The cryptic formulation of this question makes it quite evocative. A semantic analysis is not easy
because of the use of a rich choice of modifying words like ‘only’, ‘much’, ‘rather’, ‘flat’, ‘(ap-
proximate)’, ‘various’, ‘viable’. An easy answer to the first question is “No, because distributional
inferences themselves (which can be viewed as synthetic judgements a posteriori in the form of a
probability distribution, either Bayesian or perhaps non-Bayesian) are a legitimate purpose as well.
Similarly, the use of such diffuse, non-personal priors may be helpful in discussing situations where
decisions have to be made”. Furthermore, Bayesian analysis can play a role in elucidating Stein’s
phenomenon [135], see also [115], which has a bearing on many applications, among which model
selection for catastrophic-type response surfaces [74]. This, obviously, then also answers the second
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question. A more profound answer, however, is as follows.
Bayesian work with flat priors seems deceptively similar to likelihood inference. The difference

can be made clear by considering what happens under reparameterisation, since the likelihood func-
tion does not transform as a probability density. If l � ��� x� � 	
� L� ��� x� is the log-likelihood
function for a parameter � , then the likelihood function l u for any monotonic transformation u���
is given by the direct function composition l u�u���� x� � l� ��� x�. In this sense the likelihood
function is equivariant under monotonic transformations and so is the parameter location of the
maximum likelihood (i.e. the ‘likelihood mode’) as well as relative parameter locations correspond-
ing to any likelihood ratio, and hence intervals of the type ‘full-width at a certain fraction of the
maximum’. Obviously, the relation between a confidence interval based on the asymptotic approx-
imation of the likelihood-ratio statistic and, for instance, a somewhat similar interval based on the
exact small-sample distribution of this statistic (the latter being possibly complicated but to some
extent accessible by stochastic simulation) may look quantitatively different for � and for u���, but
this is merely induced by the perspective generated by the transformation u���. Let � � �� 	x� denote
the posterior probability density of the parameter � , evaluated at the point � given the data x . Since
finite probabilitymasses are to be preserved under transformation, any (posterior) probability density
satisfies �u�u���	x� � �� �� 	x�	u������	. This means that, in contrast to the situation for likelihood
functions, medians and other quantiles of the probability distribution are equivariant, but not the
mode or nor the relative parameter location corresponding to a fixed ratio of probability densities.
(Expectation values are only approximately equivariant for transformations that are close to their
linear approximation over the range where the probability distribution is essentially concentrated.)
This means that small sample likelihood inference is essentially different from Bayesian inference,
even when diffuse or (almost) flat priors are used.

Both approaches lead commonly to procedures that are asymptotically equivalent, in the sense that
their relative difference vanishes with increasing sample size. This is related to the fact that asymptot-
ically, together with the influence of the prior distribution, the asymmetry of the likelihood function
disappears, and hence also the difference between mean, median, mode, as well as in many cases—
due to the central limit theorem and the Gaussian shape of the large-sample likelihood function—the
incongruity between quantile-based (Bayesian) and likelihood-ratio based (non-Bayesian) interval
estimates.

Furthermore, following the Bayesian paradigm [24, 44, 53, 100, 139] for a moment, it is evident
that the probabilistic transformation property should be inherent to the prior probability, since it is
not provided by the likelihood function. This can be realised either by imposing ‘coherence’ on the
preferences of any ‘rational’ man in choosing his (subjective) prior, or by postulating as a working
rule a class of priors which automatically satisfies probabilistic equivariance. The latter approach
was adopted by Jeffreys [66] who propounded to take as (retrospective) prior the square root of the
expected Fisher information I ��� � �E ���

�	����l� ��� x� as a function of the unknown parameter
� . In one-dimensional situations this leads often to quite reasonable, if not completely compelling,
results, such as a flat prior for a location parameter or for the logarithm of the scale parameter 
 of
a normal distribution. (The latter implies a so-called scale-invariant prior, � J �


p� � �
 p���, for 

to any power p.) On the other hand, for a Poisson distribution P��� we have � J ��� � ����� which
means a constant prior� J �
 � � � for the scale parameter 
 � ����, while for the Cauchy (‘Lorentz’)
distribution, where the scale parameter 
 is proportional to the full-width at half-maximum of the
probability density, we have � J �
 � � 
����.

Let us dwell a moment on estimating the probability � of ‘success’ on the basis of n Bernoulli
experiments, X �� � � � � Xn � B��� ��, to be used in inference on the number of successes in m further
experiments, a problem at least ‘as ancient as Bayes’ [103], and, in a slightly more general setting,
‘as recent as Walley’ [145]. Jeffreys’s rule entails in this situation the prior � J ��� � ����� �������,
which means a flat prior for u��� � ������



��. Although reportedly Jeffreys did ‘not like’ this prior
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himself [118], it holds the geometric middle between Laplace’s prior for an ‘equal distribution of
ignorance’,�L��� � �, and Haldane’s prior [58] �H ��� � ����������, which entails a flat prior for
the log odds-ratio ���� � 	
���	��� ���. All these different priors are of course special cases of the
Beta distribution, Be��� �, with density proportional to � ����� � ����� for positive � and , and
conjugate to the binomial. (Restricted to integer values of � and, Be��� � describes the distribution
of the �th order statistic from a sample of size ��, corresponding to the physical situation consid-
ered by Bayes [16].) Given a choice for � and , the ‘usual’ Bayesian rule (minimising the expected
posterior quadratic error) is to estimate � by the posterior expectation E�� 	x� � �x���	�n����.

Somewhat in the vein of Fisher, Groningen statisticians are not satisfied with such point estimates.
They are also not completely satisfied with the Be�x ��� n� x�� posterior distributions and have
developed a theory for distributional inference where attention is restricted to ‘weakly unbiased’
procedures and, in addition, the integrated risk (with respect to a proper loss function) is minimised.
Interestingly, the approach leads to the credence distribution 1/2[Be�x� n�x����Be�x��� n�x�]
for the true value of � , which is close to the Be�x � �	�� n� x� �	�� posterior distribution based on
Jeffreys’s prior. The weak unbiasedness restriction entails that the distributional decision rule is not
admissible with respect to the proper loss function described in [85], and cannot be obtained from a
prior distribution by applying Bayes’s theorem, see [45], Ch.2. A comparative analysis between var-
ious rules of distributional inference for this problem, called ‘the fundamental problem of practical
statistics’ in [103], can be found in [85, 118]. In the following, we restrict our attention again to the
less complicated area of point estimation.

Within the Bayesian framework, the posterior median estimator med�� 	x� (minimising the ex-
pected posterior absolute error) has a vantage over E�� 	x� in that it is equivariant under all
monotonic transformations, and (hence) more robust than E�� 	x� against strong asymmetries.
Unfortunately, a closed-form expression for the median of a Beta distribution does not exist.
However, a practically reasonable approximation, derived on occasion of writing this paper, is
med�� 	x� � �x ��� ����	�n��� � ����. The maximum absolute deviation, on log odds scale,
between the true and the approximated median is less than 0.01, 0.03, 0.10, 0.15 if both parameters
x�� and n� x� are inside the intervals ��� ��, ������ �����, ������ �����, ������� �����, respec-
tively. The expression has been obtained by minimising numerically the sum of squared deviations
over the family �x � � � c�	�n � � �  � d� as a function of c and d. Somewhat unexpectedly, for
n � � and Laplace’s prior �� � ��  � ��, the posterior median estimator for � coincides, to a high
degree of approximation, with the minimax risk estimator �x � ���



n�	�n�
n� for quadratic loss,

to be payed ‘to the devil’, see Steinhaus [136], which makes the estimator an interesting candidate
in the small-sample contest [41], with good properties if some (vague) prior information exist that
� is not extreme, say �	� � � � �	�. This digression to ‘the fundamental problem of practical
statistics’ [103], with ramifications to meta-analysis [96], logistic regression [33, 35], contingency
table analysis [149], discriminant analysis [63], multivariate calibration [132], and other areas of
statistics, has been made to indicate that ‘das statistische Spiel [136] noch kein Ende genommen hat’,
in spite of the convenient framework of the Bayesian paradigm, and despite its aspect of ‘a tempest
in a teapot’ [56]. In a sense, the character of the game is ‘open’ [136], suggesting a possible useful
exploitation, in repetitive situations, of strategies needed by those confronted with the prisoner’s
dilemma [9].

In more than one dimension, the determinant of Fisher’s information matrix has to be taken,
which leads in a number of situations to counter-intuitive results for Jeffreys’s prior, as was noted by
himself, see e.g. [115].

Occasionally, a type of invariance argument to select a specific prior distribution is invoked based
on deceptively plausible reasoning. At some instance, in an oral discussion, the first author was con-
fronted with the proposition to use the invariant prior ���� � c	� for the distribution of any positive,
dimensional physical parameter, such as for instance length, based on the grounds that this is the only
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density invariant under the choice of physical units (e.g. cm or m). A reference was made to [19].
This argumentation is not compelling, since it is more natural to consider, for each choice of units,
coherently, a single member of, for instance, a one-parametric scale family of prior distributions.
(The transformation property of probability densities requires that � c��c�� � c�������, but we do
not perceive a deductively or practically valid reason why, for an arbitrary parameter restricted only
by the requirement to be positive, the function � c� , which is the prior distribution of c� , should be
equal to �� .)

In [103], Karl Pearson not only emphasized the practical-theoretical value of but also expressed
his concern about Bayes’s problem. He spoke about the virtue of “realising that if the views of some
authors be correct our superstructure is built, if not on quicksand, at least in uncomfortable nearness
to an abyss”. On choosing a prior distribution he wrote somewhat jocundly about “taking a bull at
his horns” (the peaks of a Beta prior if parameters are less than 1), before essentially deriving the
Beta-binomial distribution for r successes in m further experiments at an arbitrary Be��� � prior
distribution, and comparing it with the hypergeometric distribution using the maximum likelihood
estimate from the first set of n trials. About the ubiquitous application of the normal approximation,
he complains that its “sacrosanct character, in the eyes of many physicists and astronomers, is of the
character of a dogma, being based on authority rather than reason”. Pearson’s analysis of Bayes’s
problem remains essentially valid, despite considerable advances in computational facilities, and
copious more recent investigations, for which we suggest [118, 80, 2] as a possible starting point.
As we have seen above, the choice of parameterisation for which a flat prior is postulated remains
a serious point of concern, and, moreover, even for flat priors small-sample likelihood inference is
essentially different from small-sample Bayesian inference. In view of these considerations, our,
somewhat shadowy formulated, extant answer to the first question is: “perhaps, if due attention is
paid to the modifying adjective ‘approximate’ ”.

14 What is the Role in Theory and in Practice of Upper and Lower Probabilities?

The expression ‘upper’ and ‘lower’ probabilities can be interpreted in various ways, since upper
and lower bounds of physical, or of epistemic, probabilities occur in several contexts.

In Groningen a tradition exists, since the mid-seventies, to construct confidence intervals for
posterior probabilities [126, 4]. In logistic regression, and even for proportional hazard regression
models, similar results can be obtained, see [70, 17]. The standard errors or confidence limits provide
an impression of the statistical uncertainties involved in the assessment. Apart from these statistical
uncertainties there are the uncertainties caused by systematic errors: parametric models are always
wrong to a certain extent. Hence it is somewhat misleading to focus on these statistical uncertainties.
Nevertheless they may provide some help in diagnosing the problem addressed to in cryptic issue 1,
because overconditioning manifests itself in upper and lower bounds which are very far apart.

In nuclear fusion, a theme of practical and scientific interest is to obtain a reliable estimate of
the probability to achieve a burning thermal plasma for which the (internal) alpha-particle heating
exceeds the externally supplied heating. Creating such a plasma is of interest for fundamental
physical investigation as well as for developing fusion reactor technology. This probability depends
on a so-called reference scenario for plasma operation, which is a function of the plasma density,
the auxiliary heating power, and some other plasma characteristics such as current, magnetic field
and plasma shape, each of which can be controlled within a certain operating domain. In [79], an
interval estimate [76] for the confinement time of the ITER tokamak [77], updated for ITER FEAT
[10], was transformed, using auxiliary physical information, into a probability estimate for achieving
a ratio between internal heating (by helium particles) and external heating larger than a certain lower
bound, with special interest to the values 1 and 2.

Further explanation by the last author revealed, however, that a connection with Shafer’s theory of
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belief measures [130, 144] has been envisaged by the question. Henceforth, we concentrate on this
aspect.

Upper and lower bounds of probability measures have been investigated by Dempster [42] and
were later interpreted by Shafer [130], in the context of possibility theory, as plausibility and belief
measures, see also [146, 84, 57]. According to [84], Ch. 7, there is a connection between the
membership functions of fuzzy sets and the assignment of possibility and necessity measures, which
are special cases of plausibility and belief measures. These are in fact interesting generalisations of
probabilitymeasures in that the propertyof additivity is replaced by subadditivity and superadditivity,
respectively. A ‘strength-of-belief’ measure �be satisfies for instance:

�be�A � B�  �be�A�� �be�B�� �be�A � B� (1)

which implies �be�A� � �be��A� � �. If there is little evidence for A, nor for its complement �A,
one can assign a (very) low degree of belief to both. According to standard Bayesian probability
theory, anyoneusing such (non-additive)degrees of beliefwould not behave coherently.We have little
sympathy with this attitude. Shafer [130] gives an illustrative example why the concept of ignorance is
better represented by these super-additive belief measures than in standardBayesian theory. Consider
the following two exhaustive sets of mutually exclusive propositions, which physically presuppose
that a planetary orbit is necessary but not sufficient for the existence of life: p �: There is life in an orbit
near Sirius, p�: There is no life in an orbit near Sirius and q�: There is life near Sirius, q�: there are
planets, but there is no life near Sirius, q�: there are not even planets near Sirius. Complete ignorance
would be represented by assigning belief measure zero to all these cases. In Bayesian theory one
can do little else than assign probability �	� to p� and p� and probability �	� to q�, q�, and q�.
These two assignments, however, are inconsistent since the conjunction of the propositions q � and
q� is equivalent to the proposition p�. Shafer mentions that such types of inadequacy of representing
ignorance has been a reason of the decline of Bayesian probability theory in the nineteenth century
[23], see also Zabell [153] for a balance up to 1920.

Because of the additivity property of probability measures, Bayesian inference has a flavour of
‘how to gamble if you must’ [122], at times an unattractive option to be faced with. Consider a bag
with marbles [145]. One is told that each such marble assumes one out of some k colours. Instead
of assigning a prior �	k to each of these, one can make a different category, k � �, corresponding
to ‘undefined colour’, combine categories, etc., leading to different priors for logically equivalent
situations. As argued in [145], representation of prior uncertainty by lower and upper probabilities,
satisfies invariance with regard to the sample-space embedding. In the specific setting of multinomial
models with Dirichlet priors, they lead to intervals for the unknown parameter that shrink as c	N
for some constant c. It is noticed that for c �



N the interval shrinks as �	



N and the centre

of the interval corresponds to the minimax risk estimator considered by Steinhaus [136], see also
[64, 22, 121]. On the other hand, in [145] it is stated that if c depends on N , the principle of coherence
is violated. It is questionable, however, whether this principle should be very strictly adhered to,
see cryptic issue 10. (Similarly, upper and lower probabilities for the variance or a quantile of the
distribution function of the estimator can be calculated.) One interpretation is that they correspond
to suprema and infima over classes of prior distributions. From a fundamental point of view, they
challenge, however, the Bayesian paradigm. From the theoretical side, in our view, possibility theory
has formed an interesting and flexible framework of axiomatised concepts with precise, suggestive
interpretations and with analogies from modal (and temporal) logic, see [84, 65, 52], even if we agree
with [110] that a monolithic structure for statistical inference does not exist. A simple example is
given by the following. In modal logic, the expression ♦p �� � � p means that a proposition being
possible is equivalent to the statement that its negation is not necessarily true. This corresponds to
the property � po�A� � �� �ne��A�, meaning that the possibility measure of event A is one minus
the necessity measure of the event that A does not occur. (By extension, in possibility theory, the
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relation�pl�A� � ���be��A� holds, with the semantic interpretation that the ‘plausibility’ of event
A to occur is defined as 1 minus our ‘belief’ that A does not occur.)

To describe its role in practice is more difficult. Fuzzy set theory has led to multifarious applications
in various fields, such as control theory, decision theory, pattern recognition, etc., see [84], but a
link between theory and empirical practice as strong as between probability theory and statistics for
additive measures, is not (yet) so well developed, despite several pioneering efforts, see e.g. [145].
We give three practical examples here.

(I) In analogy with betting behaviour to elicit prior probabilities (see cryptic issue 10), it has been
suggested to identify a lower probability with a buying price and an upper probability with a selling
price of the same (precious, non-consumer) object by the same person. Consider a Japanese book
(hand-)written in Kanji from before the Meiji period, which one is willing to buy for 10.000 ¥ (or
less) and to sell for 30.000 ¥ (or more). From this example, it should be apparent that upper and
lower probabilities can be quite far apart, and, conceptually more important, they do not correspond
at all to upper and lower estimates of the same physical quantity ensuing from incompleteness of the
available data.

(II) Upper and lower probabilities can be used as upper and lower limits in sample surveys with
non-responder fractions. Suppose that, at some occasion, 40% of the responders voted for proposal
A and 60% for proposal B, where the proposals A and B are mutually exclusive, for example a
(future) presidential election in the European Union. However, 20% of the population did not vote.
In a Bayesian approach, assignment of some prior probability for the non-responder fractions is
unavoidable. This can lead to interesting, if also somewhat frictional, discussions, which in our view
are not well adapted toward the real issue, since, without further empirical auxiliary information,
one simply does not know the opinion of the non-responders. On the other hand, to employ a
physical metaphor, in possibility theory, the spectral line ‘probability’ is split into a doublet (a pair of
dual measures). The two lines of the doublet are given different semantic interpretations according
to the requirements of the practical situation. In our specific example, we have P�A� � ���,
P��A� � ��� as lower probabilities and P�A� � ���, P��A� � ��� as upper probabilities. This
is a good starting point for further investigation by sub-sampling or imputation [128] in situations
where this is deemed necessary.

(III) Consider as a Gedankenexperiment, albeit not entirely an academic one, the planning of two
future plasma fusion devices: (A) a large scale tokamak, designed for testing integrated fusion reactor
technology as well as studying the physics of burning plasmas, which are predominantly heated by
alpha (i.e. helium) – particles; this device has passed the engineering design phase (six years), and
the modalities are being discussed for actual international construction (lasting some ten years),
(B) a small scale (high magnetic field) device, essentially designed for studying predominantly
alpha-particle heated plasmas, which has passed the conceptual design phase (corresponding to
approximately three years), and the question is discussed whether resources should be allocated for
a detailed engineering design study. Actual investment costs are high in both cases, but considerably
higher in case (A) than in case (B). Here it seems to be justified, concentrating on just the design
goal of producing alpha-particle heated plasmas, to estimate the lower probability for machine (A)
for achieving its intended fusion performance, and on the upper probability for machine (B), in view
of the difference in investment if the objectives are not met. Strict adherence to Bayesian probability
theory tends to blur rather than to clarify the actual issue in this situation.

Sub- and super-additive measures are more general and more difficult to handle than additive ones.
For instance, the concept of a ‘cumulative distribution function’ for a one-dimensional, continuous
parameter has to be generalised, such that it can be efficiently estimated from empirical data. Upper
and lower probabilities bear a minimax character. Conceivably, a semiparametric approach, using for
instance Sugeno-type measures [138], which are (sub, super) additive for a single parameter being
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(negative, positive) zero, may prove to be worthwhile in describing classes of empirical problems
where additive measures are too restrictive, and at the same time allow for effective statistical
estimation and procedure evaluation in repetitive situations. Example (II) entails that the quest for
additional empirical information, in the vein of Stein’s two-step procedure in sequential analysis,
may be useful, if feasible, for substantial non-responder fractions in survey sampling [12], beyond the
mere assessment of lower and upper probabilities. The true developments in this research area will
only become clear in the future. We venture to say that possibly they may emerge from investigations
that are not pressurised too much by near-term objectives.
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Résumé

Cette étude contient la formulation originaire et des ŕeponses conjointes par un groupe de scientifiques formés en statistique
sur quattorze ‘problèmes cryptiques pour discuter’ posés au public par Professor Dr. D.R. Cox après son Discours de Bernoulli
en 1997 à l’Université de Groningue.

Discussion

Tore Schweder

University of Oslo, Norway
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Statistics is marred, or perhaps, blessed with mysterious and difficult questions. Such cryptic
issues must be discussed to keep statistics a vital methodological discipline. Some of these issues
will find their resolution, while others will be with us for a long time. The latter might be regarded
as metaphysical or eternal questions, and some may find it stupid to waste time on questions that
cannot be resolved.However, some of these questions are so central to the understandingof statistical
work that they cannot be avoided. They are simply too nagging to the thinking student and scientist
to simply be fended off. We have to keep discussing them to keep fit, and to be of interest. Such
discussions, as that in the paper, are also quite enjoyable. By formulating his cryptic issues, Cox has
served us 14 balls that the Groningen statisticians have put into play. I basically agree to the views
that have been put forward in the paper. My comments are mainly additional.

1. How is overconditioning to be avoided? Conditioning is a central part of statistical inference.
Models should be conditioned on prior information, and without statistical models there will be no
statistical inference. In statements of uncertainty, Fisher, (1973, p. 58) found it “essential to take the
whole of the data into account.” He includes prior information in “the whole of the data”. Relevant
knowledgeof the Dutch balls in the urn considered by the authors is prior data alongwith the outcome
of the sampling experiment, and it must all be taken into account. If this knowledge guides us to
a “recognisable subset” (Fisher 1973) or “reference set” [92] of urn sampling schemes for which a
frequency based probability model can be established, frequentist uncertainty statements like confi-
dence intervals are within reach. If, on the other hand, the relevant knowledge makes the experiment
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unique in the sense that repetition is hard to envisage, as seems to be the case for the Dutch ball
sampling experiment, frequentist methods are of no help, although the observed data help to reduce
the uncertainty (at least 25 of the Dutch balls must be black). Personalistic probability modelling and
inference might however be done. The question is then how, and to whom, the inference is usable or
meaningful.

Neglecting relevant aspects of the data or the prior information does not solve the problem of
overconditioning, at least not in the scientific context. Here, inference must be based on the data, the
whole of the data, and nothing but the data. The provision that the data are relevant for the question
at hand is admittedly difficult, and must be subject to judgement. If conditioning, in the sense of tak-
ing prior information into account, precludes acceptable frequency based modelling, the frequentist
statistician must give up. Personalistic inference might still be of scientific interest. Inference based
on models is at least internally consistent. Its scientific impact when based on a personalistic model
and/or prior distributions on parameters really depends on the status of the person or the group of
persons that make the judgements behind the model and the priors. The decision context is different
from the scientific context, and certainly more open for personalistic inference and selective use of
data.

2. How convincing is “the strong likelihood principle”? Not much if understood strictly, and
mostly for the reasons given by the authors. The study protocol or the experimental design might
influence the inference. If, say, the size of the data depends on the parameter, this aspect should
be accounted for in the confidence intervals. Consider a mark-recapture experiment, where captures
are made according to a Poisson process with intensity proportional to population size, which is
to be estimated. Several protocols could be imagined. Schweder (2003) found that the confidence
distribution (Schweder & Hjort, 2002) is less peaked and less skewed when the protocol allows
the numbers of captures to grow (stochastically) with the population size, say when the experiment
has a fixed budget, than when the numbers of captures are fixed in advance. To disregard that data
tend to be more plentiful under a fixed budget protocol the higher the abundance is, say of whales,
contradicts that our confidence interval shall cover the parameter (number of whales) with given
probability regardless of its size. The study protocol should specify a strategy for how data are
gathered. Our model should be conditioned on the strategy, and thus also reflect the behaviour of
the observer. When this can be fully expressed in the statistical model, the likelihood might hold all
the information. But often, this is not possible, and additional aspects of the study protocol must be
accounted for in the analysis.

Another side of this issue is that the model, and thus the likelihood function, might depend on
the question at hand, even when the prior information behind the model is given. Hjort & Claeskens
(2003) propose a ‘focused information criterion’ for model selection when a particular parameter
is of primary importance. This criterion leads to different models than do popular omnibus criteria
such as Akaike’s.

3. What is the role of probability in formulating models for systems, such as economic time series,
where even hypothetical repetition is hard to envisage? The authors make a good case for statistical
system identification algorithms, stochastic modelling, and simulation as pragmatic ways of formu-
lating simple approximate models for complex processes, and to assess lack of fit between model
and observed data.

Stochastic computer simulation was not an option to T. Haavelmo when he started the probability
revolution in econometrics. He found the language and theory of probability to be well suited for
the description of observations, for formulating theory, for expressing uncertainty, and for statistical
analysis in economics. “What we want are theories that, without involving us in direct contradic-
tions, state that the observations will as a rule cluster in a limited subset of the set of all conceivable
observations, while it is still consistent with the theory that an observation falls outside this subset
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“now and then”. As far as I know, the scheme of probability and random variables is, at least for the
time being, the only scheme suitable for such theories.” (Haavelmo, 1944, p. 40).

Probability continues to be the best scheme. Haavelmo insisted on consistency in theory.He would
presumably also appreciate consistency in methodology. The validation of methods by simulation
testing might be regarded as a check on consistency in methodology. Haavelmo was critical to the
various types of foundations of probability. To him, rigorous notions of probabilities exist “only in
our rational minds, serving us only as a tool for deriving practical statements”. However, he appears
to be leaning towards a personalistic interpretation of probability for “economic time series where a
repetition of the “experiment” is not possible or feasible. Here, we might then, alternatively, interpret
“probability” simply as a measure of our a priori confidence in the occurrence of a certain event.”
(Haavelmo, 1944, p. 48).

Haavelmo’s paper was path-breaking and influential, and won him the Nobel Prize in economics.
In his paper he explained how the Neyman–Pearson theory applies to econometrics. The frequentist
view of Neyman and Pearson might have overshadowedHaavelmo’s more personalistic view, and the
optimality results might have helped to establish the frequentist paradigm in econometrics. Optimal
behaviour is certainly a virtue in economics! Econometricians are still mostly frequentists, but the
personalistic view of probability, especially for “experiments of Nature” that cannot be repeated,
seems to be advancing. Poirier (1988) argues in favour of the Bayesian view in economics, mostly
on logical grounds akin to Haavelmo’s view. Economics is a ‘speculative’ science in the sense that
the class of admissible probability models in most cases is very large. The real aim might be more to
bring some order and insight into the bewildering reality we observe, than to make predictions with
controlled or optimal frequentist properties. The aim is of course also to hit well with the predictions.
The Bayesian view might thus win out in the long run, and the population of “heathens” that Poirier
(1988) refers to might go extinct in economics.

The authors point to the good agreement that has been experienced between the standardised
prediction errors and the normal distribution they were supposed to follow for the Dutch economy
from 1981 to 1990. They modestly write that the “standard errors were not meaningless”. Certainly
not. But was that due to the stochasticity in the model having its origin in the real world rather than
in the mind of the data analyst? Stochasticity is a mental construct. That the frequency distribution
of the prediction errors agrees with the model reflects good judgement on the part of the Dutch
econometricians, or good luck, whether God throws dice or has determined the Dutch economy
according to a complicated plan. That probability statements are personalistic does not withhold
them from trial. There are good, and there are bad judgements. To the extent that future data allow
the personalistic probability statements to be evaluated, the good judges can be separated from the
poor.

5. Is it fruitful to treat inference and decision analysis somewhat separate? Yes, indeed. At least
when inference is understood as making scientific statements, while decision analysis means analysis
for the purpose of making decisions. Science is about truth, while decisions are about what to do. In
science, the task is to understand and to broaden our common and public knowledge. Bad science
represents a loss to the public at large. Decision-making is more of a private undertaking, and bad
decision leads to unnecessary losses for the decision maker. Decisions must be taken whether data
are good or bad, but in science we are reluctant to make statements when data are bad. Personalistic
probability is in place in the decision context where one is forced to act and where the losses are
private, while frequentist inference is more fitting in the scientific context where the truth is assumed
permanent and active also in repetitions. Science does, of course, give guidance to decision makers,
and scientists make decisions. There is a continuum between the two poles of inference and decision
analysis, but it is both fruitful and correct to keep the poles apart.

7. Are all sensible probabilities ultimately frequency based? When following the authors in using
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words distinct from ‘probability’ for each type of uncertainty not based on any frequency aspect,
personalistic probability statements would be personal claims regarding frequencies in hypothetical
repetitions. This seems too restrictive. Personal probability might represent the ‘degree of belief’
even in cases when repetitions are impossible. Repetitions are often difficult, not the least in the social
sphere where the reality is changing more rapidly than in nature, and where it even might respond to
the results of a study. Personalistic probability statements might be in place in such situations, but
they are not entirely exempt from trial. If they are in bad accordance with observed frequencies in
broadly similar situations, they will be judged as misguided. Are these probability statements then
ultimately frequency based?

Sidestepping the issue, one might ask whether statements about uncertainty based on frequen-
tist inference should be denoted by something different from probability. Degree of confidence is
a well-established term, and we teach our students to keep it apart from probability, even though
it certainly is frequency-based. Fisher (1973, p. 59) discusses his concept of fiducial probability.
Referring to the origin of the concept in 1930, and to our ordinary frequency concept, he states
“For a time this led me to think that there was a difference in logical content between probability
statements derived by different methods of reasoning. There are in reality no grounds for any such
distinction.” Fisher’s fiducial probability has not caught on. This is unfortunate, and might partly
be due to Fisher’s insistence on this concept being identical to the ordinary frequency based prob-
ability. Neyman (1941) interpreted fiducial probability as degree of confidence. This leads to the
term ‘confidence distribution’ instead of fiducial probability distribution (Efron, 1998; Schweder &
Hjort, 2002). A confidence distribution distributes confidence over interval statements concerning a
parameter, and makes no claim concerning frequencies. A confidence distribution can hardly lead
to other than interval statements, and should therefore not be understood as representing a sigma-
additive distribution. A family of simultaneous confidence regions indexed by degree of confidence,
for example confidence ellipsoids based on the normal distribution, leads to a multivariate confidence
distribution. Since it only can be interpreted as a representation of confidence region statements, it
should not be treated as a sigma-additive measure, and one cannot in general reduce dimensionality
in a multivariate confidence distribution by simple marginalisation. Both for this methodological
reason, and because of its ontological status, ‘confidence’ should be kept apart from ‘probability’.

11. How useful is a personalistic theory as a base for public discussion? I will comment on this
issue with reference to public discussion of economic matters. Since economics can be regarded
as a speculative science, the stochastic models aim not so much at the truth as at establishing a
consistent basis for analysis and discourse. The use of personalistic priors would then not be more of
a hindrance for public economic debate than using stochastic models based on judgements. Without
stochastic models, econometrics is impossible, as Haavelmo (1944) put it. Poirier (1988) cites an
exchange between leading economists:

Klamer: “Are you after the truth?”
Lucas: “Yeh. But I don’t know what we mean by truth in our business.”
Sargent: “Listening to you, to Lucas, and the others � � � I cannot help wonderingwhat economic

truth is?”
Tobin: (Laughter) “That is a deep question. As far as macroeconomics is concerned, my

objective has been to have models in which behaviour is assumed to be rational, in
which the gross facts of economic life are explained, and which may not give great
forecasts in a technical sense but at least an understanding of what is happening and
what is going to happen.”

Public debate with quantitative arguments is certainly widespread and important in economic
matters. These debates are more about what to do than what is true. In this sense, public debate in
economics has more to do with decision analysis than with scientific inference, and in the context of
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decision-making, personalistic views are certainly in place. The frequentist notions of a permanent
truth and of forecasts in a “technical sense” are difficult in economics, as the leading economists
remark. It is in this context of interest to note that replication of experiments or studies are rare in
economics. Backhouse (1997) comments on this, and notes that replication in economics seldom is
more than checking the data analysis, without gathering new data. This is at least the picture that
emerges from what leading journals publish.

13. Do rather flat priors lead the Bayesian to approximate confidence intervals, or do they have
other justifications? Sidestepping the issue, will really reference priors lead to good confidence
intervals? They certainly often do in situations without nuisance parameters. In multi-parameter sit-
uations, they might however go badly wrong. Consider a simple example with a normally distributed
p-dimensional observed vector. The only parameter is the free p-dimensional location parameter�.
With a flat reference prior, the joint posterior is the normal distribution located at the observed vector.
Posteriors for derived parameters are then obtained by integration. For non-linear parameters such
as � � ����, the posterior distribution is biased in the frequentist sense that the coverage probability
for a credibility interval is different from the nominal credibility. Is there then something wrong with
the flat reference prior? Should the prior be chosen with a view to the parameter of interest, and be
different for different parameters? Yes, perhaps. This would then be in accordance with the fact that
the multivariate normal confidence distribution cannot in general provide confidence distributions
for derived parameters by mere integration. Requiring unbiasedness has its price!
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José M. Bernardo

Universidad de Valencia, Spain
E-mail: jose.m.bernardo@uv.es

From a traditional, mostly frequentist, viewpoint the authors have formulated some sort of com-
munis opino on the ‘cryptic’ issues posed by Professor Cox. In a somewhat telegraphic style, an
alternative approach to those issues is described below from a very different viewpoint. In the first
section, some required foundational points are discussed; the second section contains a possible
Bayesian approach to each of the 14 issues discussed.

Foundations

1. Bayesian decision theory. Established on a solid mathematical basis, Bayesian decision theory
provides a privileged platform to coherently discuss basic issues on statistical inference. Indeed, even



printed December 2, 2003

308 J.M. BERNARDO

from a strictly frequentist perspective, most purely inferential problems are best analyzed as decision
problems under uncertainty. Thus, for data z � Z whose probabilistic behaviour is assumed to be
described by some probability model �p�z 	 θ�� θ � ��, any statistical procedure may be identified
with some (possibly complicated) function t � t�z� � T (where T may well be a function space).
Obvious examples include a point estimator, a confidence region, a test procedure or a posterior
distribution. For each particular procedure, it should be possible to define a loss function L�t�z�� θ�
which somehow measures the ‘error’ committed by the procedure as a function of θ. Usual loss
functions include the quadratic loss L� �θ� θ� � � �θ�θ�

�

� �θ�θ� associated to a point estimator �θ and
the logarithmic loss L��� �� 	 z�� θ� � � 	
����θ 	 z�� associated to a posterior density ���� 	 z�.

Conditional on observed data z, the Bayes procedure t b�z� which corresponds to a proper prior
��θ� is that minimizing the corresponding posterior loss

tb�z� � �� ���
t�T

�
�

L�t�z�� θ���θ 	 z� dθ� ��θ 	 z� � p�z 	 θ���θ��

A procedure t��z� is a generalized Bayes procedure if there exists a sequence ��n���� of proper
priors yielding a sequence of Bayes procedures �tb

n�z�� such that t��z� � 	��n�� tb
n�z�.

2. Admissibility. Conditional on θ and considered as a function of the data z, the loss function
L�t�z�� θ� is a random quantity, whose expectation (under repeated sampling),

Rt�θ 	 L� � �z � � �L�t�z�� θ�� �
�
Z

L�t�z�� θ� p�z 	 θ� dz�

provides a a description of the average risk involved in using the procedure t � t�z� as a function of
the unknown parameter vector θ. A relatively small average risk R t �θ 	 L� with respect to reasonable
loss functions L is certainly a necessary condition for the procedure t to be sensible, but it is hardly
sufficient: the procedure may well have an unacceptable behaviour with specific data z and yet
produce a small average risk, either because those data are not very likely, or because errors are
somehow averaged out.

When comparing the risks associated to two alternative procedures designed to perform the same
task, it may well happen that (with respect to a particular loss function L) a procedure t ��z� is
uniformly better than another procedure t��z� in the sense that �θ � �, Rt��θ 	 L� � Rt��θ 	 L�; it is
then said that t��z� is dominated by t��z�, and t��z� is declared to be inadmissible with respect to that
loss function. A crucial, too often ignored result (Savage, 1954; Berger, 1985, Ch. 8, and references
therein) says however that, under suitable regularity conditions, a necessary and sufficient condition
for a procedure to be admissible is to be a generalized Bayes procedure. It follows that, even from a
purely frequentist viewpoint, one should strive for (generalized) Bayes procedures.

3. Objective Bayesian Procedures. As the authors (and many people before them) point out,
one role of statistical theory is to provide a broadly acceptable framework of concepts and meth-
ods which may be used to provide a ‘professional’ answer. If it may reasonably be assumed that
the probability model �p�z 	 θ�� θ � �� encapsulates all objective available information on the
probabilistic structure of the data, then such a professional answer should not depend on a sub-
jectively assessed prior ��θ�. Note, that structural assumptions on the data behaviour (such as
partial exchangeability) are easily accommodated within this framework; one would then have some
form of hierarchical model, �p�z 	φ�� ��φ 	 θ��, where θ would now be a hyperparameter vector,
p�z 	 θ� � �

�
p�z 	φ���φ 	 θ�dφ would be the corresponding ‘integrated’ model, and a prior ��θ�

would be required for the hyperparameter vector θ.
An objective Bayesian procedure to draw inferences about some quantity of interest � � ��θ�,

requires an objective ‘non-informative’ prior (‘objective’ in the precise sense that it exclusively
depends on the assumed model �p�z 	 θ�� θ � �� and the quantity of interest), which mathemati-
cally describes lack on relevant information about the quantity of interest �. The statistical literature



printed December 2, 2003

Discussion 309

contains a number of requirements which may be regarded as necessary properties of any algorithm
proposed to derive these ‘baseline’ priors; those requirements include general applicability, invari-
ance under reparametrization, consistent marginalization, and appropriate coverage properties. The
reference analysis algorithm, introduced by Bernardo (1979b) and further developed by Berger &
Bernardo (1992), provides a general method to derive objective priors which apparently satisfies all
these desiderata, and which is shown to contain many previous results (e.g., maximum entropy and
univariate Jeffreys’ rule) as particular cases.

Reference priors are defined as a limiting form of proper priors (obtained by maximization of an
informationmeasure), and are shown to yield generalizedBayes procedures. Thus, reference analysis
may be used to obtain objective Bayesian solutions which show both appropriate conditional prop-
erties (for they condition on the actual, observed data) and an appealing behaviour under repeated
sampling (for they are typically admissible).

The Cryptic Issues

A possible Bayesian answer is now provided to each of the fourteen issues under discussion.
Unless otherwise indicated, the statements made are valid whatever the procedure used to specify
the prior: objective (model-based), or subjectively assessed.

1. How is overconditioning to be avoided? Both overconditioning and overfitting are aspects
of inappropriate model choice. Model choice is best described as a decision problem where the
action space is the class of models �Mi � M� which one is prepared to consider, and its solution
requires specifying a loss function which measures, as a function of the quantity of interest φ, the
consequences L�Mi �φ� of using a particular model Mi within the specific context one has in mind.

For instance, if given a random sample z � �x �� � � � � xn� one is interested in prediction of a future
observation x , an appropriate loss function might be written in terms of the logarithmic scoring rule,
so that L�Mi � x� � � 	
��pi�x 	 z��, and the best available model would be that which minimizes
within M the corresponding (posterior) expected loss,

L�Mi 	 z� �
�
X

L�Mi � x� p�x 	 z� dx � �
�
X

p�x 	 z� 	
��pi�x 	 z�� dx�

a predictive cross-entropy. Since the true model, and hence the true predictive density p�x 	 z�, are
not known, some form of approximation is necessary; direct Monte Carlo approximation to the
integral above leads to

L�Mi 	 z� � ��

n

n�
j��

	
��pi�x j 	 z j ��� z j � z � �x j��

closely related to cross-validation techniques; (for details, see Bernardo & Smith, 1994, Ch. 6).

2.How convincing is the likelihood principle?An immediate consequence ofBayes theorem is that,
conditional to a given prior ��θ�, the posterior distributions obtained from proportional likelihoods
are identical. In this limited sense, the likelihood ‘principle’ is an obvious consequence of probability
theory, and any statistical procedure which violates this should not be trusted. That said, there are
many statistical problems which require consideration of the sample space and will, therefore,
typically yield different answers for different models, even if those happen to yield proportional
likelihood functions. Design of experiments, a decision problem where the best experiment within
a given class must be chosen, or prediction problems, where the predictive posterior distribution of
some future observables must be found, are rather obvious examples. The likelihood principle should
certainly not be taken to imply that the sample space is irrelevant.

Objective Bayesian inference in another example where the sample space matters. The reference
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prior is defined as that which maximizes the missing information about the quantity of interest
which could be provided by the experiment under consideration; thus, different probability models,
even those with proportional likelihood functions, will generally yield different reference priors. For
instance, the reference prior which corresponds to binomial sampling is � ���� � �������� ������,
but the reference prior which corresponds to inverse binomial sampling is � ���� � ������������, a
difference which reflects the fact that in the second case one is implicitly assuming that one success
will eventually be observed; for details, see Bernardo & Smith, 1994, Ch. 5.

3. What is the role of probability in formulating models where hypothetical repetition is hard
to envisage? Probability is a measure on degree of rational belief conditional on any available
information. This concept of probability does not require symmetries or hypothetical repetitions,
although it obviously will take these into account as relevant information when available.

We certainly agree with the statement by the authors that algorithms ‘should work well with
simulated data’. Indeed, when teaching Bayesian methods, it is important to display the results from
simulated data for the student to see that, as one would certainly expect, the posterior density of any
parameter concentrates around its true value, or the predictive distribution of a future observation
approaches the true model. That said, the frequentist interpretation of probability is simply too
narrow for many important applications of statistics. Probability may always be interpreted in its
epistemological sense in ordinary language: as a conditional measure or rational belief.

4. Should nonparametric and semiparametric formulations be forced into a likelihood-based
framework? Nonparametrics is something of a misnomer. When a model is assumed to be of the
form �p�z 	 θ�� θ � �� nothing is said about the nature of the parameter space �, which may well
label, say, the class of all absolutely continuous densities of z � Z . It is just a convention to call
‘parametric’ those problems where � � �k , so that θ is a vector of finite dimension k. Whether or
not it is better to use a ‘nonparametric’ (infinitely dimensional) formulation, certainly more general
but requiring a prior distribution defined on a function space, than it is to work with a model labeled
by a parameter with finite dimension is just another example of a problem of model choice, to which
the comments in (1) above are directly relevant.

5. Is is fruitful to treat inference and decision analysis somewhat separately? At a foundational
level certainly it is not: decision analysis provides the coherent framework which guarantees that no
inconsistencies and/or obviously wrong answers (a negative unbiased estimate of a probability, or a
95% confidence region for a real-valued quantity which happens to be the entire real line, say), will
be derived. For an interesting collection of counterexamples to conventional frequentist methods see
Jaynes (1976) and references therein.

That said, it is important to formalize those situations where ‘pure’ inference is of interest, as
opposed to specific (context dependent) decision problems. This is easily done however within the
context of decision analysis: for instance, pure, abstract inference on the value of θ may be described
a decision problem in the best way to describe the posterior uncertainty on the value of θ, where
the value of the consequences are described with an information measure (Bernardo, 1979a). The
simple decision-theoretical formulation of most text-book statistical procedures is well known: point
estimation is best seen as a decision problem where the action space is the parameter space; testing
a null hypothesis H� � �θ � ��� is best seen as a decision problem on whether or not to work as
if θ � ��. Practical application of these ideas require however the identification of appropriate loss
functions; for some new ideas in this area, see Bernardo & Rueda (2002) and Bernardo & Ju árez
(2003).

6. How possible and fruitful is it to treat qualitatively uncertainty not derived from statistical
variability? In statistical consulting one is routinely forced to consider uncertainties which are not
derived from statistical variability, and hence ‘professional’ statistical answers must be able to deal
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with them. This is naturally done within a Bayesian framework, and simply cannot be done within
a frequentist framework. Other approaches to quantify uncertainty (belief functions, discord, � � � )
have so far failed to provide a consistent mathematical framework which could be used instead of
probability theory to measure and to operate with uncertainty.

7. Are all sensible probabilities ultimately frequency based? Although one could certainly use a
different word than probability for a rational degree of belief (say ‘credence’ or ‘verisimilitude’)
this is not really needed: mathematically, probability is a well-defined concept, a measure function
endowed with certain properties, and the foundations of decision theory prove that degrees of belief
must have this mathematical structure; hence they are probabilities in the mathematical sense of the
word.

That said, the important frequentist interpretation of probability models based on the concept
of exchangeability (de Finetti, 1937; Hewitt & Savage, 1955; Bernardo & Smith, 1994, Ch. 4) is
often neglected: all random samples are necessarily exchangeable and, by virtue of the probability
theory-based general representation theorem, the parameter identifying the model which describes
its probabilistic behaviour is defined in terms of the long-term behaviour of some function of the
observations. Thus, a set of exchangeable Bernoulli observations is necessarily a random sample of
dichotomous observations with common parameter � , defined as the long-term limit of the relative
frequency of successes.

The representation theorem further establishes the existence of a prior ��θ� for the parameter,
so that (whenever one has exchangeable observations, and—to insist—all random samples are
exchangeable) the frequently heard sentence ‘there is no prior distribution’ is simply incompatible
with probability theory.

8. Was R.A. Fisher right to deride axiomatic formulations in statistics? If he did, he was entirely
wrong. Ever since classical Greece, mathematicians have strived to provide axiomatic foundations
on their subject as a guarantee of self-consistency. By the early 20th century this process had
been completed in all mathematical branches (including probability theory) except mathematical
statistics. No wonder that contradictions arose in conventional statistics, and no surprise at the often
derogatoryattitude of mathematicians to mathematical statistics, too often presented as an ‘art’ where
contradictions could be acknowledged and were to be decided by the wit of the ‘artist’ statistician.

To argue that axiomatics ‘ought not to be taken seriously in a subject with real applications in
view’ (is geometry void of real applications?), just because new concepts might be necessary is
to ignore how science progresses. A paradigm is obviously only valid until it cannot explain new
facts; then a new, self-consistent paradigm must be found (Kuhn, 1962). The frequentist paradigm is
simply not sufficient for present day applications of statistics; at least today, the Bayesian paradigm
is.

It may well be that alternative axiomatic basis for mathematical statistics are possible beyond that
provided by decision theory (which leads to a Bayesian approach), although none has been presented
so far. But, whether or not alternatives appear, statistical inference should not be deprived of the
mathematical firmware provided by sound foundations; or would anyone trust an architect trying to
build a beautiful house on shaky foundations?

9. How can randomization be accommodated within statistical theory? Randomization is not
necessary for a single decision maker: if a� and a� (which may well be two alternative designs) have
expected utilitiesU�a� 	 z� andU�a� 	 z�, the randomized actionwhich takesa�with probability� and
a� with probability ��� , (� � � � �) has an expected utility given by �U�a � 	 z������ �U�a� 	 z�,
so that randomization for a single decision maker could apparently only be optimal if U�a � 	 z� �
U�a� 	 z� and then only as good as a non-randomized action. The situation is however very different
if more than one decision maker is involved. As suggested by Stone (1969), randomization becomes
optimal if the decision maker takes into account that he/she has to convince other people, not just



printed December 2, 2003

312 J.M. BERNARDO

him/her self. For details, see Berry & Kadane (1997).

10. Is the formulation of personalistic probability by de Finetti and Savage the wrong way
round? The authors (and, again, many before them) suggest that there are no compelling reasons
for epistemic probabilities to behave as mathematical probabilities. Yet, it is difficult to imagine
something more compelling than a mathematical proof; it is not simply that it makes intuitive sense
to use probabilities: the fact is that behaviour of epistemic probabilities as mathematical probabilities
follows from rather intuitive axioms on coherent behaviour. The authors seem to be happy with the
rather obvious inconsistencies of the conventional paradigmwhen they say ‘the incoherent behaviour
thus displayed will hopefully lead to a higher degree of verisimilitude than the coherent behaviour
� � � ’(!); one is lead to wonder how would they react when approached by a car salesman who admits
that the car he suggests gets bad mileage both in town conditions and in road conditions, only to
claim that it gets a good mileage overall.

11. How useful is a personalistic theory as a base for public discussion? If by personalistic it is
meant subjective, not much (although it will have the merit of making explicit peoples’ assumptions,
which is more than one often gets from public discussion). However, if by personalistic one merely
means epistemic probability, i.e., probabilities interpreted as rational degrees of belief conditional
only to whatever ‘objective’ (often meaning intersubjective) assumptions one is prepared to make,
then this is precisely the base for public discussion. And this is precisely the type of result that
objective Bayesian methods provide.

Indeed, in any given experimental situation, the scientist typically wants to make an inferential
claim, say the result t �z� of a statistical procedure, conditional on any assumptions made, and
given the observed data z. What might have happened had other data z � Z been obtained might
be relevant to calibrate the procedure (see the section on Foundations); however, what is actually
required to describe the inferential content of the experimental results is a measure on the degree of
rational belief on the conclusion advanced, not a measure of the behaviour of the procedure under
repeated sampling.

As the authors write, ‘statisticians are hired � � � to make scientifically sound statistical inferences
in the light of data and in spite of some unavoidable uncertainty’. However, this is precisely what
objective Bayesian methods do, but frequentist computations do not.

12. In a Bayesian formulation should priors be constructed retrospectively? From a subjectivist
viewpoint construction may proceed either way, provided all conditioning operations are properly
done: onemay directly assess the posterior distribution!However, subjective probability assessment is
a very hard task, and any appropriate mechanism such as Bayes theoremor extending the conversation
to include other variables, should be used to help in completing the task.

Note, however, that if one is directly interested in objective Bayesian methods the question does
not arise. Given data z � Z and model �p�z 	 θ�� θ � ��, the prior � �

��θ� required to obtain a
reference posterior distribution � ��� 	 z� for a particular quantity of interest � � ����, that which
maximizes the missing information about the value of �, is a well-defined mathematical function of
the probability model �p�z 	 θ�� θ � �� and the quantity of interest ����.

13. Is the only justification of much current Bayesianwork using rather flat priors the generation of
(approximate) confidence limits? or do the various forms of reference priors have some other viable
justification? In their discussion of this issue, the authors have unfortunately chosen to ignore over
30 years of research: what they write could have been written as part of one of the many discussions
on this topic published in the 60’s and 70’s. We do not have space here to describe the basics of
Bayesian objective methods, let alone to document the huge relevant literature. For a textbook level
description of some objective Bayesian methods see Bernardo & Smith (1994, Ch. 5); for critical
overviews of the topic, see Kass & Wasserman (1996), Bernardo (1997), references therein and
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ensuing discussion.
Reference analysis has been mentioned in the section on foundations as an advanced procedure to

derive objective priors (which, except for location parameters, are certainly not ‘flat’). Just to give a
hint of the ideas behind, the basic definition of reference priors in the one-parameter case is quoted
below.

The amount of information I � �Z� ������ which an experiment yielding data z � Z may be
expected to provide about � , a function of the prior � ����, is (Shannon, 1948)

I � �Z� ������ �
�
Z

p�z�
�
�

��� 	 z� 	
� ��� 	 z�
����

d�dz�

If this experiment were continuously replicated, the true value of � would eventually be learnt. Thus,
the amount of information to be expected from k replicates of the original experiment, I � �Zk� �� ����,
will converge (as k ��) to the missing information about � associated to the prior� � ���. Intuitively,
the reference prior � �

� ��� is that which maximizes the missing information about � within the class
of priors compatible with accepted assumptions.

Formally, if P is the class of accepted priors in the problem considered (which may well be the
class of all priors), the reference posterior � ��� 	 z� is defined by

���� 	 z� � 	���k�� 	 z��
where the limit is taken in the (information) sense that

	��
k��

�
�

�k�� 	 z� 	
�
�k�� 	 z�
��� 	 z� d� � ��

and where �k�� 	 z� � p�z 	 �� �k��� is the posterior which corresponds to the prior

�k��� � �� ���
���	�P

I � �Zk� ������

maximizing in P the amount of information to be expected from k replicates of the original experi-
ment. Finally, a reference ‘prior’ is any positive function � ���� such that

���� 	 z� � p�z 	 �� ������
so that the reference posterior may be simply obtained by formal use of � ���� as a (typically
improper) prior.

It may be proved that if the parameter space � is finite this leads to maximum entropy and
if � is non-countable, p�z 	 �� regular and P is the class of all strictly positive priors, this leads
to (univariate) Jeffreys’ prior. Problems with many parameters are shown to reduce to a sequential
application of the one parameter algorithm (and this does not lead to multivariate Jeffreys’ rule). For
key developments in the theory of reference analysis, see Bernardo (1979b) and Berger & Bernardo
(1992); for a simple introduction see Bernardo & Ramón (1998).

14. What is the role in theory and in practice of upper and lower probabilities? Upper and lower
probabilities have been important players in the theoretical search for descriptions of uncertainty
which might provide an alternative (or a generalization) to the use of probability theory for this
purpose. For instance, proponents of ‘knowledge-based expert systems’ have argued that (Bayesian)
probabilistic reasoning is incapable of analyzing the loosely structured spaces they work with, and
that novel forms of quantitative representations of uncertainty are required. However, alternative
proposals, which include ‘fuzzy logic’, ‘belief functions’ and ‘confirmation theory’ are, for the most
part, rather ad hoc and have so far failed to provide a general alternative. For some interesting
discussion on this topic, see Lauritzen & Spiegelhalter (1988).

Any acceptable approach to statistical inference should be quantitatively coherent. The question
of whether quantitative coherence should be precise or allowed to be imprecise is certainly an open,
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debatable one. We note, however, that it is possible to formalize imprecision within the Bayesian
paradigm by simultaneously considering all probabilities compatible with accepted assumptions.
This ‘robust Bayesian’ approach is reviewed in Berger (1994).
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Bernardo, J.M. & Juárez, M. (2003). Intrinsic Estimation. Bayesian Statistics 7, Eds. J.O. Berger, A.P. Dawid, D. Heckerman,

A.F.M. Smith and M. West, pp. 465–475. Oxford: University Press.
Bernardo, J.M. & Ramón, J.M. (1998). An introduction to Bayesian reference analysis: Inference on the ratio of multinomial

parameters. The Statistician 47, 1–35.
Bernardo, J.M. & Rueda, R. (2002). Bayesian hypothesis testing: A reference approach. Internat. Statist. Rev., 70, 351–372.
Bernardo, J.M. & Smith, A.F.M. (1994). Bayesian Theory. Chichester: Wiley.
Berry, S.M. & Kadane J.B. (1997). Optimal Bayesian randomization. J. Roy. Statist. Soc. B, 59, 813–819.
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We enjoyed reading the comments and several of the references cited therein. Both discussants
started with a general perspective and continued by giving their answers to some (Schweder) or all
(Bernardo) issues. Expressed in a somewhat simplified fashion, Schweder basically agrees to the
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views put forward by us, whereas Bernardo criticises our acceptance of (some) lack of probabilistic
coherency. We first respond to Schweder and then to Bernardo in our reply below, which is the order
in which the reactions were received.

At the beginning of his discussion, Tore Schweder clearly expressed the purpose of the paper.
Many people may find it indeed ‘stupid’ to waste time on ‘philosophical’ questions that cannot be
entirely resolved. However, more moderately expressed than by Dieudonn é’s flamboyant sentence
in [ii] (indicating that open problems always much stimulated progress in algebraic geometry and
number theory), as statisticians we find it both useful and attractive to discuss such critical issues in
order to gain a better understanding of our work in daily practice.

We value Schweder’s proposal in his answer to Q7 (� Question 7) to use the term confidence
distribution, attributed to Efron [iii], for the (epistemic) fiducial probability distributions broached
by Fisher, which is an improvement over the term inferential distribution we ventured to use in
our answer to Q12. The reason for making this semantic distinction is that epistemic probability
distributions cannot, in general, be described by sigma-additive measures. This has been illustrated
in our answers to Q8, Q10, Q12 and Q14, and corresponds well with Schweder & Hjort’s (2002)
paper containing an application to whale fishery protocols. Whether we like it or not, as statisticians
we are forced by reality to accept some form of lack of probabilistic coherency, since the axioms of
probability theory are simply too restrictive if they are applied in general to epistemic probabilities.

It is apparent from Schweder’s discussion of Q13 that conflicts appear if inferences have to be
made about (non-linear) functions of the mean � of a multivariate distribution, given the outcome x
of X � Np�x� Ip� (p  �). (In [80] something similar has been indicated even for the case p � �.)
Note that Schweder’s discussion is related to Stein’s phenomenon [135]. In our view it is more
important to see this problem clearly than to give a gloss to it. The consequence is that probability
(as a sigma-additive measure) ‘continues to be the best scheme’ in a certain number of situations
only, which modifies Haavelmo’s slightly more general plea described in Schweder’s answer to Q3.

We basically agree with Schweder’s answer to Q5, but we would like to add the comment that
‘not making a decision’ can well be one of the categorised options in decision theory, which relaxes
the concept of a forced decision.

With respect to Q11 we remark that in an area such as plasma physics an ‘essential understanding
of what is actually happening’ is perhaps not more easily attained than empirical predictions based on
several collaborative, experimental investigations. The precise meaning of the word ‘understanding’
is sometimes not better defined than that of probability in statistics, however, in both cases leaving
room to the prudentman in the sense of Aristotle for shaping the context of the discussion in practical
situations to some extent.

While ‘sidestepping the issue’ in Q7 has led to a most useful suggestion by Schweder (in the vein
of the Significa Movement), in Q13 the immediate sidestep may have prevented a fuller intrinsic
reaction on the issue at stake. Therefore, we bring into recollection the interdependence between
our answers, in particular between Q10, Q13 and Q14, and their more general predecessors Q6 and
Q7. We appreciate Schweder’s cautionary comment in the discussion of Q13 on the limitation of the
objective Bayesian approach with respect to distributional inference in multidimensional situations.

José Bernardo gave a clear exposition of the approach in objective Bayesian decision theory which
he qualifies, with a dash of justification, as being ‘very different’ from that of us.

We have three remarks to his introduction. First, we thought it should be obvious that the complete
class theorem [vii], which has found its way in most standard texts on mathematical statistics [45] and
which was mentioned in our answer to Q12, only provides an �almost� necessary but by no means
a sufficient requirement for a procedure to be recommendable. The class of admissible procedures
usually being very large, the real problem consists in selecting among them ‘good’ or even ‘optimal’
procedures in certain (well-described) frames of discussion, a topic analysed in [v, vi]. In this context,
we have stated in Q12 ‘the choice of a prior distribution is awkward’, which of course implicitly
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admits the possibility of the existence of a prior distribution (at least so ‘in the mind of the beholder’),
in contrast to the more extreme frequentist viewpoint ‘there is no prior distribution’ expressed by
Bernardo at the end of his answer to Q7.

Secondly, we admit that we did not stress in our answers the difference between the formal
(‘rationalist’) and subjective (‘personalist’) Bayesian schools. This omission has occurred primarily
since the (rather marked) difference was assumed to be a distinction the reader is familiar with,
e.g. from [36, 37, 38]. However, we realize that thereby we may have fallen into the trap noted
by O’Hagan in the discussion of Walley’s paper which defies the Bayesian paradigm using a bag
of marbles, see [145, p. 35]. We apologise for the possible ambiguity and use the opportunity to
recover by mentioning that the answers to Q10, Q13, and Q14 pertain to the subjective approach
(except in Q13 for the invariant prior ���� � c	� and the multidimensional prior based on Jeffreys’s
principle), whereas the answers to Q2 and Q12 pertain to both the subjective and the objective
Bayesian approach.

Thirdly, it is also true that the real differences must not be exaggerated needlessly. A compromise
approach between the various schools has been described in [80]. A remaining point of difference
with the view described by Bernardo is that we do not restrict ourselves to a formal Bayesian school
because the reference priors suggested in this approach are not regarded as compelling. Alternative
principles such as ‘strong unbiasedness’ and ‘strong similarity’ have been proposed instead in [80],
which lead to some revival, in a restricted context, of Fisher’s fiducial approach.

For the sake of conciseness, we will not discuss all points in Bernardo’s reply on the cryptic issues,
but concentrate on a few important items only.

With respect to Bernardo’s reply to Q7: Certainly in the context of public discussion we acclaim
Bernardo’s endorsement of the idea to use another word than probability, for instance ‘credence’ for
a (rationalist or subjectivist) degree of belief. We do not follow him in his subsequent argumentation
for retaining the same word ‘probability’ in all cases, and illustrate this as follows. In mathematical-
logical discourse, ‘sets’ and ‘propositions’ both satisfy the axioms of a Boolean algebra, under
the usual, obvious identification of operations, such as intersection with ‘and’, union with ‘or’, etc.
Nevertheless, it makes sense not to confound the words ‘set’ and ‘proposition’, because their intrinsic
meaning is essentially different, despite their identical axiomatic algebraic properties. The same state
of affairs applies to frequency-based (‘physical’) and not necessarily frequency-based (‘epistemic’)
probabilities, even if one holds the viewpoint that the latter ‘should’ satisfy the axiomatic properties of
a finite, sigma-additive measure as formulated by Kolmogorov for physical probabilities, a viewpoint
whichwe do not share, sincewe do not consider it to be a realisticmodel in a number of circumstances,
as should be transparent from most of our answers, in particular those to Q8, Q10, Q13, and Q14.

In the second part of his reply, Bernardo’s answer to Q7 refers to De Finetti’s penetrating Re-
presentation Theorem, which utilises the notion of exchangeability, a generalisation of the concept
of independent and identically distributed random variables, see [iv, i]. This generalisation, which
amounts to permutational invariance of the multivariate distribution of a random sequence (say of
Bernoulli experiments X �� X�� � � � ), leads to

P�S � s� �
� �

n

s

�
� s��� ��n�sd����

for some measure � rather than to

P�S � s� �
�

n

s

�
� s��� ��n�s

for a fixed � , where the measure � is interpreted as an epistemic, prior probability for P. However,
the derivation of the representation theorem requires either finite or sigma-finite additivity of the
multivariate distribution of X �� X�� � � � , see e.g. [iv]. The assumption of sigma-additivity, ‘derived’
from a coherency principle and postulated to be necessarily adhered to by every ‘rational’ man, is



printed December 2, 2003

Response 317

equivalent to the Kolmogorov axioms. The ‘Munchhausianism’ involved in this rationalisation is that
one starts, a priori, from a principle equivalent to a (sigma-)additivemeasure satisfyingKolmogorov’s
axioms on a multidimensional outcome space, and then derives, under the model of exchangeability,
the ‘existence’ of a prior (sigma-)additive measure � in one dimension. The fallacy of ‘misplaced
prolific deductivism’ in this case is that, subsequently, the one-dimensional prior measure (‘since
it has been derived’) is considered to be ‘generally applicable’ to express uncertainties, degrees of
belief (‘credences’) etc.

In our view it is good statistical practice not to use the model of assigning numerical, sigma-
additive probabilities to express ‘prior (lack of) information’, unless this is done in a context where
this is sufficiently warranted. Evidently, this often leaves room for statistical judgement. In that
sense the statistical profession bears some resemblance with an art. Non-controversial examples are
provided by empirical Bayes situations, and a plausible situation was also considered in Bayes’s
original physical example of repeatedly rolling a ball [16].

With regard to Q8 on axiomatic formulations in statistics, the viewpoint in our answer is less
outspoken than Bernardo’s, since we have indicated the need for the deductive framework to describe
indeed adequately the class of physical phenomena it is intended for. To further clarify Fisher’s
viewpoint on this issue, which happens to be not too remote from our own, we present a quotation
of a sentence from his paper on the logic of inductive inference [47]:

“This, of course, is no reason against the use of absolutely precise forms of statement
when these are available. It is only a warning to those who may be tempted to think
that the particular code of mathematical statements in which they have been drilled at
College is a substitute for the use of reasoning powers, which mankind has probably
possessed since prehistoric times, and in which, as the history of probability shows, the
process of codification is still incomplete.”

Some form of Munchhausianism is (at times) lurking behind invariance considerations. This has
been illustrated by the example of the invariant prior ���� � c	� in our answer to Q13. A somewhat
more general type of such consideration is: ‘If a decision problem is invariant under a group which
acts transitively on the parameter space, then a best invariant procedure will exist.’ Both Bayesian
and non-Bayesian statisticians cherish such situations. The fallacy involved, however, is that one
starts from the very existence of a ‘unique’, most appropriate rule. Next, one argues that a trans-
formed situation is isomorphic to the original one and that, hence, the same procedure ‘should be’
implemented for the transformed problem. This procedure is consequently invariant under the group
of transformations. The ‘conclusion’ is then that, obviously, a unique invariant, most appropriate rule
exists. In this respect, we must concede that the defects arising from deductive reasoning by (over-)
rationalisation are somewhat more deeply hidden than the more obvious ones which were expressed
by Bernardo’s car-salesman in Q10.

With respect to the last paragraph in Bernardo’s answer to Q11, we notice that the fact that formal
Bayesian methods tend to fail producing adequate results in multidimensional situations (Stein’s
example, which was also considered in Schweder’s answer to Q13), demurs the (operational) valid-
ity of any derivation of these methods which is independent of the dimensionality of the situation.
We agree with Bernardo that the responsibility for inferences that are statistically sound cannot be
relegated to computations solely, independent of whether they are of a frequentist or of some other
nature.

We admit that, because of the location of a singularity for x � � � ���, the practical numerical
approximation to the posterior median of the Be��� � prior distribution in Q13 is quite cumber-
some to derive without appropriate basic computer software. Nevertheless, we go even further than
Bernardo in his remark by stating that the combination of arguments in our answer to Q13 could
(and probably should) have been formulated already between 1935 and 1939, i.e. after Fisher’s paper



printed December 2, 2003

318 D.R. COX

on inductive inference [47], and before the outbreak of the war, which unfortunately led Fisher and
Neyman to embark on more immediate tasks [118].

Finally, we appreciate in his answer to Q14 Bernardo’s concession about upper and lower probabil-
ities being an interesting alternative (‘important player’) to Bayesian probability theory in a number
of cases.

We much appreciate the reaction of both discussants and hope that the discussion may have
contributed to a further clarification of at least some of the issues.
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Rejoinder by D.R. Cox

D.R. Cox

Nuffield College, Oxford, UK

At the risk of slight repetition I must explain why I had what may seem like the impertinence
of posing these questions so concisely and without giving my own answers. It had been stressed to
me that a lecture I was invited to give in Groningen must be for nonspecialists. At the same time
it seemed likely that there would be quite a few statisticians in the audience and it was only fair
to offer them something: a small piece of paper with a few questions appeared like a good idea. I
did not expect a response but was very happy to get almost immediately a thoughtful letter from
two students. In a sense out of this has grown the material printed above, including the valuable
comments by Professors Schweder and Bernardo.

My own view is eclectic, of wishing to take what is valuable from different viewpoints. Of course
this can degenerate into a vaguely benevolent intellectual cowardice but the defence is to regard the
ultimate test to be that of relevance and fruitfulness in applications. The extraordinarily rich variety
of applications of statistics then points against any single approach.

While my views are in most respects rather close to what may be called the Groningen school of
statistics, I would have expressed them somewhat differently, on some occasions no doubt a bit more
superficially.
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