shown in the top figure (the disturbance vector is actually a randomly generated vector multiplied by the displayed variable). Note that the system states are affected by the disturbances (bottom), but the state vector remains inside the sliding surface (center). The sliding mode controller performs optimal \mathcal{H}_2-guaranteed cost attenuation of the nonmatching disturbances.

V. Conclusion

The design of sliding mode controllers for nominal systems may lead to an unpredictable behavior of the closed loop in the case of nonmatching disturbances. In order to take such disturbances into account, an \mathcal{H}_2 guaranteed cost design of sliding surfaces has been developed in this note for convex-bounded model uncertainties of polytope type. The quadratic stability of the closed loop is guaranteed by the method, and a performance level (defined in terms of an \mathcal{H}_2 norm) is assured. The design is performed via a convex optimization method, using highly efficient algorithms, with assured convergence to the global optimum.

REFERENCES

The Kharitonov Theorem with Degree Drop

Jan C. Willems and Roberto Tempo

Abstract—The purpose of this note is to present a proof of the Kharitonov theorem based on Bezoutians. An interesting consequence of this proof is that it shows the validity of Kharitonov’s result in the presence of a degree drop.

Index Terms—Bezoutians, Kharitonov theorem.

I. INTRODUCTION

In the early proofs of the Kharitonov theorem [1]–[4], [11], it is generally assumed that the degree of the interval polynomial family is constant. The question thus arises if the Kharitonov result remains valid with degree drop. In order to put the problem clearly in perspective, it is convenient to establish first the notation.

Let $I \subseteq \mathbb{R}[\xi]$ denote the interval family of polynomials defined by the coefficient intervals $[a_k, b_k]$, $k = 0, 1, \ldots, n$, i.e.,

$$I = \{ p \in \mathbb{R}[\xi] : \ p(\xi) = p_0 + p_1 \xi + p_2 \xi^2 + \cdots + p_n \xi^n, \quad \text{with } a_k \leq p_k \leq b_k \}.$$

The problem is to find conditions so that all of the elements of I are Hurwitz (a polynomial is said to be Hurwitz if it has all of its roots in the open left half of the complex plane).

Define $E_1(\xi) = a_0 + a_1 \xi^2 + a_2 \xi^4 + a_3 \xi^6 + a_4 \xi^8 + a_5 \xi^{10} + \cdots$

$E_2(\xi) = \alpha_0 + \alpha_1 \xi^2 + \alpha_2 \xi^4 + \alpha_3 \xi^6 + \alpha_4 \xi^8 + \alpha_5 \xi^{10} + \cdots$

$O_1(\xi) = \alpha_1 \xi + \alpha_2 \xi^3 + \alpha_3 \xi^5 + \alpha_4 \xi^7 + \alpha_5 \xi^9 + \alpha_6 \xi^{11} + \cdots$

Define the polynomials

$$k_1(\xi) = a_0 + a_1 \xi^2 + a_2 \xi^3 + a_3 \xi^4 + a_4 \xi^5 + a_5 \xi^6 + a_6 \xi^7 + \cdots$$

$$k_2(\xi) = \alpha_0 + \alpha_1 \xi^2 + \alpha_2 \xi^3 + \alpha_3 \xi^4 + \alpha_4 \xi^5 + \alpha_5 \xi^6 + \alpha_6 \xi^7 + \cdots$$

$$k_3(\xi) = \beta_0 + \beta_1 \xi^2 + \beta_2 \xi^3 + \beta_3 \xi^4 + \beta_4 \xi^5 + \beta_5 \xi^6 + \beta_6 \xi^7 + \cdots$$

$$k_4(\xi) = \gamma_0 + \gamma_1 \xi^2 + \gamma_2 \xi^3 + \gamma_3 \xi^4 + \gamma_4 \xi^5 + \gamma_5 \xi^6 + \gamma_6 \xi^7 + \cdots$$

The polynomials k_1, k_2, k_3, k_4 are called the Kharitonov polynomials associated with I. In the classic paper [1], Kharitonov proved the remarkable result that, under the assumption that the highest degree coefficient of the interval family does not vanish (from which either $a_n > 0$ or $b_n < 0$), then all elements of I are Hurwitz if and only if the four Kharitonov polynomials k_1, k_2, k_3, k_4 associated with I are Hurwitz.

In this paper, we study the following question: What is the situation if the highest degree coefficient is allowed to vanish (from which, if

Manuscript received February 18, 1998. Recommended by Associate Editor, J. Chen.
J. C. Willems is with the Department of Mathematics, University of Groningen, 9700 AV Groningen, The Netherlands (e-mail: j.c.willems@math.rug.nl).
R. Tempo is with CENS-CNR, Politecnico di Torino, 10129 Torino, Italy.

Publisher Item Identifier S 0018-9286(99)08594-3.
either \(\underline{a}_n = 0 \) or \(\overline{\pi}_n = 0 \)? In order to examine this, observe that it is easy to see that a real polynomial \(p \) with degree \(p = n - 1 \) and positive coefficients is Hurwitz only if \(\epsilon \xi^n + p(\xi) \) is Hurwitz for \(\epsilon > 0 \) sufficiently small. The \(\epsilon \) version of this statement (which, if correct, would prove the Kharitonov result with a vanishing leading term) is, unfortunately, not correct. Indeed, as observed before in [5], \(\epsilon \xi^n + p(\xi) \) may be Hurwitz for \(\epsilon > 0 \), but its roots may hit the imaginary axis for \(\epsilon = 0 \). The following polynomial is an example of such a situation: \(p(\xi) = 0.5\xi^5 + 0.5\xi^4 + 0.5\xi^3 + 0.5\xi^2 + 0.5\xi + 1 \). It has roots on the imaginary axis, but \(\epsilon \xi^n + 0.5\xi^5 + 0.5\xi^3 + 0.5\xi^2 + 0.5\xi + 1 \) is Hurwitz for \(\epsilon > 0 \) sufficiently small. To verify this, apply the Routh test. (In [5], it is also shown that \(n = 5 \) provides the lowest order such example.)

This is relevant for the generalization of Kharitonov’s result in the case of a vanishing leading term. Assume that \([0, \overline{\pi}_n]\) is the coefficient range of the highest coefficient of the interval polynomial, and that the four usual Kharitonov polynomials \(k_1, k_2, k_3, k_4 \) are Hurwitz. Does it follow that a polynomial \(p \) in the interval family with vanishing leading coefficient is Hurwitz? Of course, it follows from the usual Kharitonov theorem that \(\epsilon \xi^n + p(\xi) \) will be Hurwitz for \(\epsilon > 0 \) sufficiently small, but, as we have just seen, this simply does not imply that \(p \) itself is Hurwitz. One way around this is to consider, in addition to the four usual Kharitonov polynomials, \(k_1, k_2, k_3, k_4 \), the polynomials

\[
k_5(\xi) = a_{n-1}\xi^{n-1} + a_{n-2}\xi^{n-2} + \pi_n - \pi_0\xi^{n-3} + \pi_{n-2}\xi^{n-4} + \pi_{n-3}\xi^{n-5} + \pi_{n-k}\xi^{n-k} + \pi_{n-(k+1)}\xi^{n-(k+1)} + \cdots
\]

\[
k_6(\xi) = a_{n-1}\xi^{n-1} + a_{n-2}\xi^{n-2} + a_{n-k}\xi^{n-k} + \pi_n - \pi_0\xi^{n-3} + \pi_{n-2}\xi^{n-4} + \pi_{n-3}\xi^{n-5} + \pi_{n-(k+1)}\xi^{n-(k+1)} + \cdots
\]

Notice that \(k_5 \) and \(k_6 \) are not Kharitonov polynomials. It now follows directly from the classical Kharitonov result (using, in the case where the leading coefficient is zero, \(k_1, k_2, k_3, k_4 \) for odd and \(k_1, k_2, k_3, k_4 \) for \(n \) even) that the interval family is Hurwitz if and only if the six extreme polynomials \(k_1, k_2, k_3, k_4, k_5, k_6 \) are Hurwitz. This is indeed the result obtained in [5].

However, surprisingly, it turns out that \(k_1, k_2, k_3, k_4 \) Hurwitz implies that \(k_5, k_6 \) are also Hurwitz, and so there is no need to modify Kharitonov’s theorem in any way in the case where the leading term vanishes! This is what we will prove in this note. This result is not new. In fact, it was demonstrated in [6], using Nyquist-like complex function analysis. There are also other, shorter proofs [7] of this result. Our method of proof, however, is new. It provides a short proof that encompasses the vanishing leading coefficient case without having to pay special attention to it. Moreover, this proof is based on a Lyapunov function argument, an aspect that by itself has some merit in its own right.

The result that we want to prove is the following.

Theorem 1: All elements of \(I \) are Hurwitz if and only if the four Kharitonov polynomials \(k_1, k_2, k_3, k_4 \) associated with \(I \) are Hurwitz.

Assume, without loss of generality, that \(\underline{a}_n \geq 0 \). Since, obviously, \(k_1, k_2, k_3, k_4 \subseteq I \), it suffices to prove the “if” part. The “if” part is the classical Kharitonov result [1]–[4] when \(\underline{a}_n > 0 \). In Section III, we prove that this result also holds for the case \(\underline{a}_n = 0 \) and \(\overline{\pi}_n > 0 \). We remark that a degree drop of more than one immediately implies that one of the Kharitonov polynomials is not Hurwitz, and therefore \(\overline{\pi}_{n-1} > 0 \).

II. The Bezoutian

Let \(p \in \mathbb{R}[\xi] \). Define \(p^* \in \mathbb{R}[\xi] \) by \(p^*(\xi) = p(-\xi) \). The **Bezoutian** (see, e.g., [8]) associated with \(p \) is a two-variable polynomial \(B_p \in \mathbb{R}[\xi, \eta] \) defined by

\[
B_p(\xi, \eta) = \frac{p(\xi)p(\eta) - p^*(\xi)p^*(\eta)}{\xi + \eta}.
\]

It is easily verified that, since \(p(\xi)p(-\xi) - p^*(\xi)p^*(-\xi) = 0 \), \(p(\xi)p(\eta) - p^*(\xi)p^*(\eta) \) has a factor \(\xi + \eta \), and so \(B_p \) is indeed polynomial. In terms of the even and odd parts of \(p \), \(E_p = (p + p^*)/2 \) and \(O_p = (p - p^*)/2 \), \(B_p \) is equal to

\[
B_p(\xi, \eta) = 2 E_p(\xi)O_p(\eta) + O_p(\xi)E_p(\eta).
\]

Now, \(B_p \) is of the form

\[
B_p(\xi, \eta) = \sum_{k,l=0}^{\deg_{\text{even}}(p)-1} A_{kl}\xi^k\eta^l
\]

with \(A_{kl} = A_{lk} \). Denote the real symmetric matrix \([A_{kl}]_{k,l=0}^{\deg_{\text{even}}(p)-1} \) by \(B_p \). Define the rank of \(B_p \) to be equal to that of \(B_p \), and define \(B_p \) to be positive definite if \(B_p \) is.

The following classical result relates the stability of \(p(\xi)/dt \) to \(0 \) with the Bezoutian \(B_p \).

Proposition 2 [8]: The polynomial \(p \in \mathbb{R}[\xi] \) is Hurwitz if and only if \(B_p \) is positive definite.

In order to make this note self contained, a Lyapunov proof of this proposition has been included in the Appendix.

An interesting immediate consequence of Proposition 2 is the following result on the stability of linear systems whose defining polynomial is a convex combination of even and odd polynomials. Let \(E_1, E_2, \ldots, E_N \in \mathbb{R}[\xi] \) be even polynomials \(E_k(\xi) = E_k(-\xi) \); hence, only even powers appear. Let \(O_1, O_2, \ldots, O_N \in \mathbb{R}[\xi] \) be odd polynomials \(O_k(\xi) = -O_k(-\xi) \); hence, only odd powers appear.

Proposition 3 [9]: Assume that the polynomials \(p_{k\ell} = E_k + O_{\ell} \) \(k = 1, 2, \ldots, N \); \(\ell = 1, 2, \ldots, N' \) are Hurwitz. Assume that \(\alpha_k > 0 \), \(k = 1, 2, \ldots, N \) and \(\beta_{\ell} > 0 \), \(\ell = 1, 2, \ldots, N' \). Then the polynomial

\[
p = \sum_{k=1}^{N} \alpha_k E_k + \sum_{\ell=1}^{N'} \beta_{\ell} O_{\ell}
\]

is also Hurwitz.

Proof: Note that

\[
B_p = \sum_{k=1}^{N} \sum_{\ell=1}^{N'} \alpha_k \beta_{\ell} B_{p_{k\ell}}.
\]

Hence, \(B_p \) is nonnegative definite, and its rank is equal to the maximum of the degrees of the polynomials \(p_{k\ell} \). Since this maximum is, in fact, also the degree of \(p \), it follows from Proposition 2 that \(p \) is Hurwitz.

III. Proof of Theorem 1

Assume that \(k_1, k_2, k_3, k_4 \) are Hurwitz and, without loss of generality, assume that \(\pi_n > 0 \). Note that this implies that \(\alpha_k > 0 \) for \(k = 0, 1, \ldots, n-1 \). Hence, \(p \in I \) implies that all of its coefficients are positive.

1) First, we prove that every convex combination \(k = \alpha_1 k_1 + \alpha_2 k_2 + \alpha_3 k_3 + \alpha_4 k_4 \), with \(\alpha_1, \alpha_2, \alpha_3, \alpha_4 \geq 0 \) and \(\sum_{i=1}^{4} \alpha_i = 1 \), is also Hurwitz. In order to see this, write \(k \) as

\[
k = (\alpha_1 + \alpha_2) E_1 + (\alpha_3 + \alpha_4) E_2 + (\alpha_1 + \alpha_3) O_1 + (\alpha_2 + \alpha_4) O_2
\]
and use Proposition 3. Thus, all polynomials in the convex hull of \(\{k_1, k_2, k_3, k_4\} \) are Hurwitz.

2) Next, observe (see (10) and (11)) that any \(p \in I \) satisfies the following relations for \(\omega \geq 0 \):

\[
\begin{align*}
\Re (k_1(i\omega)) &= \Re (k_2(i\omega)) = E_1(i\omega) \\
E_2(i\omega) &= \Re (k_3(i\omega)) = \Re (k_4(i\omega)) \\
\Im (k_1(i\omega)) &= \Im (k_3(i\omega)) = -iO_1(i\omega) \\
-iO_2(i\omega) &= \Im (k_2(i\omega)) = \Im (k_4(i\omega)) \\
\end{align*}
\]

and

\[
\begin{align*}
E_1(i\omega) &\leq \Re (p(i\omega)) \leq E_2(i\omega) \\
-iO_1(i\omega) &\leq \Im (p(i\omega)) \leq -iO_2(i\omega).
\end{align*}
\]

From these relations, it follows that \(p(i\omega) \) belongs to the convex hull in \(\mathbb{C} \) of \(\{k_1(i\omega), k_2(i\omega), k_3(i\omega), k_4(i\omega)\} \).

3) By 1), no convex combination \(k \in \{k_1, k_2, k_3, k_4\} \) can have a root on the imaginary axis. By 2), this implies that, also, no element of \(I \) can have a root on the imaginary axis.

4) Note that since \(k_1, k_2, k_3, k_4 \) are Hurwitz and \(\sigma_n > 0 \), all of the coefficients of \(k_1, k_2, k_3, k_4 \) are positive. Hence, two situations can occur: either \(\sigma_n > 0 \), in which case all elements of \(I \) have degree \(n \), or \(\sigma_n = 0 \), in which case two elements of \(\{k_1, k_2, k_3, k_4\} \) have degree \(n \) and two elements have degree \(n - 1 \) and, moreover, all elements of \(I \) have degree \(n \) or \(n - 1 \).

5) Let \(p \in I \). Let \(k \in \{k_1, k_2, k_3, k_4\} \) be such that degree \(k = \deg(p) \). Now, consider the convex combination \(p_n = \alpha p + (1 - \alpha) k, 0 \leq \alpha \leq 1 \), of \(p \) and \(k \). Obviously, \(p_n \in I \). Hence, by 3), \(p_n \) has no root on the imaginary axis for \(0 \leq \alpha \leq 1 \). Furthermore, \(p_0 = k \) is Hurwitz and degree \((p_0) = \deg(k) \) for \(0 \leq \alpha \leq 1 \). Hence, \(p_1 = p \) is also Hurwitz.

This ends the proof of Theorem 1. Note that we proved the theorem both for \(\sigma_n > 0 \) and for \(\sigma_n = 0 \).

In closing, we pose as an open problem the question to provide a direct, matrix proof of the implication that positive definiteness of the four matrices \(\tilde{B}_{k_1}, \tilde{B}_{k_2}, \tilde{B}_{k_3}, \tilde{B}_{k_4} \) implies positive definiteness of \(\tilde{B}_p \).

APPENDIX

Proof of Proposition 2

1) (if): Let degree \(\deg(p) = n \). Consider the (Lyapunov) function \(V \) induced by \(\tilde{B}_p \):

\[
V(w, \frac{dw}{dt}, \cdots, \frac{d^{n-1}w}{dt^{n-1}}) = \sum_{k, \epsilon = 0}^{n-1} A_k \frac{d^\epsilon w}{dt^\epsilon} \frac{d^{n-\epsilon}w}{dt^{n-\epsilon}}.
\]

Using the definition of the Bezoutian, we obtain

\[
\frac{d}{dt} V(w, \frac{dw}{dt}, \cdots, \frac{d^{n-1}w}{dt^{n-1}}) = \left[\frac{d}{dt} V(w, \frac{dw}{dt}, \cdots, \frac{d^{n-1}w}{dt^{n-1}}) \right]^2.
\]

Hence, along solutions of \(p(d/dt)w = 0 \), this derivative is equal to \(-|p'(d/dt)w|^2\). Since \(\tilde{B}_p \) is symmetric and positive-definite, \(V \) is a positive-definite Lyapunov function for \(p(d/dt)w = 0 \) with a nonpositive-definite derivative. Hence, by the invariance principle, all solutions of \(p(d/dt)w = 0 \) approach, for \(t \to \infty \), the set where \(p'(d/dt)w = 0 \) or, in other words, the set where both \(p(d/dt)w = 0 \) and \(p'(d/dt)w = 0 \). We claim that, since rank \((\tilde{B}_p) \) = rank \((\tilde{B}_k) \) = degree \(p \), and \(p' \) are coprime. If \(p = f_g \) and \(p' = f_g' \) with \(f = f' \), then \(B_{p}(\zeta, \eta) = f(\zeta)B_{g}(\zeta, \eta)f(\zeta) \), which is easily seen to imply that rank \((\tilde{B}_p) \leq \text{rank}(\tilde{B}_k) \leq \text{degree}(p) \). This allows us to conclude that all solutions of \(p(d/dt)w = 0 \) converge to zero as \(t \to \infty \).

2) (only if): Assume that \(p \) is Hurwitz. From the definition of the Bezoutian, it follows that, for any solution \(w \) of \(p(d/dt)w = 0 \), there holds

\[
\sum_{k, \epsilon = 0}^{n-1} A_k \frac{d^\epsilon w}{dt^\epsilon}(0) \frac{d^{n-\epsilon}w}{dt^{n-\epsilon}}(0) = \int_0^\infty \left| p' \left(\frac{d}{dt} \right) w \right|^2 dt.
\]

This equation shows that \(\tilde{B}_p \) is nonnegative definite. Furthermore, since \(p \) is Hurwitz, \(p \) and \(p' \) are coprime, from which the right-hand side cannot be zero unless \(w = 0 \), which shows that the rank of \(\tilde{B}_p \) is indeed equal to degree \(p \).

ACKNOWLEDGMENT

The authors would like to thank V. Kharitonov for a careful reading of the manuscript.

REFERENCES

