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runs on theNserver , the Nomad simulator. These test runs, where the
robot tracks a circle from different initial positions and configurations,
clearly indicate that our proposed second control algorithm works glob-
ally in a stable and robust way. It should be emphasized that if we were
to use the first, local algorithm on these test runs, it would fail since the
initial positions and orientations would make�xp

0(s)+�yq
0(s) = 0,

and thus_s would not be defined anymore if the first algorithm were to
be used.

V. CONCLUSION

In this note, two intuitive, model independent path following control
strategies are proposed, and the stability analysis is done with respect to
two different platforms. What is new here is that by combining the con-
ventional trajectory tracking approach and the more recent geometric
path following approach, we can design a virtual vehicle that moves
on the reference path and is regulated in a closed-loop fashion by ex-
ploiting the position error. In the first algorithm, the velocity is kept
constant, while the other, global method depends on the possibility of
fine velocity control.

Implementing these ideas on actual robots gives us some experi-
mental data that show that our controllers work in practice as well as
in theory, which is what we were aiming for, since our main design
strategy was to keep the control algorithms model independent and as
simple as possible.
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A Polynomial Approach to Nonlinear System
Controllability

Yufan Zheng, Jan C. Willems, and Cishen Zhang

Abstract—This note uses a polynomial approach to present a nec-
essary and sufficient condition for local controllability of single-input–
single-output (SISO) nonlinear systems. The condition is presented in
terms of common factors of a noncommutative polynomial expression.
This result exposes controllability properties of a nonlinear system in the
input–output framework, and gives a computable procedure for examining
nonlinear system controllability using computer algebra.

Index Terms—Common factor, controllability, differential fields, non-
commutative ring, nonlinear systems.

I. INTRODUCTION

Controllability is one of the central notions of modern control theory.
The results on controllability of linear systems have been seminal in the
development of the field, and the literature on controllability of non-
linear systems is vast. See, for example, [16], [1], [7], [8], [11], [15],
and [19]. Traditionally, controllability is defined for linear state space
systems and refers to the possibility of transferring a system from any
initial to any terminal state. For nonlinear state-space systems the no-
tion of controllability or strong accessibility refers to the case where the
control can act on the system state, but may be insufficient to transfer
it to a specified terminal state. Often, nonlinear system controllability
is defined in terms of system state equation and tested by means of Lie
distributions or their dual form.

The notion of controllability is recently extended to systems in more
general framework. For linear systems, controllability is viewed in [18]
in terms of system trajectories which may not necessarily be the system
state. A system is defined to be controllable if one can switch from any
feasible past trajectory in the system behavior to any feasible future tra-
jectory, after some time delay. It is observed that the lack of behavioral
controllability implies the existence of an autonomous system ‘output’,
which is a nontrivial function of the system variables. It turns out that
a linear time-invariant input–output system is controllable if and only
if it does not have autonomous variables in its behavior and if and only
if the polynomial matrices that specify the system behavior are left co-
prime.

The notion of autonomous variables is also used to describe control-
lability of nonlinear systems [1], [5], [7], [19]. In [7], local control-
lability of nonlinear state space systems is described in terms of the
absence of local first integrals which are autonomous variables of the
system state. In [1] and [19], controllability of nonlinear state-space
systems is described by the absence of autonomous variables in terms
of differential one-forms. Moreover, the need for a controllability con-
cept for nonlinear input/output systems is discussed in [13], where a
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notion of constrained observable is proposed for describing control-
lability of nonlinear input–output systems and nonlinear systems in
partial differential equations. The concept of constrained observable
is equivalent to that of autonomous variable.

The purpose of the present paper is to further explore controlla-
bility of nonlinear input–output systems and develop a new approach to
testing nonlinear system controllability. We follow the early work [18],
[7], [1], [19], [12], [13] to define controllability of nonlinear systems
in terms of the nonexistence of autonomous variables.

A polynomial expression of nonlinear systems is developed in this
paper to examine the controllability of nonlinear input/output systems.
It is shown that a nonlinear system is controllable if and only if there are
no common factors in the system polynomial expression. This leads to
a novel algebraic approach to nonlinear system controllability beyond
the conventional approach using Lie distributions or their dual form.
Two distinctive features of our polynomial approach are

• the nonlinear system controllability in terms of common factors
remarkably coincides with the corresponding linear systems re-
sult. This serves to provide deeper insights into controllability of
dynamical systems;

• the factorization of the nonlinear system polynomial expression
for examining common factors and controllability can be readily
programmed and carried out by computer algebra. Thus, it gives
the first computable result for nonlinear system controllability
using computer algebra.

The rest of this paper is organized as follows. Section 2 defines control-
lability of nonlinear systems and presents fundamentals of the differen-
tial field and differential vector space of nonlinear systems. Section 3
presents a polynomial expression of nonlinear systems. Using the poly-
nomial expression, Section 4 presents a necessary and sufficient con-
dition for controllability of nonlinear systems using the polynomial. In
Section 5, a computational procedure for testing controllability of non-
linear system is developed and an illustrative example is given.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a scalar nonlinear system defined by

y(n) = f y; y(1); . . . ; y(n�1); u; u(1); . . . ; u(m) (1)

whereu andy are the input and output variables,y(i); 1 � i � n,
is the ith derivative ofy; u(j); 1 � j � m, is thejth derivative of
u andf : Rn � Rm+1 ! R is a meromorphic function. Assume
(@f=@u(m)) 6� 0. We confine our attention in this paper to local con-
trollability of nonlinear system (1) over an open subsetY � U �

Rn � Rm+1 with the inputu and outputy of nonlinear system (1)
satisfying

y; y(1); . . . ; y(n�1)
T

2 Y; u; u(1); . . . ; u(m)
T

2 U: (2)

We use the notion of autonomous variable to define local controlla-
bility of the nonlinear system (1) as follows.

Definition 1: The nonlinear system (1) is locally controllable over
an open setY � U � Rn � Rm+1 if under the local condition (2)
there exist no meromorphic functionsh : Rl+1 ! R andz : Rn̂+1�

Rm̂+1 ! R with l � 1, n̂+ l = n andm̂+ l = m such that

h z; z(1); . . . ; z(l) = 0

z = z(y; y(1); . . . ; y(n̂); u; u(1); . . . ; u(m̂)):
(3)

Remark: The nonlinear system (1) and its controllability are defined
in terms of meromorphic functions. Meromorphic functions are ele-
ments of the quotient field of the ring of analytic functions [5]. Thus the

functions which define the nonlinear system and its controllability are
analytic over an open dense set ofRn�Rm+1. This allows us to define
the local controllability of (1) over the open setY �U � Rn�Rm+1.
The use of meromorphic functions is essential for carrying out arith-
metic operations, particularly division, over the meromorphic function
field in computation of the polynomial equations and common factors
in this note.

Remark: An abuse of notation is involved in Definition 1, wherez
denotes a variable as well as a function ofy andu and their deriva-
tives. Whilez is a function ofy(i) andu(j); 0 � i � n � l; 0 �
j � m � l, it is governed by the homogeneous differential equation
h(z; z(1); . . . ; z(l)) = 0. For any initial condition, the solution ofz is
uniquely determined by this homogeneous differential equation and is
consequently independent of the external inputu. In this sense,z is an
autonomous variable which represents the lack of controllability of the
nonlinear system. It follows that the nonlinear system (1) is control-
lable if and only if it contains no autonomous variables.

Remark: The termlocal controllabilitywas also used for nonlinear
state space systems which is akin tostrong accessibilityunder some
conditions [16]. Throughout our paper, this term is used for nonlinear
input–output systems following from Definition 1.

We now recall the following two basic definitions.
A differential fieldF is a field equipped with a derivative operation

_( ) : F ! F .
A differential vector spaceV� over a differential fieldF is a vector

space equipped with a derivative operation_( ) : V� ! V�.
A differential field is closed under addition, multiplication and

derivative operations and a differential vector space is closed under
addition, scalar multiplication and derivative operations over the
differential field. We further define a polynomial ring as follows.

Let � be an indeterminate over a differential fieldF , then the poly-
nomial ringF [�] is defined by the following multiplication:

�f = f� + _f (4)

for anyf 2 F .
The polynomial ringF [�] with multiplication rule (4) is noncommu-

tative and is an example of anOre ring ([14]). In the remainder of this
note, we let the indeterminate� be the derivative operationd=dt.

Let K be the field of all meromorphic functions ofy(i); 0 � i �
n � 1, andu(j); j � 0. Thus, each meromorphic function 2 K is
such that : Rn�Rr ! R for somer � 0, and may be written in the
form (y; y(1); . . . ; y(n�1); u; u(1); . . . ; u(r�1)). It is straightforward
to verify, by the quotient rule of calculus, that

@ 

@y(i)
2 K; for 0 � i � n� 1

@ 

@u(j)
2 K; for 0 � j � r � 1: (5)

For any 2 K, we define thederivative operationd=dt : K ! K on
K as follows:

d 

dt
=

n�1

i=0

@ 

@y(i)
y(i+1) +

r�1

j=0

@ 

@u(j)
u(j+1) (6)

We will use (i) to denote theith derivative of . To see thatK is
closed under the derivative operation defined by (6), with (1) we note
that

d 

dt
=

@ 

@y(n�1)
f +

n�2

i=0

@ 

@y(i)
y(i+1) +

r�1

j=0

@ 

@u(j)
u(j+1)
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where each term in the above summation belongs toK.K also satisfies
the rules for the differentiation of sums and products and is therefore a
differential field with the derivative operationd=dt. It is the differential
field uniquely defined by nonlinear system (1).

We denote byD� the vector space spanned overK by dy(i); du(j);
0 � i � n � 1; j � 0, namelyD� := span

K
fdy(i); du(j) j 0 � i �

n � 1; j � 0g. Thus each element! 2 D� is in the form

! =

n�1

i=0

�idy
(i) +

r

j=0

�jdu
(j)

for somer � 0, with �i; �j 2 K. We can now define an operator
d : K ! D�, called thedifferential operationas follows:

d:  7! d =

n�1

i=0

@ 

@y(i)
dy(i) +

r�1

j=0

@ 

@u(j)
du(j) 2 D�;

8 2 K (7)

and define thederivative operation(d=dt) : D� ! D� onD� as
follows:

d!

dt
=

n�1

i=0

�
(1)
i dy(i) + �idy

(i+1)

+

r

j=0

�
(1)
j du(j) + �jdu

(j+1) : (8)

We will use!(i) to denote theith derivative of!. To see that the vector
spaceD� is closed under the derivative operationd=dt, we note that
dy(n) = n�1

i=0 (@f=@y
(i))dy(i) + m

j=0(@f=@u
(j))du(j) 2 D�.

Thus each term in the summation (8) belongs toD�. Consequently,
D� is a differential vector space with the derivative operationd=dt. It
is the differential vector space uniquely defined by nonlinear system
(1).

With respect to the derivative operations onK andD�, the differen-
tial operationd obeys the following commutative rule for any 2 K:

d

dt
(d ) = d

d 

dt
: (9)

Each element! 2 D� is called aone-form. A one-form! 2 D� is
called anexact one-formif there exists a 2 K such that! = d .
Note that not every one-form! 2 D� is an exact one-form. If forl
one-forms!i, with 0 � i � l � 1, there existl functions i 2 K
with 0 � i � l � 1 such that l�1

i=0  i!i = 0, then thel one-forms
!i are calledlinearly dependentone-forms overK. Otherwise they are
linearly independentone-forms overK.

Let !i; 0 � i � l � 1, bel linearly independent one-forms in the
differential vector spaceD�. These one-forms form anl-dimensional
subspace, denoted by~D�, of D� written as

~D� = span
K
f!i j!i 2 D

�; 0 � i � l� 1g: (10)

Under the local condition (2), the subspace~D� is calledintegrableif
there existl linearly independent exact one-formsd i 2 D�, with each
 i 2 K in an open set ofRl such that

~D� = span
K
fd i j i 2 K; 0 � i � l� 1g

A necessary and sufficient condition for integrability of the subspace
~D� is given byFrobenius Theorem[10], [4], [5], as stated as follows.
The subspace~D� in (10) is integrable if and only if

d!i ^ !0 ^ !1 ^ � � � ^ !l�1 = 0; 8 0 � i � l� 1 (11)

wheredwi denotes the exterior derivative of the differential formwi

and^ denotes the exterior product.
We now define useful subspacesD�0 ,D�1 andD�1 of the differential

vector spaceD� as follows:

D�0 = span
K

dy(i); du(j) j 0 � i � n� 1; 0 � j � m

D�1 = span
K

dy(i); du(j) j 0 � i � n� 1; 0 � j � m� 1

D�1 = span
K

! j!(k) 2 D�1 ; 8k � 0 : (12)

It is clear thatD�0 ; D
�

1 andD�1 are finite dimensional subspaces with
D�1 � D�1 � D�0 . The subspaceD�1 is not necessarily closed under
the derivative operation. For any! 2 D�1 , it is possible that for some
k � 1; !(k) becomes linearly dependent ondu(r) for somer � m,
i.e.,!(k) 62 D�1 .

We define therelative degreeof the one-form! 2 D�1 to be the
least integerk such that!(k) 62 D�1 . If no such integer exists, i.e.,
if !(k) 2 D�1 for all k � 0, we say that the relative degree of! is
infinity. ThusD�1 is the subspace ofD�1 containing all the one-forms
inD�1 with relative degree infinity.D�1 may be thought of as the largest
subspace ofD�1 that is closed under the derivative operation. It may also
be interpreted as a torsion submodule ofD�.

Assume that the subspacesD�0 andD�1 satisfy the following local
regularity condition.

Assumption 1:Over an open setY � U � Rn � Rm+1; D�0 and
D�1 are locally regular subspaces in the sense

dimD�0 = n+m+ 1; dimD�1 = constant< n+m (13)

for all (y; y(1); . . . ; y(n�1))T 2 Y and(u; u(1); . . . ; u(m))T 2 U .
Lemma 2.1: If Assumption 1 is satisfied anddimD�1 6= 0, then

D�1 is an integrable subspace.
Proof: If D�1 � D�1 satisfiesdimD�1 = constant6= 0, let the

dimension ofD�1 be l and let the one-forms!i; 0 � i � l � 1, be a
set of bases forD�1 such that

D�1 = span
K
f!i j 0 � i � l� 1g

Following from the line of [1, Prop. 3.3], we obtain (11). Thus,D�1
satisfies the condition of Frobenius Theorem and is an integrable
subspace.

III. POLYNOMIAL EXPRESSION FORNONLINEAR SYSTEMS

The differential fieldK and the derivative operatord=dt induce the
polynomial ringK[d=dt]. A polynomialG 2 K[d=dt] is written as
G(d=dt) = gk(d=dt)

k+gk�1(d=dt)
k�1+� � �+g1(d=dt)+g0, where

gi 2 K for 0 � i � k. The degree of the polynomialG is k if gk 6= 0,
andG is called monic ifgk = 1. Each polynomialG 2 K[d=dt] is a
mapping ofD� into itself. To evaluateG at any! 2 D�, we use the
following rules for the indeterminated=dt:

d

dt

i

dy = dy(i)
d

dt

j

du = du(j) (14)

d

dt
 =  

d

dt
+  (1) (15)

for any 2 K. The multiplication rule (15) satisfies the rule (4), and
henceK[d=dt] is a noncommutative Ore ring. The rules (14) and (15)
imply that!(i) satisfies!(i) = (d=dt)i!.

In the differential fieldK, there are no zero divisors, in the sense
that if  1;  2 2 K with  1;  2 6= 0 then 1 2 6= 0. Thus, for
three polynomialsG;G1; G2 2 K[d=dt] with degG1 = d1 > 0 and
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degG2 = d2 > 0 such thatG(d=dt) = G1(d=dt)G2(d=dt), the de-
gree ofG(d=dt) satisfies

degG = degG1 + degG2 = d1 + d2: (16)

ForG(d=dt) = G1(d=dt)G2(d=dt); G1 is called aleft divisorandG2

is called aright divisor of G, andG is called left divisible byG1 and
right divisible byG2. If for G1; G2 2 K[d=dt] such thatGc 2 K[d=dt]
with degGc � 1 is a left divisor of(G1 � G2), thenGc is called a
left common factorofG1 andG2. A polynomialGc is called agreatest
left common factorof G1 andG2 if degGc is the greatest over all left
common factors ofG1 andG2. Two polynomialsG1 andG2 are called
left coprimeif they have no left common factorGc with degGc � 1.

Remark: SupposeG1; G2 2 K[d=dt] have a left common factor
with degreedc � 1. Then there, in general, exist multiple left common
factors ofG1 andG2 with degreedc, i.e., there exist multiple solutions
for Gc; ~G1 and ~G2 with degGc = dc which satisfyGc( ~G1 � ~G2) =
G1�G2. This is due to the noncommutative property of the polynomial
ringK[d=dt], which is considerably different from the polynomial and
common factor expressions for linear systems. Consequently, there in
general exist multiple greatest left common factors for the polynomials
G1 andG2.

We now represent the nonlinear system (1) in terms of polynomials
in the Ore ringK[d=dt]. Over an open setY �U � Rn�Rm+1 with
(2) being satisfied, we apply the differential operation to (1) to obtain

dy(n) �

n�1

i=0

@f

@y(i)
dy(i) �

m

j=0

@f

@u(j)
du(j) = 0: (17)

Let

P
d

dt
=

d

dt

n

�

n�1

i=0

@f

@y(i)
d

dt

i

Q
d

dt
=

m

j=0

@f

@u(j)
d

dt

j

: (18)

Since(@f=@y(i)); (@f=@u(j)) 2 K, we haveP;Q 2 K[d=dt].
Using (14), we can write (17) as

P
d

dt
dy �Q

d

dt
du = 0: (19)

SinceP (d=dt) in (19) is a monic polynomial, we call the polyno-
mial equation in the form (19) amonic polynomial equation. The
monic polynomial equation (19) is uniquely determined by nonlinear
system (1).

IV. COMMON FACTORS AND CONTROLLABILITY OF NONLINEAR

SYSTEMS

This section presents the main result of this note on local controlla-
bility of nonlinear systems. Using the polynomial expression (19) of the
nonlinear system (1), the local controllability of the nonlinear system
is presented in terms of left common factors of the polynomialsP and
Q. This result is given in the following theorem.

Theorem 4.1:Under Assumption 1, the nonlinear system (1) is lo-
cally controllable in the sense of Definition 1 if and only if the polyno-
mialsP andQ defined by (18) have no left common factors.

Proof: Sufficiency:Assume that the nonlinear system (1) is not
locally controllable. Then there exist functionsz; h 2 K such that (3)

is satisfied. We apply the differential operation to the functionsz and
h in (3) and use (14) to obtain

dz =

n̂

i=0

@z

@y(i)
dy(i) +

m̂

j=0

@z

@u(j)
du(j)

= ~P
d

dt
dy � ~Q

d

dt
du

dh =

l

k=0

@h

@z(k)
dz(k) = H

d

dt
dz

= H
d

dt
~P

d

dt
dy � ~Q

d

dt
du = 0 (20)

where (@z=@y(i)); (@z=@u(j)); (@h=@z(k)) 2 K[d=dt], and
~P (d=dt) = n̂

i=0(@z=@y
(i))(d=dt)i; ~Q(d=dt) = � m̂

j=0(@z=

@u(j))(d=dt)j and H(d=dt) = l

k=0(@h=@z
(k))(d=dt)k 2

K[d=dt]. They are all inK[d=dt].
Let ~H(d=dt) = ((@h=@z(l))(@z=@y(n̂)))�1H(d=dt), it can be ver-

ified by the multiplication rule (15) that~H(d=dt) ~P (d=dt) is a monic
polynomial. This yields the monic polynomial expression for (20)

~H
d

dt
~P

d

dt
dy � ~Q

d

dt
du = 0: (21)

As monic expression (1) uniquely defines the differential fieldK,
the expressions (1) and (3), which carry operations in the unique
differential fieldK, must have the same monic expression in the form
(1) in an open set inRn � Rm+1. Further, the monic expression (1)
uniquely determines its monic polynomial equation in the form (19).
Thus, under Assumption 1 on the regularity ofD�0 , which implies that
fdy(i); du(j) j 0 � i � n� 1; 0 � j � mg is a basis forD�0 , we can
equate monic polynomial equations (21) and (19) to obtain

P
d

dt
= ~H

d

dt
~P

d

dt

Q
d

dt
= ~H

d

dt
~Q

d

dt
:

This shows that the polynomialsP andQ have a left common factor
~H. Hence, the nonlinear system (1) is locally controllable ifP andQ
have no left common factors.

Necessity:Assume that the polynomialsP andQ with degP = n
anddegQ = m have a left common factorH with degH = ~l � 1.
Then, the polynomial equation (19) can be written as

P
d

dt
dy �Q

d

dt
du

= H
d

dt
~P

d

dt
dy � ~Q

d

dt
du = 0 (22)

wheredeg ~P = n�~l anddeg ~Q = m�~l, and the polynomialH(d=dt)
is written as

H
d

dt
= h~l

d

dt

~l

+ h~l�1
d

dt

~l�1

+ � � �+ h1
d

dt
+ h0

with hi 2 K for 0 � i � ~l. Let! = ~P (d=dt)dy� ~Q(d=dt)du 2 D�1
and

H
d

dt
! = 0: (23)
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Equation (23) can be equivalently expressed as

~l

i=0

hi!
(i) = 0 (24)

where eachhi 2 K. Define a nested sequence of subspacesfWi j 0 �
i � ~lg of D� with

Wi = span
K

!; !(1); . . . ; !(i) : (25)

Note thatWi � D�1 , for 0 � i < ~l by the definition of!. Also, the
result (24) shows that the~l+1 one-formsf!(i) j 0 � i � ~lg are linearly
dependent overK. This implies that for some0 � k < ~l

!(i) 2Wk � D
�

1 ; for all i � 0

Thus! 2 D�1 by definition ofD�1 i.e.,dimD�1 � 1.
To complete the proof of Theorem 4.1, we use the following lemma

whose proof is given in Appendix.
Lemma 4.2: If dimD�1 6= 0, then under Assumption 1 over an

open setY � U � Rn � Rm+1 there exist meromorphic functions
z : Rn̂+1 �Rm̂+1 ! R andh : Rl+1 ! R with l � 1; n̂ + l = n
andm̂ + l = m such that

h z; z(1); . . . ; z(l) = 0

z = z y; y(1); . . . ; y(n̂); u; u(1); . . . ; u(m̂) :
(26)

It follows fromdimD�1 � 1 and Lemma 4.2 that the nonlinear system
(1) is not controllable.

Remark: The solution forH; ~P and ~Q in (22) is in general
nonunique, even in the case thatH is a greatest left common factor. Fur-
ther, the expression for the one-form! = ~P (d=dt)dy � ~Q(d=dt)du
is also nonunique. If! is an exact one-form, i.e., there is a function
z 2 K such thatdz = !, then it is straightforward to construct the
functionsh andz in (3) to obtain the necessity result of the theorem.
However, this is not generally true since there is no guarantee that
every common factorH yields an exact one-form! such that (23) is
satisfied. For this reason, the proof of the necessity part of Theorem
4.1 deals with the general case that! in (23) is a nonexact one-form.
The proof is established by showing! 2 D�1 and using the results of
Lemmas 2.1 and 4.2.

Remark: There is a connection between Lemma 3.2 and Proposition
3.4 in [1] where controllability of nonlinear state space systems is de-
fined in terms of autonomous no-exact one-forms. The result of Propo-
sition 3.4 of [1] is to relate the nonlinear system controllability to the
relative degree of the no-exact one-forms. There are two essential dif-
ferences between Lemma 4.2 and Proposition 3.4 of [1], i.e., (i) Lemma
4.2 deals with the differential subspace of nonlinear input/output sys-
tems which is in a more general framework than that of the nonlinear
state space systems in [1]; (ii) Lemma 4.2 deals with controllability
defined in terms of autonomous variables in the form (26) rather than
autonomous one-forms in [1]. The former case requires further sub-
stantial treatments on integrating the autonomous variable.

V. COMPUTATION OF LEFT COMMON FACTORS

Theorem 4.1 provides a criterion for testing the controllability of
nonlinear systems, which is to examine whether the polynomials
P;Q 2 K[d=dt] of the nonlinear system have a left common factor.
We now present a procedure based on the Euclidean Algorithm for
computing a greatest left common factor of two polynomials in
K[d=dt]. Specifically, forG1; G2 2 K[d=dt] with degG1 = d1;
degG2 = d2, andd1 > d2, the Euclidean Algorithm firstly computes

two polynomialsG3; L1 2 K[d=dt], with degG3 � d2 � 1 and
degL1 = d1 � d2 to obtain

G1
d

dt
= G2

d

dt
L1

d

dt
+G3

d

dt
: (27)

Then it continues to compute polynomialsGi(d=dt) andLj(d=dt) for
4 � i � k and2 � j � k � 1 as follows:

G2
d

dt
= G3

d

dt
L2

d

dt
+G4

d

dt

...

Gk�2
d

dt
= Gk�1

d

dt
Lk�2

d

dt
+Gk

d

dt

Gk�1
d

dt
= Gk

d

dt
Lk�1

d

dt
(28)

wheredegGi � degGi�1 � 1 and degLj � 1. The algorithm
terminates in a finite number of, sayk, steps. As a result, a greatest
left common factorGk(d=dt) of G1(d=dt) and G2(d=dt) is ob-
tained which yields thatG1(d=dt) = Gk(d=dt) ~G1(d=dt) and
G2(d=dt) = Gk(d=dt) ~G2(d=dt), where the two polynomials
~G1(d=dt) and ~G2(d=dt) are obtained by recursively substituting
Gi(d=dt) for 2 � i � k into (28) and (27). The polynomialsG1

andG2 are left coprime polynomials if and only ifdegGk = 0 and
Gk 6= 0.

Consider the following nonlinear system as an illustrative example:

y(2) � y(1) �
y(1)

2

� y(1)u

y
� u(1) + u = 0 (29)

whereP andQ of the system polynomial equation in the form (19) are
monic polynomials as follows:

P
d

dt
=

d

dt

2

�
2y(1) + y � u

y

d

dt
+

y(1)
2

� y(1)u

y2

Q
d

dt
=

d

dt
�
y(1) + y

y

Applying the Euclidean algorithm directly yieldsP (d=dt) =
Q(d=dt)((d=dt)� (y(1)�u)=y)). Thus a greatest left common factor
of P andQ is H(d=dt) = Q(d=dt) = (d=dt) � ((y(1) + y)=(y))
and a monic polynomial equation of the system is

H
d

dt
~P

d

dt
dy � ~Q

d

dt
du = 0

where ~P (d=dt) = (d=dt) � ((y(1) � u)=(y)); ~Q(d=dt) = 1. Since
P andQ have a left common factorH with degH = 1, the system
is uncontrollable. It is noted that, in this example,! = ~P (d=dt)dy �
~Q(d=dt)du is a nonexact one-form.

VI. CONCLUSION

In this note, we have developed a polynomial approach to nonlinear
system controllability. It is shown that, with the definition of control-
lability as the nonexistence of autonomous variables, a differential
nonlinear system is controllable if and only if two polynomials in an
Ore ring have no left common factors. This result extends nonlinear
system controllability to a broad class of nonlinear system beyond
the state equation framework. We have also shown that the Euclidean
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dz(i) 0 � i � l� 1 � span
K

dy(i); du(j) 0 � i � n̂+ l� 1; 0 � j � m̂+ l� 1

dz(l) 2 span
K

dz(i) 0 � i � l� 1 : (33)

dz(i) 62 span
K

dy; dy(1); . . . ; dy(n̂�1); du; du(1); . . . ; du(m�1) ; 80 � i � l� 1:

dim span
K

dy; dy(1); . . . ; dy(n̂�1); du; du(1); . . . ; du(m�1) + dim span
K

dz; dz(1); . . . ; dz(l�1) = n̂+m+ l � dimD�1 = n+m:

algorithm provides an effective algorithm for verifying this condition.
This leads to a computable procedure for testing nonlinear system
controllability using computer algebra. An important question that
is a logical follow-up is the implications of these results to the local
stabilization of nonlinear systems around an equilibrium point.

APPENDIX

Proof of Lemma 4.2:If D�1 � D�1 satisfiesdimD�1 6= 0, it
contains at least one nonzero exact one-form by Lemma 3.1. Letz 2 K
be such thatdz 2 D�1, with dz 6= 0, and letn̂ andm̂, with 0 �
n̂ � n � 1 and0 � m̂ � m � 1, be the largest integers such that
(@z)=(@y(n̂)) 6= 0; (@z)=(@u(m̂)) 6= 0. Thus,dz can be written as

dz =

n̂

i=0

@z

@y(i)
dy(i) +

m̂

j=0

@z

@u(j)
du(j): (30)

The integration of this equation yields the functionz in the form (3) in
an open setY � U � Rn �Rm+1 with (2) being satisfied.

Sincedz 2 D�1; dz
(k) 2 D�1 8k � 0. AsdimD�1 = n+m, there

exists a largest integerl with 1 � l � n +m such thatfdz(i) j 0 �
i � l� 1g is a set of linearly independent exact one-forms inD�1 over
K. Thus, we write

dz(l) =

l�1

i=0

 z dz(i): (31)

The integration of this equation yields a functionh in the form (3) in
an open setY � U � Rn �Rm+1 with (2) being satisfied.

By (30) we obtain that for0 � i � l

dz(i) =
@z

@y(n̂)
dy(n̂+i) + � � �+

@z

@u(m̂)
du(m̂+i) + � � � (32)

where the dots indicate terms involving lower order derivatives ofdy
anddu, and(@z)=(@y(n̂))dy(n̂+i) 6= 0 and(@z)=(@u(m̂)) du(m̂+i) 6=
0 are satisfied.

Sincedz 2 span
K
fdy(i); du(j) j 0 � i � n̂; 0 � j � m̂g by (30)

(31), we have (33), as shown at the top of the page. By (32) and (33),
we havedy(n̂+l) 2 span

K
fdy(i); du(j) j 0 � i � n̂ + l � 1; 0 �

j � m̂+ lg. Under Assumption 1 on the regularity ofD�0 , this is only
possible ifn̂ + l � n.

On the other hand, it follows from (32) that the first equation shown
at the top of the next page holds true. This implies that

span
K

dy; dy(1); . . . ; dy(n̂�1); du; du(1); . . . ; du(m�1)

\ span
K

dz; dz(1); . . . ; dz(l�1) = f0g: (34)

Sincedz(i) 2 D�1 ; 0 � i � l � 1, we have

span
K

dy; dy(1); . . . ; dy(n̂�1); du; du(1); . . . ; du(m�1)

� span
K

dz; dz(1); . . . ; dz(l�1) � D�1 :

It follows from this and (34) that the second equation at the top of the
page holds true. This, together witĥn+ l � n, yieldsn̂+ l = n.

With n̂ + l = n, consideri = l in (32). The termdy(n̂+l) =
dy(n) is linearly dependent ondu(m) by (17). In order thatdz(l) 2
span

K
fdz;dz(1); . . . ; dz(l�1)g 2 D�1 be satisfied, the term

(@z)=(@u(m̂))du(m̂+l) with (@z)=(@u(m̂)) 6= 0 in (32) with i = l
must cancel out the like term due to(@ẑ)=(@y(n̂))dy(n). This leads to
m̂+ l = m.
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Robust Filtering of Stationary Continuous-Time
Linear Systems With Stochastic Uncertainties

E. Gershon, D. J. N. Limebeer, U. Shaked, and I. Yaesh

Abstract—The problem of applying -filters on stationary, contin-
uous-time, linear systems with stochastic uncertainties in the state-space
signal model is addressed. These uncertainties are modeled via white noise
processes. The relevant cost function is the expected value of the standard

performance index with respect to the uncertain parameters. The so-
lution is obtained via a stochastic bounded real lemma that results in a
modified Riccati inequality. This inequality is expressed in the form of a
linear matrix inequality whose solution provides the filter parameters. The
method proposed is also applied to the case where, in addition to the sto-
chastic uncertainty, other deterministic parameters of the system are not
perfectly known and are assumed to lie in a given polytope. The problem of
mixed filtering for the above system is also treated. The theory
developed is demonstrated by a practical example.

Index Terms—Mixed filtering, polytopic uncertainty, sto-
chastic filtering.

I. INTRODUCTION

The analysis and design of controllers and estimators for systems
with stochastic uncertainties, which ensure a worst case performance
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bound, have recently received a lot of attention [1]–[9]. An approach
in which the parameter uncertainties are modeled as white noise pro-
cesses in a linear system has been developed in [1], [3], [5], [8], and
[9] for the discrete-time state-feedback problem, and in [2] and [4] for
the continuous-time counterpart. The estimation problem of stochastic
systems has been solved in [4], [8], [9], and [5] for the continuous-time
and the discrete-time cases, respectively. Such models of uncertainty
are encountered in many areas of applications (see [3] and the refer-
ences therein).

Recently, the solution of the estimation problem in the stationary
discrete-time case was solved, via linear matrix inequalities (LMIs),
where in addition to the stochastic parameter uncertainties, the system
matrices were allowed to lie in a convex-bounded domain [9]. The so-
lution in [9] applied a bounded-real lemma (BRL) on a general-type
filter structure.

Also recently, the solution of the output-feedback problem for con-
tinuous-time stochastic uncertain systems has been derived for the sta-
tionary case [7]. The solution is obtained by formulating a stochastic
bounded-real lemma and a general-type controller. It results in two cou-
pled nonlinear matrix inequalities which reduce to the standardH1
output-feedback problem in the nominal case. The solution in [7] does
not include uncertainty in the measurement matrix.

An alternative approach to the treatment of real parameter uncer-
tainties considers uncertainties that lie in a polytope. This approach
has been adopted in [10]–[12]. In [10], the authors apply theH1 BRL
[14] to the uncertain system, and a Riccati inequality is obtained whose
solution guarantees the existence of a single solution (fixed filter) to the
problem. This Riccati inequality has been expressed in a LMI form that
is affine in the uncertain parameters. A single solution which covers all
the vertices of the uncertainty polytope produces the desired result [10].
The mixedH2=H1 problem has been solved in [10].

In the present paper we treat the continuous-time counter-part of [8]
and [9]. In our case, a stochastic uncertainty appears in both the dy-
namic and the measurement matrices and correlations are allowed be-
tween the uncertain parameters. This case, where the uncertainties are
restricted to the above matrices, is the most encountered in practice
when one considers filtered estimation. Our solution is based on the
BRL developed in [6] and [7]. In a manner similar to [9] we apply the
techniques of [15] to the deterministic polytopic problem [11], [10].
Necessary and sufficient conditions are derived for the existence of a
solution in terms of LMIs. The latter solution is extended to the case
where the deterministic part of the system matrices lie in a convex
bounded domain of polytopic-type. Our theory is also applicable to
the case where the covariance matrices of the stochastic parameters
are not perfectly known and lie in a polytopic domain. We also solve
the mixedH2=H1 problem where, of all the filters that solve the sto-
chasticH1 filtering problem, the one that minimizes an upper-bound
on the estimation error variance is found. The method developed here
is demonstrated by a practical example.

Notation: Throughout the paper the superscript ‘T ’ stands for ma-
trix transposition,Rn denotes then-dimensional Euclidean space, and
Rn�m is the set of alln � m real matrices. For a symmetricP 2
Rn�n; P > 0 means that it is positive definite. We denote expectation
byEf � g and the trace of a matrix byTrf � g. We denote byL2(
;Rk)
the space of square-integrableRk� valued functions on the probability
space(
;F ;P), where
 is the sample space,F is a� algebra of a
subset of
 called events andP is the probability measure onF . By
(Ft)t>0 we denote an increasing family of�-algebrasFt � F . We
also denote by~L2([0;1);Rk) the space of nonanticipative stochastic
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