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runs on theNserver , the Nomad simulator. These test runs, where the A Polynomial Approach to Nonlinear System

robot tracks a circle from different initial positions and configurations, Controllability
clearly indicate that our proposed second control algorithm works glob-
ally in a stable and robust way. It should be emphasized that if we were Yufan Zheng, Jan C. Willems, and Cishen Zhang

to use the first, local algorithm on these test runs, it would fail since the

initial positions and orientations would makerp’ (s) + Ayq'(s) = 0, . .

. . . . . Abstract—This note uses a polynomial approach to present a nec-
and thus; would not be defined anymore if the first algorithm were tQﬁ:ssary and sufficient condition for local controllability of single-input—
be used. single-output (SISO) nonlinear systems. The condition is presented in
terms of common factors of a honcommutative polynomial expression.
This result exposes controllability properties of a nonlinear system in the
input—output framework, and gives a computable procedure for examining

In this note, two intuitive, model independent path following contrdionlinear system controllability using computer algebra.
strategies are proposed, and the stability analysis is done with respect todex Terms—Common factor, controllability, differential fields, non-
two different platforms. What is new here is that by combining the cofommutative ring, nonlinear systems.
ventional trajectory tracking approach and the more recent geometric
path following approach, we can design a virtual vehicle that moves
on the reference path and is regulated in a closed-loop fashion by ex-
ploiting the position error. In the first algorithm, the velocity is kept Controllability is one of the central notions of modern control theory.
constant, while the other, global method depends on the possibility d1€ results on controllability of linear systems have been seminal in the
fine velocity control. development of the field, and the literature on controllability of non-
Implementing these ideas on actual robots gives us some expbfiear systems is vast. See, for example, [16], [1], [7], [8], [11], [15],
mental data that show that our controllers work in practice as well agd [19]. Traditionally, controllability is defined for linear state space
in theory, which is what we were aiming for, since our main desiggystems and refers to the possibility of transferring a system from any
strategy was to keep the control algorithms model independent andnigial to any terminal state. For nonlinear state-space systems the no-
simple as possible. tion of controllability or strong accessibility refers to the case where the
control can act on the system state, but may be insufficient to transfer
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notion of constrained observable is proposed for describing contréinctions which define the nonlinear system and its controllability are
lability of nonlinear input-output systems and nonlinear systems @malytic over an open dense sefjf x R +'. This allows us to define
partial differential equations. The concept of constrained observaliie local controllability of (1) over the open Sétx U C R™ x R™ 1.

is equivalent to that of autonomous variable. The use of meromorphic functions is essential for carrying out arith-

The purpose of the present paper is to further explore controli@etic operations, particularly division, over the meromorphic function
bility of nonlinear input—output systems and develop a new approacHitld in computation of the polynomial equations and common factors
testing nonlinear system controllability. We follow the early work [18]in this note.

[71, [1], [19], [12], [13] to define controllability of nonlinear systems Remark: An abuse of notation is involved in Definition 1, where
in terms of the nonexistence of autonomous variables. denotes a variable as well as a functionyodnd« and their deriva-

A polynomial expression of nonlinear systems is developed in tHises. While - is a function ofy® andu, 0 < i < n —1,0 <
paper to examine the controllability of nonlinear input/output systems.< m — [, it is governed by the homogeneous differential equation
Itis shown that a nonlinear system is controllable if and only if there afd z, P z(’)) = 0. For any initial condition, the solution af is
no common factors in the system polynomial expression. This leadsutaiquely determined by this homogeneous differential equation and is
a novel algebraic approach to nonlinear system controllability beyondnsequently independent of the external inpun this sense; is an
the conventional approach using Lie distributions or their dual forrmautonomous variable which represents the lack of controllability of the
Two distinctive features of our polynomial approach are nonlinear system. It follows that the nonlinear system (1) is control-

« the nonlinear system controllability in terms of common factorigble if and only if it contains no autonomous variables.
remarkably coincides with the corresponding linear systems re_Remark: The termlocal controllability was also used for nonlinear
sult. This serves to provide deeper insights into controllability gitate space systems which is akinstoong accessibilityinder some
dynamical systems; conditions [16]. Throughout our paper, this term is used for nonlinear
the factorization of the nonlinear system polynomial expressidAput-output systems following from Definition 1.
for examining common factors and controllability can be readily We now recall the following two basic definitions.
programmed and carried out by computer algebra. Thus, it givegb\ differential field F is a field equipped with a derivative operation
the first computable result for nonlinear system controllability ) : & — F.
using computer algebra. A differential vector spac&™ over a differential fieldF is a vector
The rest of this paper is organized as follows. Section 2 defines contrgpace equipped with a derivative operation: V* — V.
lability of nonlinear systems and presents fundamentals of the differen? differential field is closed under addition, multiplication and
tial field and differential vector space of nonlinear systems. Sectior@grivative operations and a differential vector space is closed under
presents a polynomial expression of nonlinear systems. Using the p@}gdltlon, scalar multiplication and derivative operations over the
nomial expression, Section 4 presents a necessary and sufficient cifierential field. We further define a polynomial ring as follows.
dition for controllability of nonlinear systems using the polynomial. In Let¢ be an indeterminate over a differential fietd then the poly-
Section 5, a computational procedure for testing controllability of nofomial ring 7[¢] is defined by the following multiplication:
linear system is developed and an illustrative example is given.

Ef=rE+7 4
Il. PROBLEM STATEMENT AND PRELIMINARIES
forany f € F.

The polynomial ringF [¢] with multiplication rule (4) is noncommu-
tative and is an example of @re ring ([14]). In the remainder of this
note, we let the indeterminafebe the derivative operatiafy dt.

. Let K be the field of all meromorphic functions ¢f), 0 < i <
whereu andy are the input and output variableg,’, 1 < i < n, , _ 1 andu, j > 0. Thus, each meromorphic functian € X is

is theith derivative ofy.«'”. 1 < j < m, is thejth derivative of g, chthat) : R" x R™ — R forsomer > 0, and may be written in the
" andf . /Rn % Rm+1 — R iS a merOmOI’phiC function. ASSUmEform l;'(y,y(l) “““ y(nfl)‘ u,u(l), . :u("*l)). Itis Straightforward

(af/a:u}m)) # 0. We confine our attention in this paper to local conyg verify, by the quotient rule of calculus, that
trollability of nonlinear system (1) over an open sub¥etx U C

Consider a scalar nonlinear system defined by

y" = f ('y,yma ey u("’)) 1)

n m—+1 H H . H
R X R with the inputu and outputy of nonlinear system (1) 3¢,‘ K. for0<i<m—1
satisfying Dy ; Ses
o .
N T T ' . r—
(y’y(l)““"y(nfl)) €Y. (u,u(l)’“qu(m)) cv. (2) EMO) e, foro<j<r—1. (5)
We use the notion of autonomous variable to define local controll&or anyy € K, we define thederivative operationl/dt : K — K on
bility of the nonlinear system (1) as follows. K as follows:
Definition 1: The nonlinear system (1) is locally controllable over
an open set’ x U C R" x R""*_‘ if under the local condition (2) dy _ nil 1 GO 4 — Y L+ ©)
there exist no meromorphic functiohs R'*' — R andz : R"*! x dt & 9y — Jul)
R™H 5 Rwithl > 1,74 41 = n andih + I = m such that = =
h (z’ C Z(I)) -0 We will usey” to denote theth derivative ofy. To see thak is
, /(1) ' ) o () (3) closed under the derivative operation defined by (6), with (1) we note
Z:Z(yvy seren Y LU, UTT e, U ) that
Remark: The nonlinear system (1) and its controllability are defined I et

in terms of meromorphic functions. Meromorphic functions are ele- g _ 9 f Z a'rff LD 5'4'{ MEES
ments of the quotient field of the ring of analytic functions [5]. Thusthe ~ df ~ dyn=D " = &= 9y 5 uly)
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where each term in the above summation belongs. & also satisfies wheredw; denotes the exterior derivative of the differential foum
the rules for the differentiation of sums and products and is thereforamd A denotes the exterior product.
differential field with the derivative operatiaty dt. It is the differential We now define useful subspacBg, D andDZ, of the differential

field uniquely defined by nonlinear system (1). ‘ vector spacé™ as follows:
We denote byD* the vector space spanned o¥eby dy'", du'?), \
0<i<n-1,j>0,namelyD" := Span,c{dy(’),du(]) [0 <i< D = spany {cly(z),du(j) [0<i<n—-1,0<j< m}

n — 1,7 > 0}. Thus each element € D* is in the form _ ,
D} = spany {dy(l),du(” [0<i<n—-1,0<j<m-— 1}
n—1 r
w= Z aidy + /3]’(111,(‘]) DL, = spang {w | »*) e DY VE > O}. (12)
i=0 j=0

It is clear thatDg, D andDZ, are finite dimensional subspaces with
DX, C DI C Dg. The subspac®7 is not necessarily closed under
the derivative operation. For any € D7, it is possible that for some

for somer > 0, with «;,3; € K. We can now define an operator
d: K — D*, called thedifferential operatioras follows:

e PR e g ) k > 1, w™*) becomes linearly dependent dn"” for somer > m,
domdv =3 o5+ g™ €D" et g D |
i=0 7=0 We define therelative degreeof the one-formw € D7 to be the

vy € K (7) least integetk such thats> ¢ D*. If no such integer exists, i.e.,
_ o _ if w® € Df forall k > 0, we say that the relative degree wofis
and define thederivative operation(d/dt) : D* — D* onD* as infinity. Thus D7, is the subspace @} containing all the one-forms

follows: in D} with relative degree infinityD, may be thought of as the largest
n_1 subspace dP7 thatis closed under the derivative operation. It may also

dw _ 3 (a(‘)dy(” + al.dy(i“)) be interpreted as a torsion submoduleof.

dt o ) Assume that the subspacB§ andD., satisfy the following local

r W G) (i+1) regularity condition.
+ Z (,8]- du'’ + B;du™ ) . (8) Assumption 1:Over an open sét x U C R" x R™*', D¢ and
=0 D2, are locally regular subspaces in the sense

We will usew® to denote théth derivative of. To see that the vector
spaceD™ is closed under the derivative operati@fit, we note that
dy"™ = SIS 0F )0y )y + 57 (0f [ou')dut) € DL gy ()
Thus each term in the summation (8) belongsXo Consequently, | emma 2.1: If Assumption 1 is satisfied andim D% # 0, then
D* is a differential vector space with the derivative operatigrt. It D is an integrable subspace.

is the differential vector space uniquely defined by nonlinear system ™ p.jo¢ ¢ D*. C D; satisfiesdim D~

dimDy =n+m+1, dimD., = constant< n +m (13)

,....y("_U)T ey and(u,u“),...,u("’))T el.

= constant# 0, let the

@). ) o ) ) ) dimension ofD%, bel and let the one-forms;, 0 < i <1 —1,be a
With respect to the derivative operations/6randD*, the differen- set of bases foP*. such that

tial operationd obeys the following commutative rule for anyec X:

%(du:) = < it
¢ ¢ Following from the line of [1, Prop. 3.3], we obtain (11). Thads;,
Each element € D* is called aone-form A one-formw € D* is Satisfies the condition of Frobenius Theorem and is an integrable

DL =spang{w;|0<i<l-1}
). ©

called anexact one-fornif there exists a/ € K such thaty = dy. Subspace. U
Note that not every one-formm € D™ is an exact one-form. If fot
one-formsw;, with 0 < ¢ < I — 1, there exist functionsy; € K Ill. POLYNOMIAL EXPRESSION FORNONLINEAR SYSTEMS

. . -1 :
Y‘”th 0< I: § 1= Il ZUCh t':jatZz:o f’wzwz = (),Kth(e)nhthel .onehforms The differential fieldk and the derivative operatdy/d¢ induce the
w; are calledinearly dependerpne-forms ovek.. Otherwise they are polynomial ring[d/d¢t]. A polynomial G € K[d/dt] is written as

linearly |ndepepdermne-forms_ovei&._ _ G(d/dt) = gi(d/dt)" + o (d/dt)*=" 4+ g1 (d/dt)+ g0, where
.Letwi., 0<i<l—-1, Pel linearly independent one.-forms. in thegi € K for0 < i < k. The degree of the polynomidl is k if g, # 0,
differential vector spac®". Tk*lese_ one-forms form andimensional and@ is called monic ifg, = 1. Each polynomial € K[d/df] is a
subspace, denoted ", of D" written as mapping of D* into itself. To evaluat&r at anyw € D*, we use the
~ following rules for the indeterminaté/d¢:

D" =spang{w;|w; €D, 0<i <1 —1}. (10)
~ ; , j »
Under the local condition (2), the subspaRé is calledintegrableif <i> dy = dy® <i> du = du" (14)
there exist linearly independent exact one-foraig;, € D™, with each dt dt
¢; € K in an open set oR' such that aN. (4 (1) 15
)=\ )t (15)

Dt = span{dy; | v, € K,0<i <1 -1}
for anyy € K. The multiplication rule (15) satisfies the rule (4), and
A necessary and sufficient condition for integrability of the subspadencek’[d/d¢] is a noncommutative Ore ring. The rules (14) and (15)
D* is given byFrobenius Theorerfil0], [4], [5], as stated as follows. imply thatw”) satisfiesv') = (d/dt)"w.
The subspac®* in (10) is integrable if and only if In the differential fieldkC, there are no zero divisors, in the sense
that if ¢1,¢¥2 € K with ¥1,¢¥2 # 0 thenvy1¢s # 0. Thus, for
dwi Nwo Awi A==+ Awi_1 =0, VO<i<i-1 (11) three polynomial€?, G, G2 € K[d/dt] with deg Gy = d; > 0 and
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deg Gy = d2 > 0 suchthatG(d/dt) = G, (d/dt)G.(d/dt), the de- is satisfied. We apply the differential operation to the functiored

gree of G(d/dt) satisfies h in (3) and use (14) to obtain

deg G = deg G1 + deg Gy = dy + ds. (16) "9z ; P

dz = Z EMG) dy + Z Wdu(”

ForG(d/dt) = G1(d/dt)G=(d/dt), Gy is called deft divisorandG- Tj d . ]_;
is called aright divisor of G, andG is called left divisible byG; and =P <E> y—Q <E> du
rightdivisible byG-. Iffor G, G2 € K[d/dt] suchthalG. € K[d/dt] . ’ ‘
with deg G. > 1 is a left divisor of(G1 — G2), thenG. is called a =3 Oh .0 _ g <i> i
left common factoof G andG». A polynomialG. is called agreatest P oz(k) 7 dt ]~

left common factoof G| andG- if deg G. is the greatest over all left d /4 /4
common factors off; andG» . Two polynomialg#; andG- are called =H <—) <P <—) dy — Q <—) du) =0 (20)
left coprimeif they have no left common factd@r. with deg G > 1. dt dt dt

Remark: Suppose&,G> € K[d/dt] have a left common factor ) i *) )
with degreel. > 1. Then there, in general, exist multiple left commonvhere (9z/9y" "), (9z/9u "), (0h/0="7) €  K[d/dt], and
factors ofGG1 andG- with degreel.., i.e., there exist multiple solutions P(d_/dt) = Z:L:o(az/ayw)(d/dt)L‘ Qd/dt) = — Z.;'”:O(az/
for Gi., G andGs with deg G. = d. which satisfyG. (G, — Go) = 0u))(d/dt)’ and H(d/dt) = Y\ _(9h/0:"))(d/dt)* €
G1—G5. This is due to the noncommutative property of the polynomidt[d/dt]. They are all inkC[d/dt]. .
ring K[d/d#], which is considerably different from the polynomial and LetH (d/dt) = ((9h/0='")(9=/0y"™))~" H(d/dt),it can be ver-
common factor expressions for linear systems. Consequently, therdfigd by the multiplication rule (15) thalf (d/dt)P(d/dt) is a monic
general exist multiple greatest left common factors for the polynomigd§lynomial. This yields the monic polynomial expression for (20)
G] anng.
~ We now represent the nonlinear system (1) in terms of polynomials i <i> <1;-. <i> dy— 0 <i> du) _o. 21)
in the Ore ringC[d/dt]. Over an openséf x U C R™ x R™*! with dt dt dt
(2) being satisfied, we apply the differential operation to (1) to obtain
As monic expression (1) uniquely defines the differential fi&ld
the expressions (1) and (3), which carry operations in the unique

n—1

dy™ - aa% dy =" % du'? = 0. (17)  differential field X, must have the same monic expression in the form
im0 %Y =0 7Y (1) in an open set iR™ x R™*. Further, the monic expression (1)
uniquely determines its monic polynomial equation in the form (19).
Let Thus, under Assumption 1 on the regularityZ®f, which implies that
‘ {dy@, du? |0 <i<n-1,0<j<m}isabasis foD;, we can
P <i> _ <i)” 3 ”il of <i>l equate monic polynomial equations (21) and (19) to obtain
dt dt — Ay \ dt
. d - (dN\ ~ [ d
1y _§ o (1 P() = ()7 ()
Q (E) -y (a) . (18) i it ) U\

i of3)-n()o(%)

Since (af/9y), (9f/ou') € K, we haveP,Q € K[d/dt].

Using (14), we can write (17) as This shows that the polynomial® and( have a left common factor
H . Hence, the nonlinear system (1) is locally controllabl® iand @
d d have no left common factors.
P <E> dy - @ <E> du=0. (19) NecessityAssume that the polynomial andQ with deg P = n

anddeg Q = m have a left common factof with deg H = 1 > 1.
Since P(d/dt) in (19) is a monic polynomial, we call the polyno-Then, the polynomial equation (19) can be written as
mial equation in the form (19) anonic polynomial equationThe
monic polynomial equation (19) is uniquely determined by nonlinegs <i) dy— O < d ) du

system (1). dt dt

a5 (e (¢ -0 ()0 e

wheredeg P = n—I anddeg () = m—I, and the polynomiall (d/dt)

This section presents the main result of this note on local controlig-written as
bility of nonlinear systems. Using the polynomial expression (19) of the N B
nonlinear system (1), the local controllability of the nonlinear systemH dy he d ! i d = R d h
is presented in terms of left common factors of the polynoniraénd dt )~ U\ dt T\ A\ 0
Q. This result is given in the following theorem.

Theorem 4.1:Under Assumption 1, the nonlinear system (1) is logith 1, € K for0 < i < i. Letw = P(d/dt)dy — Q(d/dt) du € D}
cally controllable in the sense of Definition 1 if and only if the polynoyng
mials P and( defined by (18) have no left common factors.

Proof: Sufficiency Assume that the nonlinear system (1) is not d

locally controllable. Then there exist functionsh € K such that (3) H < ) w=0. (23)

IV. CoMMON FACTORS AND CONTROLLABILITY OF NONLINEAR
SYSTEMS

dt
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Equation (23) can be equivalently expressed as two polynomialsGs, Ly € K[d/dt], with degG3 < d2 — 1 and
deg Ly = di — d» to obtain

1
Zh,-w(” =0 (24) d d d d
o ()= ()0 () v (@) @

i < i} of D*iwith. - Theq it continues to compute polynomials(d/dt) andL;(d/dt) for
4<i<kand2 <j < k-1 asfollows:

Vo soane o o® O
W; = spany {w, veens } (25) ‘. J e J . a e a
- at) ~ P \dt) P\t "\t

Note thatW; C D7, for 0 < i < I by the definition ofw. Also, the
result (24) shows that thie- 1 one-forms{w(") | 0 < i < I} arelinearly

dependent ovek. This implies that for somé < k& < I d ' d d d
Gr—2 =G| = ) L2 | 5 )+ G | —
. at dt dt dt
W ew, cD;, foralli >0 d P P
“ (ﬁ) =a (i) = (&) )
Thusw € D2, by definition of DX, i.e.,dim D%, > 1. “ ' '

To complete the proof of Theorem 4.1, we use the following Iemmahere deg
whose proof is given in Appendix.

Lemma 4.2:If dim D}, # 0, then under Assumption 1 over an
opensel” x U C R™ x R™*!' there exist meromorphic functions

G < degGi—1 — 1 anddeg L; > 1. The algorithm
terminates in a finite number of, say steps. As a result, a greatest
left common factorGy.(d/dt) of Gi(d/dt) and G2(d/dt) is ob-

2 R R S Randh : R = Rwithi > 1, a+1l=n tained which yields thaid(d/dt) = Gi(d/dt)G1(d/dt) and
andrin + 1 = m such that Ga(d/dt) = WGk(d/dt)GQ(d/df)_, where the two polynor_nla_ls
Gi(d/dt) and G2(d/dt) are obtained by recursively substituting
Bz -0 ““z(l)) -0 G;(d/dt) for 2 < i < k into (28) and (27). The polynomials,
N o ) i (26) andG- are left coprime polynomials if and only ifeg G = 0 and
{ z=2z (y, y Ly WD u('")> . Gy # 0.

) Consider the following nonlinear system as an illustrative example:
It follows from dim D7, > 1 and Lemma 4.2 that the nonlinear system

(1) is not controllable. N N O N o,

Remark: The solution for H, P and Q) in (22) is in general @ M (y ) Yy,

- . y gyt - 2 'Y ru=0 (29)
nonunique, even in the case tithis a greatest left common factor. Fur- y
ther, the expression for the one-fotm= P(d/dt) dy — Q(d/dt) du
is also nonunique. I is an exact one-form, i.e., there is a functiorivhereP and@ of the system polynomial equation in the form (19) are
z € K such thatiz = w, then it is straightforward to construct themonic polynomials as follows:
functionsh andz in (3) to obtain the necessity result of the theorem.
However, this is not generally true since there is no guarantee that d a2 2y 4y - p ( a )) —yWy
every common factoH yields an exact one-form such that (23)is P <7> = <7> e A <7> +
satisfied. For this reason, the proof of the necessity part of Theorem dt dt y dt ¥
4.1 deals with the general case thain (23) is a nonexact one-form. < d ) < d ) gy 4y
The proof is established by showinge D7, and using the results of dt dt Yy
Lemmas 2.1 and 4.2.

Remark: There is a connection between Lemma 3.2 and Propositié®plying the Euclidean algorithm directly yield®(d/dt) =
3.4 in [1] where controllability of nonlinear state space systems is d@{d/d#)((d/dt)— (y'") —u)/y)). Thus a greatest left common factor
fined in terms of autonomous no-exact one-forms. The result of Progtf-P andQ is H(d/dt) = Q(d/dt) = (d/dt) — (4" + y)/(y))
sition 3.4 of [1] is to relate the nonlinear system controllability to th@nd a monic polynomial equation of the system is
relative degree of the no-exact one-forms. There are two essential dif-
ferences between Lemma 4.2 and Proposition 3.4 of [1], i.e., (i) Lemma I <i> <1_:, < d ) dy—0 <i> du) —o
4.2 deals with the differential subspace of nonlinear input/output sys- dt dt dt
tems which is in a more general framework than that of the nonlinear
state space systems in [1]; (i) Lemma 4.2 deals with controllabilityhere P(d/dt) = (d/dt) — (3 — u)/(y)).Q(d/dt) = 1. Since
defined in terms of autonomous variables in the form (26) rather th@hand@ have a left common factall with deg H = 1, the system
autonomous one-forms in [1]. The former case requires further stb-uncontrollable. It is noted that, in this example= P(d/dt) dy —
stantial treatments on integrating the autonomous variable. Q(d/dt) du is a nonexact one-form.

V. COMPUTATION OF LEFT COMMON FACTORS VI. CONCLUSION

Theorem 4.1 provides a criterion for testing the controllability of In this note, we have developed a polynomial approach to nonlinear
nonlinear systems, which is to examine whether the polynomiagstem controllability. It is shown that, with the definition of control-
P,Q € K[d/dt] of the nonlinear system have a left common factofability as the nonexistence of autonomous variables, a differential
We now present a procedure based on the Euclidean Algorithm faonlinear system is controllable if and only if two polynomials in an
computing a greatest left common factor of two polynomials i@re ring have no left common factors. This result extends nonlinear
Kld/dt]. Specifically, forG,, G2 € K[d/dt] with deg Gy = d,, system controllability to a broad class of nonlinear system beyond
deg G = d2, andd; > da, the Euclidean Algorithm firstly computes the state equation framework. We have also shown that the Euclidean
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{d:(i)

0<iLl—- 1} C spany {dy(i),du‘(j)
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()gigﬁ—l—l—l,()gjgﬁH—l—l}

a0 ¢ span {dz(i)

Ogigl—l}. (33)

a-® ¢ span {(Iy, dy ",y du,au du(m_w} , Vo<i<i-—1.

dim span {dy, (iy(l), RN dy(ﬁfl),du,du(l), RV du(mfl)} + dimspan {dz,(]z(l), ce. ,(I:Ufl)} =n+m+I1<dimD] =n+m.

algorithm provides an effective algorithm for verifying this condition. On the other hand, it follows from (32) that the first equation shown
This leads to a computable procedure for testing nonlinear systatrthe top of the next page holds true. This implies that
controllability using computer algebra. An important question that

is a logical follow-up is the implications of these results to the locaban {dy, dyM, . dy Y da,da, L du('"’“}

stabilization of nonlinear systems around an equilibrium point.

APPENDIX

Proof of Lemma 4.2:If D%, C Di satisfiesdim D%, # 0, it
contains at least one nonzero exact one-form by Lemma 3.1. £6€
be such thatlz € DX, with dz # 0, and letn and, with 0 <

7 < n-—1and0 < m < m — 1, be the largest integers such that

(02)/(8y'™) £ 0, (02)/(8u™) # 0. Thus,d= can be written as

IR N ERN RN S e
,4_;W(iy +;mdn . (30)

The integration of this equation yields the functiom the form (3) in
anopensel x U C R" x R™** with (2) being satisfied.

Sincedz € D=, d='® € Df Vk > 0. Asdim D¥ = n + m, there
exists a largest integérwith 1 < 7 < n + m such that{dz(’> |0 <
i <1—1}is asetoflinearly independent exact one-form®inover
K. Thus, we write

(-1
a=0 =3 e d2. 1)
=0

The integration of this equation yields a functibrin the form (3) in
anopensel” x U C R™ x R™" with (2) being satisfied.
By (30) we obtain that fob < i <[

0z du(ﬁz-‘ri) I

dz au(ﬁl) |

(fte) .
= 3, dy +

(32

where the dots indicate terms involving lower order derivativegyof

anddu, and(8z)/(dy"™) dy " £ 0and(9z)/(du™) dul™+) £
0 are satisfied. ‘ _
Sincedz € span,c{dy(l),clu(]) |0 <i<n0< 5 < m} by (30)

(31), we have (33), as shown at the top of the page. By (32) and (33),

we havedy ") ¢ span,c{dy(i),du(j) [0 <i<Aa+l-1,0<
J < m 4+ 1}. Under Assumption 1 on the regularity Bf, this is only
possible ifn + 1 > n.

Nspan {dz,(]z(”, ce (I:U_1)} ={0}. (34
Sinced=") € D, 0 < i <I1—1,we have

span {dy, dy D, Ay du, du du(rn,—])}
& span {dz, dz(l)7 e dz(lfl)} c D

It follows from this and (34) that the second equation at the top of the
page holds true. This, together with4- 1 > n, yields# + 1 = n.

With 4 +1 = n, consideri = I in (32). The termdy**" =
dy"™ is linearly dependent odu(™ by (17). In order thatiz\" €
spang{dz,d=V, ..., dz'""D} € D} be satisfied, the term
(02)/(0ul™)dul™ D with (82)/(du™) # 0 in (32) withi = I
must cancel out the like term due@®2)/(dy ™ )dy" . This leads to
m+1l=m. O
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