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REPRESENTATIONS OF
SYMMETRIC LINEAR DYNAMICAL SYSTEMS*

FABIO FAGNANI? AND JAN WILLEMS$

Abstract. The purpose of this paper is to study static symmetries in linear time-invariant dif-
ferential dynamical systems. The main result is a representation theorem which brings the symmetry
strongly into evidence. This result is then applied to a number of examples involving permutations
and rotations. We close by proving a general result on the representation of compact groups on the
ring of unimodular polynomial matrices.
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1. Introduction. Symmetry is a very appealing concept in many scientific en-
deavors. It plays a major role particularly in physics and in chemistry (for example,
in crystallography). It has also been extensively studied in the classical theory of
dynamical systems. A salient result in this area is Noether’s theorem showing the
equivalence of symmetries and conservation laws in Hamiltonian dynamics.

Also, many control problems will exhibit symmetry. For example, it is of interest
to ascertain if a platform suspended on four pivots with a 90 rotation symmetry can
be adequately stabilized by a control mechanism that also has this symmetry. Many
mechanical systems will have a rotation symmetry, and an analogous question occurs
in this case. A classical control problem that .can be viewed as a symmetry question is
whether an optimal controller for a time-invariant system will itself be time-invariant.

Although some interesting work has been done on symmetry questions in control,
it is not a standard problem area. Notable contributions are the papers by Hazewinkel
and Martin [5], [6] and Martin [8] motivated by certain questions related to the stabi-
lization of linear systems by means of symmetric feedback control laws. Other places
in control where symmetry problems have been studied are [1], [4], [11]-[13]. These
authors are mainly concerned with nonlinear systems.

The purpose of the present paper is a fundamental study of symmetry in the
context of linear systems described by differential equations. We will mainly consider
representation questions. In a later paper, we plan to apply these results to control
problems. The mathematical formulation follows the setting proposed in [14]. In a
sense, the paper is a sequel to [2], where an elegant representation result has been
obtained for time-reversible systems (cf. Theorem 2). In the present paper, we will
study static symmetries and apply the representation results obtained especially to
systems that are invariant under permutations or under rotations.

In an essential way, the paper uses the theory of group representations, a rather
abstract area of mathematics whose original motivation lies very much in various
aspects of symmetry. For an introduction to the theory of group representations,
refer to [9].
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We close this introduction with a few words about notation and nomenclature.
Throughout, ]K will denote R or C. Some of our results will be rather different

for R and for (. ]Ks denotes the n-dimensional (column) vectors over ]K, and
denotes the matrices over ]K with n rows and n2 columns. We will always consider
vectors as columns and occasionally write the n-column vector x in term of its com-

ponents as col(xl,x2,... ,x). A composite matrix will be written as M-- [MliM2],
and so forth; diag(m,m2,..., mn) denotes then n n diagonal matrix with (i, i)th
element mi. A similar notation will be used for block diagonal matrices. The deter-
minant of a matrix is denoted as det.

Let f A B. For A C A, the restriction of f to A will be denoted as f
The map that identifies an element of A C A with the same element in A will be
called the canonical injection, ker means kernel, and im means image. The set of
infinitely differentiable maps from A to B will be denoted as C (A; B).

The set of polynomial matrices over ]K with n rows and n2 columns in the
indeterminate s will be denoted by ]KTM n[s]; ]K[s] denotes the set of polynomial
matrices with n columns and any (of course, finite) number of rows. An element
R E]KTM n2[s] is said to be of full row rank if it contains a n n submatrix with
determinant nonzero. We will denote the set of full row rank elements of ]K n Is] by

n ]k,-o x n2]K;rx Is]; of Ern[zs] denotes the elements of "Ir Is] with nl rows.
Let 7 be a ring with an identity. An element U E 7 is said to be unimodular

if there exists U- 7 such that UU- U-U is equal to the identity. The
unimodular elements of T clearly form a multiplicative group, called the group of
units of 7. The set of n n matrices over 7 also forms a ring. Its group of units
will be denoted by GL(n, T). The following two examples will be very important to
us throughout the paper.

1. GL(n, ]K), the set of nonsingular elements of
2. GL(n, ]K[s]), the set of unimodular (n n) polynomial matrices. Thus V

]Kx’[s] belongs to GL(n, ]K[s]) if and only if its determinant is nonzero and belongs
to ]K, i.e., if it is a nonzero constant.

The set of isomorphisms on the vector space V is denoted by GL(V). Thus,
by considering the matrix representation of elements of GL(]Kn) with respect to the
standard basis, GL(E") GL(n, E). As such, we will not make a distinction between
these two sets and use GL(E") even where it may be more natural to write GL(n, K).

Let M be a set. A parametrization (P, r) of M consists of a set P and a surjective
map r P -- M. The set P is called the parameter space. Typically, M is an abstract
set, while P consists of concrete objects (as matrices or polynomial matrices--in which
case, we refer to a matrix parametrization or a polynomial matrix parametrization
of M). Note that r is surjective but not necessarily bijective. If r is a bijection, we
will call the parametrization trim. In any case, the map r P M leads to the
equivalence relation E on P defined by (plEp2):= (r(pl) r(p2)). This equivalence
relation leads to canonical forms and to invariants. A subset Pc c_ P will be called a
canonical form for the parametrization (P, r) if r(Pc) M, i.e., if (Pc, r IRe) is also
parametrization of M. It is a trim canonical form if r ]Pc" Pc --* M is a bijection.

2. Differential dynamical systems. Following the terminology explained in
[15], we will define a dynamical system to consist of a triple, (, W, B), with
a subset of R, called the time axis; W a set called the signal space; and B a subset

of Wv(:= all maps from 1" to W), called the behavior. Thus the behavior consists of
given family of trajectories w 1" -- R.
We will consider continuous-time dynamical systems with time axis l" ]I( and
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with signal space W ]Kq, with ]K (the real case) or ]K C (the complex case).
We will treat both cases in parallel. As we will see, there are distinct advantages,
stemming from the theory of group representations, not to limit attention to the
real case, although, admittedly, it is the real case that is of interest in applications.
However, in 7.4 we see that rotation symmetries actually lead to complex systems!

The dynamical system E (l, ]Kq, B) is said to be linear if B is a linear subspace
of (]q)ll (the set of all maps from to ]q) and time-invariant if atB B for all
t E l; a denotes the backward t-shift (specifically, for f ]Kq and t E ,
atf: ]K is defined by (atf)(t’) := f(t + t’)).

In the present paper, we study behaviors B that are the solution set of a system
of constant coefficient linear differential equations

(1) R w=O

defined in terms of a polynomial matrix R ]K[s].
formally defined as follows:

The solution set of (1) is

0 for all t R}.
The assumption that w is infinitely differentiable is used mainly for convenience. The
results may be generalized without difficulty to the case that B also allows locally
integrable functions, or distributions. However, for the purposes of the present paper,
the smoothness assumption simplifies the analysis somewhat. In other applications,
the C assumption may be very awkward.

The class of dynamical systems studied in this paper consists of those whose
behavior is the kernel of a constant coefficient linear differential operator (with, for
R e ]Pq[8], R(d/dt) viewed as a map from C(;Kq) to C(;KP)). We will
denote this class of dynamical systems as : and refer to its elements as differential
dynamical systems.

The above shows that (]K’q[s], ) is a parametrization of /:q with for R
]K’q[s], r(R) := (I,]Ka, ker R(d/dt)). This induces the equivalence relation on
R’a[s] defined by (R1 R2) := (r(R1) r(R2)). Note, in fact, that r is not
injective. Indeed, if R e ]KPq[s] and U e GL(p,]K[s]) (thus U is unimodular), then
clearly UR R.

We will call the system of differential equations (1) or, equivalently, R, a behavioral
equation representation of r(R); (1) or, equivalently, R is called a minimal (behavioral
equation) representation of r(R)if (R e KPlq[8], R e Pq[8], and R R)
implies (p _> p). Let E a and let R be a minimal behavioral equation of E.
Obviously, the number of rows of R E ]K a Is] will depend only on E but not on the
particular minimal representation R of E. We will denote the number of rows of R by
p(E). Actually, p(E) is equal to the number of output variables in any input/output
representation of E (see [10]).

The following characterization of minimal representations will play an important
role throughout the paper.

xq ][. x qPROPOSITION 1. (1) is minimal if and only if R fr Is] (that is, R e Is]
is of full row rank). Moreover, if (1) is minimal and if R1 e ’q[s], then (R
R and R1 is also minimal = (RI and R both belong to ]KP(E)q[s], and there exists
a V e GL(p(E), ]K[s]) such that R UR). Finally, this U is unique.

Proof. For the proof, see [10]. [:l
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This proposition implies that all minimal representations may be obtained from
one by acting (as premultiplication) with the unimodular group. The freedom that
this implies on the representations of a given dynamical system in terms of (minimal)
behavioral equations will allow us to choose R’s in (1) that have an appealing form,
reflecting symmetries.

3. Symmetric systems. The purpose of this paper is to study symmetries of
dynamical systems in :q. A symmetry is induced by a transformation group, the
basic idea being that we have a group of transformations mapping a dynamical system
F (R, Kq, B) E/:q into another such dynamical system. If this transformation does
not change , then we will call F symmetric. We will now formalize this.

3.1. Transformation groups. Let S be a set and G be a group. Let T be a

map from G into the group of bijections on S. We will denote the T-image of g E G by
Ta. Then T is said to be a transformation group on S if T is a group homomorphism,
that is, if Talg Tal Tao (The multiplication gig2 refers to the multiplication in
the group G, while TalTa refers to composition of maps on S.) For s S, the set
O8 :- (s’ S 3g G such that s’ Tas} is called the orbit through s. It is
easily seen that, for sl, s2 S, either Osl O8:, or Osl NOs. q}, the first situation
occuring if and only if s2 E O81. The collection of orbits (08 s S} hence defines a
partition of S and thus an equivalence relation on S.

3.2. Symmetries. Let T be a transformation group on Eq. We will call the
dynamical system F Fq, T-symmetric if Ta F for all g G. Thus, for a
symmetric element , the orbit O is equal to the singleton

Let us now consider a few examples of symmetries on q.
Example 1 (time-invariance). Let G R and define, for F (R,

as TaF (JR, ]Kq, caB) (with ag the backward g-shift). It is easy to see that
for all g E R, and hence all elements of/q are symmetric in this sense. It is this
symmetry that we call time-invariance. It formalizes the fact that the laws governing
a dynamical system do not depend explicitly on time.

Example 2 (time-reversibility). Many examples of symmetries involve the group
consisting of only two elements, G (1, g}, 1 g g- 1. Then Tg (Tg)- 1; i.e. Tg is
an involution. Define, for Z q, TaF as TaF :-- (JR, ]q, rev B) with for
revw: ]R ]Rq, the time-reverse of defined by (rev w) (t) :-- w(-t). This F will
be symmetric with respect to this transformation group if and only if B rev B.
This symmetry is called time-reversibility. It expresses the fact that the system looks
identical when viewed backward in time. We have studied this symmetry in detail in
[2] and will return to it later in this paper.

3.3. Static symmetries. Let T be a transformation group acting on ]q; T
induces a symmetry on :q by defining for F (JR, Kq, B) -.q, Ta as TaF :--
(JR, ]I(q, TaB) with TaB := {w: R - Rq Iw’: ]R -- ]Kq such that w(t)= Taw’(t for
all t JR}. Note that, by a minor abuse of notation, we use the same symbol Ta as
acting on q, on B, and on ]Kq. Thus E is symmetric in this sense if w B implies

Taw B for all g G. Since Ta transforms the trajectories w in B by applying
the memoryless map Ta (that is, since it transforms trajectories w in a nondynamic
way), we will call such a symmetry a static symmetry. In fact, we will be particularly
interested in the case where Tg is linear for all g G. Such transformation groups
are the subject of the theory of group representations. It is customary to denote T
by p in that case.
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3.4. Group representations. Let V be a vector space over the field IK. A
group homomorphism p" G - GL(V) is said to be a (linear) representation of the
group G on V. If V is finite-dimensional, then the representation is called finite-
dimensional, and the dimension of V as a vector space is called the order of the
representation. In particular, if V is n-dimensional and if we represent elements of
GL(V) as matrices with respect to a fixed basis on V, then a representation of G will
correspond to each element of the group G, a nonsingular (n n) matrix over ]K such
that group multiplication goes over in multiplication of matrices. In particular, the
identity matrix will correspond to the unit element in G.

Example 3 (permutations). As a specific example of a static symmetry, let Sq
denote the group of permutations of q elements. This group is called the symmet-
ric group; it is a finite group consisting of q! elements. Now consider the map p
Sq GL(q), which associates with the permutation g’{1, 2,..., q} --* {1, 2,..., q}
the linear bijection on ]Kq that takes the vector col(Xl,X2,...,Xq) into the vector
col(xg(1),xg(2),...,xg(q)). Clearly, p defines a representation of Sq on ]Kq. Thus
p in this case maps onto the group of q q permutation matrices. A dynamical
system E (I,Kq, B) will be symmetric in the sense of the static symmetry in-
duced by this representation of Sq, provided that w col (wl,w2,...,wq) E B if

’) e B with (w w, w) any permutation ofand only if w’ col (Wl w2, wq

(wl, w2,..., wq). We can think of this symmetry as occurring when E models the dy-
namics of the positions of q identical particles on the line: feasible motions will remain
feasible motions after we interchange the positions of the particles. More meaningful
symmetries as representations of Sq (involving particles in the plane or in 3-space),
or of subgroups of Sq, will be considered later.

Let p" G --. GL(V) be a representation of G on V, with V a finite-dimensional
vector space over ]K. Throughout this paper, we will assume that G is either finite or
compact. In the compact case, G is assumed to be a compact Hausdorff topological
space with the group multiplication and the inverse continuous maps. A representa-
tion p" G GL(V) is then always assumed to be continuous.

A subspace V C_ V is said to be invariant if pgV C_ V for all g G. The
representation p is said to be irreducible if its only invariant subspaces are V and {0}.
When V is invariant, then pyl, defined by pyl. G --. GL(VI) with pgy .= pg Iy, yields
another finite-dimensional representation of G ply is called a subrepresentation. It is
a standard result form the theory of group representations that, if G is compact, then
a finite-dimensional subrepresentation can be written as the direct sum of irreducible
representations.

Let p G -. GL(V) and p2 G -- GL(V2) be two finite-dimensional repre-
sentations of the same group G. Then they are said to be isomorphic if V and V2
have the same dimension and if there exists an isomorphism S V V2 such that
2 SpgS-1 for all g G. Isomorphism of pl and p2 will be denoted by p p2. IfPg
p is not isomorphic to P2, then p and p2 are said to be distinct.

Thus the above implies that a representation p admits a decomposition of the
following type:

p - mpl m2p2 mkpk,

where P’"Pk are distinct irreducible representation and where

mj --mes
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Example 3 (continued). Recall that Sq denotes the group of permutations of q
elements. It is a finite group containing q! elements. The irreducible representations
of Sq have been studied in much detail in the literature. However, we will need only
two of them. Consider the following representations of Sq:

1. The identity representation, Pl Sq --+ GL(]K) with pl,g 1 for all g ESq.
This representation is of order 1 and hence irreducible;

2. The representation p2 defined as follows. Let V be the subspace of ]Kq con-
., -=i xi 0. Let Sq act on V bysisting of those vectors col (xi, x2,.. xq) such that q

p2,gcol (Xl,X2,... ,xq) :-- col (xg(1),xa(2),... ,Xg(q)). It is easy to prove that p2 defines
an irreducible representation of Sq. Since dim V q- 1, its order is q- 1.

Let p Sq Gg.(Kq) be the representation of Sq introduced in Example 3:
pgCOl(Xl,X2,...,Xq) :-" col(Xg(1),Xg(2),...,Xg(q)). Write ]Kq Vi @ V2 with V1
(col(xl,x2,... ,xq) e ]Kq Ix1 x2 xq} and V2 (col(xl,x2,... ,xq) e ]Kq

x - x2 /... + Xq 0. Clearly, V1 and V2 are p-invariant subspaces, pyl p and
pv. p2. Hence, in this case, the decomposition of p in terms of the irreducible
representations of Sq becomes p p @ p2. (We hence have m m2 1, while all
the other mi’s are zero. Furthermore, nl 1 and n2 q- 1.)

4. Representation questions for symmetric systems. Assume that p G --.
GL(]q) is a representation of the group G on ]Iq and assume that (R, Ilia, B) e q
is symmetric in the sense of the static symmetry induced by this representation.
The problem studied in this paper is the following: Can this symmetry be put into
evidence by an appropriate behavioral equation representation of as (1), in which the
polynomial matrix R is such that this static symmetry becomes evident? Otherwise
stated, we want to come up with a parametrization, with a canonical .form for the
behavioral equations of systems with a static symmetry.

To give an example of the type of results that we seek, we repeat the main result
of [2]. This result involves time-reversibility, which, it should be noted, is not a static
symmetry.

THEOREM 2. E .q i8 time-reversible if and only if it allows a minimal behav-
ioral equation representation (1) with R(s) JR(-s) with J a matrix of the type

j_[I1 0 ]0 -I.

where Ii and I2 are identity matrices.
Observe that R(s) JR(-s) is equivalent to stating that (1) consists of a number

of scalar differential equations, some of which contain only even-order derivatives,
while the others contain only odd-order derivatives. If the equations in (1) are indeed
of this form, then time-reversibility is obvious. Note, in particular, that time-reversible
systems cannot always be represented by differential equations containing only even-
order derivatives. (Actually, any representation as obtained in Theorem 2 will have
the dimension of I and I2 as invariants.)

While this paper is only concerned with static symmetries, it is worthwhile not-
ing that it is possible to view also reciprocity, a much-studied property of electrical
networks [17], as a (dynamic) symmetry.

5. The main result. Assume in this section that p G GL(Eq) is a given
representation of a compact group G on ]Kq. Then p defines a static symmetry on q
as described in 3.4; X] (R, ]Kq, B) E :q is thus p-symmetric if and only if pgB B
for all g G.



SYMMETRIC LINEAR DYNAMICAL SYSTEMS 1273

Let (1) be a minimal representation for such a p-symmetric E/:q. It then follows
immediately from Proposition 1 that, for each g E G, there will exist a unimodular
polynomial matrix Ug(s) such that R(s)pg Ug(s)R(s). Our main result tells us that
R can be chosen such that Ug(s) is a constant nonsingular matrix, thus independent
of s!

THEOREM 3. Let p G - GL(Kq) be a representation of the compact group G
on ]Kq. ,q is p-symmetric if and only if there exists a minimal representation
R(d/dt)w 0 of and a representation p’ G --. GL(Kp()) of the group G on KP()
such that

for all g G. Moreover, p’ will be isomorphic to a subrepresentation of p.
Proof. To prove the "if" part, assume that R(s)pg pgR(s). Then, since

pa is an invertible matrix (hence a unimodular polynomial matrix), ker R(d/dt)
ker R(d/dt)pg. Hence pgB B for all g G; p-symmetry follows. As a general
feature of the type of representation results that we seek, note that also here (as in
Theorem 2) the "it’ is immediate: if R(s)pg pgR(s) for all g e G, then p-symmetry
of (1) is basically immediate. The converse however is more difficult.

The "only if" part is based on Theorems 4 and 5 and will be proved later.
To see that p’ is isomorphic to a subrepresentation of p, pick an element A E R

such that R(A) has full row rank p(E). Since R is minimal and hence of full row rank
as a polynomial matrix, such a A K exists. Now observe that R(A)p pR(A)
for all g G. Let N :- ker R(A). Obviously, N is p-invariant. Hence there exists
a linear subspace M of K such that M is p-invariant and Kq N @ M. Therefore
R(A) [M P [M pR(A) [M. Since R(A) [M is a bijection, this shows that p’ is

isomorphic to the subrepresentation pM of p. D

6. Canonical forms for symmetric systems. We will now show that estab-
lishing Theorem 3 is equivalent to establishing the existence of a very nice explicit
canonical forms for symmetric systems. At this point, it becomes necessary to treat
the complex case (K--C) and the real case (K- ) separately.

6.1. Complex systems. The representations p: G GL(Cq) and p G
GL(Cp()) obtained in 5 can be decomposed in terms of irreducible ones as

p - mlPl m2P2 ( mkPk,

01
Since p is isomorphic to a subrepresentation of p, it follows that the integers m Z+
satisfy

<_ i-1,2, k0 <_ mi mi,

The above decomposition of p implies that there exists a nonsingular matrix
V E Cax q such that

VpgV-1 -diag (mlpl,,..., mkpk,g) --: g,
where

mipi,g := diag (pi,g,..., pi,g).
mi--times
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Proceeding in a similar manner for p’, we obtain a nonsingular matrix V’ E
Cv() xv() such that

?T,v ~v(mlp,, ..., p )=:m2P2,g, ,g Pg

Note that applying the nonsingular transformation V corresponds to changing the
signal variables in 5] (JR, Ca, B) from w IR --, Ca to @ ]R Ca with @(t) := Vw(t);
in other words, it corresponds to choosing a convenient basis in the signal space Cq.
We will call such a basis a p-adapted basis, and the corresponding coordinates p-
adapted coordinates (these are sometimes called normal coordinates). On the other
hand, premultiplying R in (1) by nonsingular matrix V’ corresponds to choosing a
convenient basis in the equation space Cp(). By Proposition 1, this does not change
the behavior, and hence we can always assume that we are using such a basis on the
equation space.

Now, assume that p and p’ satisfy the conditions of Theorem 3. It follows thus
that in a p-adapted basis the system (R, cq, B) E q will admit a minimal
representation

(2) R =0,

where/ e Cv() x [s] satisfies

(3) () ().
Now partition/ conformably as and ’, yielding

(4) ()

/lk (8)

R(s)

m!Then (3) implies that [ij(s)mjpj ipiRij(s). By the Schur lemma [9], these
equalities imply the following strong conclusions about/:

(5) R=0 fori#j

and

ii(s)

11 (8)Ini ,’12(8)In lm,

where ni is the order of the representation pi. In the Kronecker product notation,/ii
may be written as

where

lii(s) Ai(s)(R) In,

A(s)

"11 (8) ,12 (8) lm, (8)
() () ,()

,’m 1(8 ,’m2 (8)... ,,mmi(8)



SYMMETRIC LINEAR DYNAMICAL SYSTEMS 1275

This proves that, for ]K C, Theorem 3 is equivalent to the following theorem.
THEOREM 4. Let G be a compact group and let p G -- GL(Cq) be a rep-

resentation of G on Cq. Assume that p - mlPl ) m2P2 (’" ( mkPk, with Pi
G GL(Cn), i 1, 2,..., k, distinct irreducible representations. Assume that
the basis in Cq is p-adapted (to emphazise this, we write the signal variables as Cv,
---col(I,CV2,...,Cvk) with R --. (Cn’)m’). Then (R, Cq, B) E .,q i8 p-

_
and polynomial matricessymmetric if and only if there exist mi Z+, 0

_
mi mi,

Ai Cf’ Is] such that admits a minimal representation

(7) Ai - (R)In, i=0, i=1,2,...,k.

Note that, from the above theorem, we may conclude that the p-adapted variables
z2,...,k are completely noninteracting!

6.2. Real systems. In the case (]K R) of systems with signal space ]1q, Theo-
rem 4 remains, of course, valid but may yield a representation (7) with complex coef-
ficients. However, in this case, we want to obtain differential equations in a canonical
form analogous to (7) but with real coefficients. The theory becomes more involved,
since the irreducible representations pi introduced in 6.1 are irreducible over C and
need not be real. In particular, Schur’s lemma in the form in which it was used in 6.1
would yield complex representations. Nevertheless, quite explicit results may also be
obtained now.

As it is shown in [9], a irreducible representation p G --. GL(Cn) can be of
real type, of complex type, or of quaternionic type; p is of real type if it is the com-
plexificatio of a real representation. Now, if p is an irreducible representation of
complex or of quaternionic type, then so will be its complex conjugate, p* (thus the
matrices pg and p are complex conjugates for all g G). By combining p @ p*, these
complex representations lead to real ones. All together, this leads to the following
decomposition of a real representation.

A real representation p: G G(Rq) of a compact group G admits a decompo-
sition

(Ha) p pa pc pn

with Pc, Pc, and PH referring to the further decomposition into irreducible represen-
tations of real, complex, or quaternionic type. These representations can indeed be
further decomposed as follows:

(8b) P mR,lPR,1 @ mR,2PR,2 @’" @ mR,kaPR,ka,

(8c) Pc mc,ipc, @ mc,2Pc,2 mc,kcPC,kc,

(8d)

with pa,i G - GL(R,) such that its complexification is irreducible over C; Pc,
G --. GL(R2nc,) such that the complexification of pc,i is isomorphic (over C) to
c,i @ ,i with c,i G - GL(Cnc,) irreducible over C; similarly, pn,i G
GL(Ran’’), pt,i , @, with 5[]," G GL(C2,’ also irreducible over C.
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The representations P,I,..., P,ka;/5c,1,...,/bC,kc; /,1’"""’ PC,kc; /1,1,...,
are the distinct irreducible representations of real, complex, and quaternionic type,
respectively, involved in the decomposition of p,

nR,1, nR,kR; nc,1, nC,kc; nil,l, H,kH,

their respective orders, and

mR,1, mR,kR; mc,1, , mC,kc; mH,1, mH,kn,

their respective multiplicities.
A real subrepresentation p of p will allow a similar representation as (8), but

with the analogous multiplicities mR,i, mtc,i and m, satisfying 0 <_ mtR, _< m,, 0 _<
m _< and 0c, mc,i n,i m,.

Now, assume that p and f satisfy the conditions of Theorem 3. Proceeding as
in the complex case, we obtain (in the analogous partition of/) that, in a basis
compatible with (8), E (I, q, B) E q will admit a (real) minimal representation
as (2) with (5) still satisfied. Hence the off-diagonal blocks of R will still be zero: the
components of will again be noninteracting.

However, Schur’s lemma allows us to conclude the simple form (6) for the diagonal
blocks of/ only for the diagonal_blocks corresponding to the real representations, the
p,i’s. The diagonal blocks of R corresponding to the pc,’s and the p[],’s will be
more complicated, and it is here that the difference between the real, complex, and
quaternionic type plays a role. To obtain a convenient form for the corresponding
diagonal blocks of R, we should choose the basis in the 2nc,,s such that Pc,i takes
the form

-Bc,i ](9a) Pc,i Bc,i Ac,i

and in the R4ns,,s such that P[],i takes the form

(9b) P,i

An,i -Bn,i -Cn,i -Dn,i
Bn,i An,i Dn,i -Cn,i
Cn,i -Dn,i AH,i Bn,i
Dn, Cn, -Bn,i An,i

It can be shown that there exists a (real) choice of the basis in q that is compatible
with the decomposition (8a) and in which the pc,i’s and the pn,i’s have the above
form. We will call such a basis choice real p-adapted.

Schur’s lemma then allows to conclude that in a real p-adapted basis in Ia and
in a real f-adapted basis in P() we will obtain a representation (2) with

(lOa) kij(s) 0 for i j

and

(lOb)

for the diagonal blocks corresponding to the p,i’s

[ ](lOc) (s)
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for the diagonal blocks corresponding to the pc,i’s, and

(lOd) lii(s)

for the diagonal blocks corresponding to the pn,i’s.
The notation may be further streamlined by using complex numbers in (9a) and

(10c) and quaternions in (95) and (10d). Coding a typical vector col(, 2C,i) (E

I2nc’i in (9a) as the complex vector 1 i, CUe,i,c,i / E ensures that multiplication

by (10c) corresponds to multiplication by the complex polynomial matrix (i(s) +
i[i(8)) (R) Ici Coding a typical vector n,i col( i, ?2 ~4

," n,i, ’’,i, w.,i)in (9b)as
the quaternionic vector ltt,i nt- i),i + .WN,i" ~3 -- k, ensures that multiplication by

(l0d) corresponds to_multiplication by the quaternionic polynomial matrix (Ai(s)+
iBi(s) + ji(s) + kDi(s)) (R) InH,i. For the multiplication rules for quaternions, see
Example 8 and 10.

In the following theorem, we assume that the real p-adapted basis has been
streamlined in this way. These considerations prove that, for IN N, Theorem 3
is equivalent to the following theorem.

THEOREM 5. Let G be a compact group and let p: G -- GL(]q) be a representa-
tion of G on lq. Assume that p is decomposed as (8) and that the basis in g(q is real
p-adapted. To emphasize this, we write the signal variables as (v,

col(, c, s),
ll COI(II,I,COR,2,... ,ff)R,kR) with

C col(c,l,,2,...,C,kc) with

col(tH,1, if;[],2, Cv,kH) with..o,

as explained in the preamble.
Then (, Rq, B) .q is p-symmetric if and only if there exist mn, Z+, 0 _<

m’ <_ m’ m’ <_ rn’ m’ <_ and,i m,i c,i g+, 0 _< c,i me# H,i Z+, 0 _< ,i
m Xmc,i m, XmH

polynomial matrices Ai e Nf,n,i x,,i [s], Ci e Cfc’i Is], Hi e ]H[fr ’[s] such
that P admits a minimal representation

(11)

d

d

1,2,...,k,

1,2,...,kc,

i- 1,2,..., kn.

7. Applications.

7.1. Permutation symmetries.
Example 4 (simple permutations). Our first class of examples all involve the

symmetric group Sq defined in Example 3, and we use the notation introduced there.
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Let us now apply Theorem 5 to a system F (ll, Rq, B) e q with p: Sq --. GL(Rq)
where pgcol(wl, w2,..., wq) :- ol(wg(1), wg(2),..., Wg(q)). We obtain a suitable p-
adapted basis by taking as new coordinates & :- Xav, Sc2 :- Ax2,...,q :-- Axq,
with Xav :-- (1/q)(x + X2 +’’"-t- Xq) and Axi xi Xav (i 1, 2,..., q). Clearly,
V {col(&,&2,... ,5:q) e ]Rq 12 :q O} and V2 {c0/(5:1,5:2,... ,q) e
]Rq &l 0}. Observe that both the representations p and P2 introduced in Example
3 are of real type. Hence the decomposition p p p2 applies to the real case. It
follows that, in terms of the notation of Theorem 5, mR,1 mR,2 1 and that all the
other multiplicities are zero. Furthermore, n,l 1 and nR,2 q- 1. Thus we must
consider the following choices of m’ ’s:R,i

mR, --mR,2-0
mR, 1; mR,2 0,
mR,1 0; mR,2 1,

mmR,1 R,2 1.

The first case corresponds to the trivial situation B C (JR, ]Rq). In the second
case, p-symmetry corresponds to a minimal representation of the form

ray - Wav O

with Way :-- (1/q)(w + w2 +"" + wq). This representation is determined by the
nonzero polynomial ray E R[s]. The third case yields

rA Awi O, i 2, q

with Awi :---- wi way. This representation is completely determined by the nonzero
polynomial ra E IRis]. Note that these equations imply the redundant equation
rA (d/dr)Awl 0, and hence, by letting the above equation range over i 1, 2,..., q,
we obtain an equivalent but not minimal representation. In the fourth case, we will
obtain one equation on Way and one on each of the Awi’s, and these equations are all
identical.

It is clear that, by allowing nonminimal representations, all four cases can be
captured in one. It follows that E :q will be p-symmetric in the case of these
simple permutations if and only if there exist (not necessarily nonzero) polynomials
ray R[s], rA R[S] such that is described by

ray Way O
d Arh(-) wi O, i=l 2,...,q

with Way :-- (1/q)(w +w2+"" "+wq) and Awi := wi-Wav. Hence a symmetric system
is governed by two equations. One equation governs the dynamics of the average
(consider it an equation governing the center of mass in the case of motion of identical
particles on the line). The second equation is identical for each of the components and
governs the dynamics of the distance from the average and is identical for each of the
components (consider this equation as governing the motion of the displacement of
the particle from the center of mass). Note that either one or both of these equations
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may be absent (when ray 0 and/or rh 0). The most important feature of the
above equations is the fact that the different variables wi interact only through their
average value. For an analogue nonlinear situation of this example, see [17].

Example 5 (permutations of identical subsystems with feature vectors). Next,
consider the system (R, (Rm)n,B) E _mn. Think of as modelling n identical
subsystems, each of which is described by m features. Thus w col(w1, w2,..., wn)
with each of the wi R R’, i 1, 2,..., n, where wi(t) Rm denotes the feature
vector of the ith subsystem at time t. In the case of the motion of n particles, this
feature vector could be the position of the particle in the plane (m 2) or in 3-space
(m 3), or we could consider each particle being described by a position and an
external force acting on it (thus m 2, 4, or 6, depending on whether these particles
are considered on the line, in the plane, or in 3-space).

Let p: Sn - GL((Rm)) act as follows:

pgcol(wl, w2,..., w) "= col(wg(), wa(2),..., wa()).

In this case, the decomposition of p into irreducible components leads to p
rap2 with p and p2 as in Example 3 or Example 4. The p-adapted basis may
now be chosen as follows. Define, for x col(xi,x2,...,xn) (Rm)n, Xav :=
(1/n)(xl + x2 +’’’ + Xn) and Axi := xi Xav. Represent x by the coordinate
vector col(xav,Ax2,...,Axn) and define V1 by Ax2 Axn 0 and V2 by
Xav 0. Then mp - p Iv1 and rap2 - p Iv2. The further decomposition of mp and
rap2 into their irreducible components is rather obvious but will not be given, since
it will not be needed in the following.

In terms of the notation of Theorem 5, we have mR,1 mR,2 m and ha,1
1, ha,2 n- 1 Thus we should consider all the cases where 0 < m’ m’ < mR,2 R,2
Proceeding exactly as in Example 4 we obtain that a system
will be p-symmetric if and only if there exist may, ma Z+ (we could, but need not,
restrict may and mA to be _< m) and polynomial matrices Ray ]mavxm[8] and
RA RmamIs] such that is described by

Ray - Way--O,

RA - Awi O, i --1, 2, n

with Way (1/n)(wl + w2 +"" + wn) and Awi :-- wi Way.

As a more specific example, consider a system of n identical particles in 3-space
with external forces. Such a system will hence be described by differential equations
of the form

d d
Pay (-) qav Qav (-) Fay,

Q

with qi the position of the ith particle, Fi the external force acting on it, and qav, Fay
defined in the obvious way. Thus the motion of the center of mass is governed by a
law involving the mean force, while the laws governing the motion of the displacement
from the center of mass involves the difference of the force acting on the particle and
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the mean force and is identical for each of the particles. In particular, the particles
interact only through the center of mass and the mean force.

Example 6 (permutations with two kinds of subsystems). Now consider the system

Think of as modelling n identical subsystems of one kind with each ml features
and n2 identical subsystems of a second kind each with m2 features.

Let p" S, S, GL((TM )n (m.)n.) act follows:

VV g W
Vt WVV

The decomposition of p into irreducible components now becomes p (m + m2)pl
mp m2p with p the identity representation and (ml + m2)pl p y with

XI II’, XII X Xnl, Xn2}Yl

rthermore, p and p are the analogues of what we denoted by p2 before: p
corresponds to the analogue of p2 an irreducible representation of Sn and p
corresponds to the analogue of p2 an irreducible representation of S,. Pr
ceeding before, Theorem 5 will show that is symmetric if and only if there
exist m=v,m,m e Z+ and polynomial matrices Ray e mavX(mzTm2)[8], R e
Rmxm, Is], and R Rmm: Is] such that is described by

-Wa =0, j= 1,2,...,n2.

This shows that the two groups can only interact through their averages, while all the
respective displacements are independent.

An interesting special ce can now be obtained by taking n2 1. We can then
view the situation modelling the dynamics of the interaction of a central control
station with n identical substations. In the obvious notation, the dynamical laws then
take the form

R O,
cengral

R (w w) 0, i 1,2,...,n.

Thus the central controller influences only the average of the feature vectors of the
substations.

Remark. The above examples all involve the action of the whole symmetric group
S. Actually, identical results may be obtained by considering a doubly transitive
subgroup G of S. A subgroup G S, is said to be transitive if, for all ,
(1, 2,..., n}, there exist g G such that g() ; it is said to be doubly transitive
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if, for all c’,/’, c",/", E { 1, 2,..., n}, c’ c", and/’ y ", there exists g e G such
that g(c’) ’ and g(c") =/". An example of a doubly transitive subgroup is the
subgroup of even permutations.

It can be shown that the representations of Examples 4-6 remain valid without
changes if we assume invariance of B for a doubly transitive subgroup G of Sn in
Example 5 and doubly transitive subgroups G1 of Snl and G2 of Sn. in Example 6. In
particular, this shows that permutation symmetry for one doubly transitive subgroup
implies permutation symmetry for the whole of S, in Example 5 and analogously for
the whole of Snl S. in Example 6!

Example 7 (cyclic permutations). Let Zq denote the group consisting of

{0, 1,...,q- 1}

with the group operation addition modulo q. It is more convenient to denote this
group as {1, r, r2,..., rq- } with rq 1. Note that Zq is a subgroup of Sq. It is called
the group of cyclic permutations. Let Zq {1, r,..., rq-l} act on ]Kq as in the case
of permutations. Thus

prCOI(Xl, X2,..., Xq-1, Xq) col(Xq, Xl, X2,..., Xq--1)

from which Pr,..., Prq-x follow.
Because the group Zq is commutative, its irreducible representations over C are all

one-dimensional. There are q such irreducible representations given by p, #2,..., #q
with Pk Zq - GL(C) given by Pk,r )k with ei(2r/q) A simple calculation
shows that p p q3 p2 pq, with the invariant subspace corresponding to Pk
given by span col(1,,-k,/-2k,...,/-(q-1)k). This now allows us to compute the
p-adapted basis. We omit the detailed calculations.

Theorem 4 implies that E (R, Rq, B) /q will be symmetric With respect to
the cyclic permutations if and only if there exist polynomials rl,r2,... ,rq C[z],
p(E) of which are nonzero, such that

j 1,2,...,q

forms a minimal representation of E. This set of equations can be edited a bit further
and leads to the following canonical form for this cyclic symmetry. E will be symmetric
if and only if there exist polynomials ?, 72,..., fq C[s] and a representation of E of
the following form:

Note that this representation (which is possibly nonminimal) puts the cyclic symmetry
nicely into evidence.

In the real case where ]K R, we must combine the complex conjugate irreducible
representations. Similar calculations to the above ones lead to (possibly nonminimal)
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behavioral equations

wksin2rjqk) 0,

wksin27rjq k) 0,

q-1
forj=l,2,...,, ifqisodd,

2
q

1, if q is even.for j 1, 2,...,
2

In the case that q is even, there is an additional equation

r - (--1)kwk O,

where ro, rj, rj rq/2 E
The above calculations are easily generalized to cyclic permutation symmetries

with.feature vectors. In this case, it suffices to interpret the r’s as matrices.

7.2. A quaternionic symmetry.
Example 8. Consider (R, ]Rq, B) E :q with q 4. Now assume that this system

is symmetric in the following sense:

Wl -w2 -w3
Wl w4 -w3

w3 -w4 Wl w2
w4 w3 -w2

As we will see, this is a quaternionic symmetry. We will not give a physical example
where such a symmetry can occur.

The group of quaternions consists of 7 ( =t= 1, =k i, =k j, =t= k} with multiplication
table

2=j2=k2_=_1, ij=---ji=k, jk-=-kj=i, ki=-ik=--j.

The following defines a representation of T/on C2

=kjH=k 0 --i i 0

This representation is irreducible. It is obviously not real and, since all the above
matrices have real trace, it is a complex representation of quaternionic type. The
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representation induced on Ra by combining this representation with its complex con-
jugate yields

1
0
0
0

0 0 0 0 -1 0 0
1 0 0

i--Ml:-
1 0 0 0

0 1 0 0 0 0 -1
0 0 1 0 0 1 0

0 0 -1 0 0 0 0 -1
0 0 0 1 0 0 -1 0
1 0 0 0

k-- M3 0 1 0 0
0 -1 0 0 1 0 0 0

Note that M1, M2, M3 are precisely the matrices defining the static symmetry under
consideration.

It follows from Theorem 5 that the ’s that are symmetric in this sense are
precisely those that admit a representation for the form

with a, b, c, d E R[s].

7.3. Symmetries with Lie groups. A Lie group G is a topological group with
the structure of a Ca differentiable ]K-manifold in which the group multiplication and
the inverse are C maps. A Ca group homomorphism p" G GL(]Kn) is said to be
a representation of the Lie group G on ]Kn. Let gg(]Kn) denote the set of n n matrices
over ]K endowed with the usual commutator product [A, B] AB- BA; gg(En) is
the Lie algebra of GL(]Kn).. Let G be the Lie algebra of G. The representation
p G GL(]Kn) of the Lie group G on ]K induces a Lie algebra homomorphism. __

gg(]Kn) of the Lie algebra G on ]K. Let X, X2,..., XN ]K’n be a set of
generators of 5(G). Then we have the following result.

THEOREM 6. Let be a compact connected Lie group and let p" G -- GL(]Kq)
be a representation of the Lie group on ]Kq. Let X,X2,... ,XN ]Kqq be a set
of generators of () with the induced representation of the Lie algebra on ]Kq.

Then the following are equivalent .for
(1) is p-symmetric;
(2) c_ Ior x
(3) XB c_ B for i-- 1,2,...,N;
(4) There exist matrices Y, Y2,..., Yn EP()P() and a R ]KP(2)q[s] such

that R (d/dt)w 0 is a minimal representation for with YiR(s) R(s)Xi for
i 1, 2,..., N. Moreover, the subspace generated by the Y ’s is a Lie subalgebra of
gg(]KP()) and yields through the association Xi - Y a subrepresentation of the Lie
algebra representation " - gg(]Kn).
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Proof. Assume without loss of generality that G is a subgroup of GL(]Kq) and
that p is the canonical injection.

We will run the circle (4) = (3) = (2) = (1) =v (4). The first two implications
are trivial.

To show that (2) (1), assume that X E G and consider the exponential exp X.
It is well known that there exist al,a2,.. ,an E ]K such that expX -4=1n aiXi.
This implies, by (2), that (exp X)B c_ B. Since G is compact connected, exp’G - G
is surjective, and hence (1) follows.

(1) = (4)" From Theorem 3, it follows that there exist R ]KP()q[s] and a
representation p’ G GL(]Kp()) such that p’R(s) R(s)p. Now consider the
one-parameter subgroup of G given by G :- {exp #X lit ]K}. Then p’(G) is also
a one-parameter subgroup of GL(]KP()). Hence there exists a Y/ gg.(]Kp()) such
that p’(exp itXi) exp itY. Hence (exp itY)R(s) R(s)(exp itX). Differentiating
at it 0 yields YR(s) R(s)Xi. The last part of (4) follows from the observation
that R(s)XXj YR(s)Xj YYR(s). Hence R(s)[X,X] [Y,Y]R(s). This
shows that the vector space generated by these Y’s is a Lie subalgebra of gg(]Kp())
and that Xi -* Y generates a Lie algebra homomorphism. E]

7.4. Rotation symmetries.
Example 9 (rotations on ]1m with m > 2). Consider the group SO(m) of real

orthogonal m m matrices with determinant 1. SO(m) is a compact group, and
it can be shown that, when m _> 3, the canonical injection of SO(m) into GL(Cm)
(which will also be denoted as SO(m)) is irreducible over C.

Now consider the system E (It(, (Rm)n, B). Assume that SO(m) acts on (Rm)n
by M e SO(m), taking col(wl,w2,...,Wn) into col(Mwl, Mw2,...,Mwn). Now
consider the static symmetry induced by this action. To interpret this situation
physically, think, for example, of m 3 and of E as modelling the motion of n
(not identical) particles in R3 under the influence of rotation invariant laws. Another
possibility is to think of the situation m 3 and n 2n with E modelling the
position and the force acting on n particles.

Applying Theorem 5 and using the irreducibility of SO(m) for m > 2 immediately
shows that E will be symmetric if and only if there exists a polynomial matrix R E
Rn[s] such that E is represented as

Wl

(R). =o.

Wn

Example 10 (rotations on ]I2). The above example must be modified in the case
where m 2, since the canonical injection of SO(2) into GL(C2) is reducible over C.
SO(2) can be written as SO(2) p p* with

([ cos 0 -sinO])=eiOP sin cos

Applying Theorem 5 leads to the following representation of rotation symmetric
systems for m- 2"
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with R1,R2 E ][(1/2)p(E)n.
This result can also be obtained from Theorem 6. Indeed, since

_
] generates

SO(2) through exponentiation, symmetry implies the existence of an R such that

--I(1/2)p(r) 0(1/2)p(r) --In On

where Ik and Ok denote the k x k identity and zero matrices, respectively. This also
yields the above representation.

Finally, systems with this rotation symmetry can also be represented by intro-
ducing the complex signal w wl + iw2 with w N -- C. The differential equation
governing

W2

then becomes R (d/dt)w 0 with
Example 11 (rotations over 2/n degrees on 112). Let a Z, {0,1,
n- 1} (see Example 7 for notation) with n _> 3. Now consider the represen-

tation p of G on 12, defined by

[ COs 2r--k --sin 22 1p" k - sin 2k cosn

Then (, 2, B) 2 being p-symmetric means symmetry in the sense of Example 10,
by rotations of 2r/n degrees. This is a subgroup of SO(2). Since the representation p
is also irreducible, we immediately obtain from Theorem 5 the representation obtained
in Example 10. This allows the interesting conclusion that E :2 being symmetric
with respect to rotations of 2r/n degrees will imply that it is symmetric with respect
to all rotations. The Lie algebra line of reasoning in Example 10 showed this already
for n- 4, that is, for 90 rotations.

8. State space models. Many useful models encountered in applications in-
volve auxiliary variables in addition to the variables that the model aims at describing.
To distinguish between these two kinds of variables, we call the variables of primary
interest manifest and denote them as w, and we call the auxiliary variables latent,
and--usually--denote them as g.

Proceeding with the terminology of [15], this leads to a dynamical system with
latent variables, defined as Ef (, W, L, B,) with c_ the time axis, W the signal
space of manifest variables, L the signal space of latent variables, and
the full behavior. E, induces the manifest dynamical system E (, W,B) with
manifest behavior B {w there exists an t such that (w, g) e BI}.

In the context of systems described by differential equations, this leads us to
consider linear differential equations

(12) R

linking the manifest variables w C(, ]Kq) to the latent variables E C(, ]Kd).
Here R K’q[s] and M K’d[s] are two polynomial matrices with the same num-
ber of rows. Formally, (12) defines the latent variable dynamical system (, ]Kq, ]Kd, BI)
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with Bf ker[R (d/dr) i- M (d/dt)]. Obviously, (R, Kq+d, Bf E q+d. We will de-
note this class of latent variable dynamical systems as q,d. This family of models is
hence parametrized by pairs of polynomial matrices (R, M).

This model with latent variables induces the manifest dynamical system (JR, Kq, B)
with B (R(d/dt)) -1 im M (d/dt). It can be shown that (R, Kq, B) e :q, that is,
that (R (d/dt)) -1 im M (d/dt) can itself be described as the solution set of a system
of constant coefficient differential equations. In other words, there exists a polynomial
matrix R’ Rq[s] such that the manifest behavior of (12) is described by

(13) R’ ( d )
The matrix R’ can be obtained as follows. By premultiplying M by a suitable uni-
modular polynomial matrix U, UM can be brought in the form

UM=

Xwith M" E Kfrd[8]. Partitioning UR conformably as

UR-

yields the desired R’. The result that (13) then defines the manifest behavior of (12)
follows easily from the observation that M" (d/dt) is surjective (in other words, if
P e Rn2 Is], then P (d/dt)’C(R; IKn) --. C(R; ]KTM) will be a surjective map).

A very useful class of systems with latent variables are the state space systems. In
this case, the latent variables are denoted by x instead of by . In [15], [16], we have
defined state space models abstractly in terms of concatenation of trajectories. For
differential systems, the result is that state space systems are precisely those latent
variable systems whose full behavior can be described by the following special type
of differential equations linking the state trajectory x E C(R; ]K’) to the manifest
trajectory w C(R; ]Kq):

-+F x+Hw-O

with E,F,H matrices over IK of suitable dimension. The crucial feature of (14) is
that this differential equation is first-order in x and zeroth-order in w.

Let us denote the state space systems with manifest signal space ]Kq, and state
space ]Kn by/2q,. It follows that /2sq’n is parametrized by IK"x(2n+q) by associating

with the element [E!FiH ]K(2n+q) the behavioral equations (14). We denote the
state space system described by (14) simply as (E, F, H).

It follows immediately from the elimination of latent variables that the manifest
behavior of E8 :q,n leads to a system in q. However, the converse also holds:
for any E 2q, i.e., for any polynomial matrix R E ]KXq[s], there exist nonnegative
integers n,f N0 and matrices E,F EIx, H fq such that the manifest
behavior of (14) is represented by (1). If E8 :q" induces in this sense the system
E e q, then we call Es (or (E, F, H) e ]I(2n+q)) a state space representation of
E e q or of (1)). We denote this as (E, F, H)-, E, or (E, F,H) R.
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Let E,F E EI’,H Elq, and (E, ,F,H) E :q. We call this state space
system minimal if (Er, F ]KI’ n, U’ ]KI q, and (E, F, U) E) implies (f _< fr
and u _< n). In [15], [16], it is shown that any system E /:q admits a minimal state
space representation (in other words, both f and n can be simultaneously minimized).
This implies that, in a minimal state representation, the number of state variables
will depend on E, but not on the particular minimal state space representation of E.
We denote this minimal number of state variables by u(E). Similarly, f(E) denotes
the minimal number of equations in (14) representing E. It is easy to see [15] that
f(E) n(E)+ p(E). The following proposition play a crucial role in our proof of
Theorem 3.

PROPOSITION 7. Let (E, F, H) E q be minimal. Then (E, F, H) -, E
will also be minimal if and only if there exist V GL(EI(E)) and T GL(Kn(2))
such that

E- VET, F= VFT, and H= VH.

Finally, .for given (E, F, H) and (E’, F’, H’), this V and T are unique.

Proof. For the proof, see [15]. D
This proposition states that minimal representations of a given manifest behavior

differ only in their choice of the basis in the state space and in the equation space.
THEOREM 8. Let p G - GL(]Kq) be a representation of the compact group

G on Eq. Let E q and let Es (E,F,H) q,n be a minimal state space
representation of E. Then E is p-symmetric if and only if there exist representations
p’ G -- GL(]Kn(E)) and p" G -- GL(]K()) such that

(15) p’E Ep, p’F Fp, and p’H Hp.

Proof. The "if’ part is clear. To see the "only if’ part, observe that (E, F, Hpg)
is also a minimal state space representation of E. By Proposition 7, this implies that
there exist Vg e GL(EI()) and Tg e GL(En()) such that E VaETg, F VgFTg,
and Hpg VgH. Define p’ g -, Vg and p" g H (Tg) -1. We claim that p’ and p"
are also representations of G. In fact, from the uniqueness condition in Proposition
7, it follows immediately that Valg. VaIVal and (Talg.) -1 (Tal)-l(Tg2) -1. D

9. Canonical forms for state space models of symmetric systems. We
now use Theorem 8 and the ideas of 6 to obtain canonical forms for state space
systems. It is convenient to distinguish again between the complex case where ]K C
and the real case where ]K R.

9.1. Complex state space systems. Write the representations p, p, and p"
of Theorem 8 in terms of irreducible representations as

Now choose a p-adapted basis in the manifest signal space Cq, a pr-adapted basis in
the state space cn(), and a p-adapted basis in the equation space CI(). Now apply
Schur’s lemma to (15). This yields that, in these bases E, F, and H will take the
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form

E diag(E1 (R) In1, E2 (R) I,.,..., Ek (R) I),
F diag(F1 (R) I,1, F2 (R) In,..., Fk (R) I),
H diag(gl (R) I1, H2 (R) In.,..., Hk (R) I,).

This yields the following result.
THEOREM 9. Let G be a compact group and let p: GL(Cq) be a representation

of G on Cq. Assume that p mlpl m2p2 @’" (R) mkpk with Pi G GL(CTM),
i 1,2,..., k, distinct irreducible representations. Assume that the basis in Cq is
p-adapted, as in Theorem 4. Then E (, Cq, B) ,, q is p-symmetric if and only
if there exist mi, m E Z+ and matrices Ei, Fi Cm’ m m",Hi C m* such that E
admits the minimal state space representation of the form

(16) Ei- + Fi Gin, xi + (Hi (R) I,,)i O, i=l,2,...,k

with (v as in Theorem 4, and where xi -- (CTM)m, x col(x1, x2,..., xk), is the
state trajectory.

9.2. Real state space systems. To obtain a canonical form for real symmetric
state space systems, we proceed in complete analogy to 6.2. By considering the
components of real, complex, and quaternionic type in the decomposition of p, the
following result is obtained.

THEOREM 10. Let G be .a compact group and let p: G -- GL(q) be a represen-
tation of G on q. Assume that p is decomposed as in (8) and that the basis in q is
p-adapted, as in Theorem 5. Then E (R, ]q, B) e ffq is p-symmetric if and only if
there exist

and matrices

m m" m"mR,i, C,i mH,i R,i C,i mH,i Z+

mllEc,i, Fc,i C C ,’ m,, Hc,i Cm’’ m,,.,
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10. Proof of Theorem 3.

10.1. The complex case. As already shown in 6, it suffices to prove that,
if E (, Ca, B) E /:q is p-symmetric, then it allows a minimal representation, as
given in Theorem 4. By Theorem 9, it allows a minimal state space representation
as (16). Now consider in the ith equation of (16), xi as a latent variable. Using the
elimination of latent variables procedure as explained in the beginning of 8, we can
conclude that the ith equation of (16) constrains i to satisfy an equation of the form
(hi (d/dt) (R) In)Cvi O. This yields the ith representation of (7) and results in the
desired representation of Theorem 4.

10.2. The real case. For the real case, we can use this elimination of latent
variables procedure unchanged for each of the real and complex equations in (17).
These will yield the corresponding real, respectively complex, term in (11) of Theorem
5. However, the quaternionic equations in (17) require separate attention, since the
quaternions IE do not form a field. This brings us to the following algebraic excursion.

Let T be a ring with an identity. Let [s] denote the ring of polynomials with co-
efficients in 7, and nl n2 [8] the nl n2 matrices with elements in T[s]. Furthermore,
let GL(n, n[s]) denote the group of units of the ring nnn[s], i.e., the set of polyno-
mial matrices over 7 with a polynomial inverse. We call these matrices unimodular.
Now consider the problem of bringing a given element P E 7TM n[s] into a conve-
nient canonical form by premultiplying it by a suitable element UI GL(n, T[s])
and postmultiplying it by a suitable element U2 GL(n2,7[s]). We will say that
P can be brought in diagonal form if there exist such U, U2 yielding for UPU2 a
matrix of the form

with D a diagonal polynomial matrix. It is well known that any P can be brought in
diagonal form if T l or C.

For what rings T such a diagonalization is possible? We now show that it is
sufficient for T to be a division ring. Recall that a ring is a division ring (also called
a skew field) if its nonzero elements form a group ( must contain an identity distinct
from the zero, and a 0 must imply that it is a unit of T (i.e., it has an inverse
a-: )).

LEMMA 11. Let T be a division ring. Then each P TTM "[s] can be brought
in diagonal form.

Proof. The proof is an adaption of the case of a skew field of the proof of the
Smith form for real or complex polynomial matrices as given in [3].

If P 0, there is nothing to prove. Otherwise, let Pk be the element of P of least
degree. By permuting rows and columns we can assume that this element is in (1, 1)
entry. Now assume that the (1, 2) entry is also nonzero. Then divide P2 by PI with
remainder, yielding P12 Pld + r with degree r < degree P. Now postmultiply
with the unimodular matrix

1 -d 0 0
0 1 0 0

0 0 0 1
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This replaces the element P12 by r. If r 0, move it to the (1, 1) position. Repeat
this process for each element of the first row and first column (using the division with
remainder P21 dP11 / r and premultiplication). Each time the division is carried
out with a nonzero remainder, the degree of the (1, 1) element must decrease. Hence
after a finite number of steps, we will obtain a matrix of the form

0 0 0
0 * * *

0 * * *

and we obtain the lemma by induction.
Now consider the ring ]HI of quaternions over : expressions of the type a + i3 +

j- + k5 with a, fl,-, E l and i, j, k elements satisfying the multiplication rules as
in Example 8. With the obvious rules of addition and multiplication, ]HI is a ring.
However, ]I-]I is not commutative, but it is easy to see that it is a division ring. Hence
a polynomial matrix P nl n.[s can be brought in diagonal form.

Now consider a system of differentiM equations.

(18)
d d

where w C(;IEq), t C(;]H[d), R ]H[fq[s], and M IEfd[s]. Note that
this is a differential equation with latent variables as (12) but in which the signals
and coefficients take their values in the skew field of quaternions ]E. We would like to
eliminate the latent variables in (19), using only operations in ]HI.

Observe that the manifest behavior of (19) remains invariant if we replace R with
U1R and M with UMU2 with U1 and U2 both unimodular polynomial matrices with
coefficients in H. By Lemma 11, U1 and U2 can be chosen such that

[0]UIMU2 "9"

with D diag(d, d2,..., dr) and 0 d E [s]. Denote the conformable partition of
U1R by

Now observe that, if 0 d e ]E[s], then the operator d (d/dt)’C(l; lE) - C(; IE)
is surjective. To see this, it suffices to write this as a differential operator from
CO(; 4) into itself and use the fact that the corresponding (4 4) polynomial
matrix with real coefficients has a nonzero determinant.

This implies that the manifest behavior of (19) is governed by

Applying this elimination result to each of the quaternionic equations in (17) yields
the corresponding quaternionic equations in (11).

This establishes that Theorem 10 yields the desired representation of Theorem 5.
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11. Group representations in GL(n, lK[s]). Theorem 3 implies an interesting
result about abstract group representations. A mapping p: G -- GL(n,]K[s]) (the
unimodular n n polynomial matrices over ]K), which is a group homomorphism and
continuous (in the sense that the map g e G - pg(A) E GL([n) is continuous for
each fixed A E ]K and the map ]K - pg(i) GL(Kn), is continuous uniformly in
g e G), is called a representation of G on GL(n, ]K[s]). Two such representations Pl
and p2 are said to be isomorphic if there exist a U e GL(n, ]K[s]) such that P2,g(s)
V(S)pl,g (s)(U(s))- 1. The representation p is said to be a constant representation if
pg(S) is actually a constant matrix for all g E G, that is, if p G GL(q), if p
is actually a representation of G on ]Kn. We now show that Theorem 3 implies that
every representation of G on GL(n, ]K[s]) is isomorphic to a constant one. This result
can be deduced from [7], where a more general theorem is proved using very different
methods. Our proof, which, as we have seen, relies on the state space representation
of dynamical systems in/:q, provides a nice alternative "system theoretic" proof of
this result in the theory of algebraic groups. On the other hand, we also note that
Theorem 3 can be easily deduced directly from Corollary 12 (and hence from [7]).
Hence Theorem 3 and Corollary 12 are fully equivalent.

COROLLARY 12. Let GL(n, ]K[s]) denote the group of unimodular n n polynomial
matrices over ]K(= l or C). Let G be a compact group and let p: G -- Gn(n, ]K[s])
be a representation of G on GL(n,[s]). Then p is isomorphic to a constant repre-
sentation.

Proof. 1) Consider, for each A ]K, the mapping p :G - GL(]K) defined by
pg pg (). It is easy to see that p is a representation of G on IKn. We first prove that
all the representations p are isomorphic. It is well known that two representations
of G on ]n are isomorphic if and only if their characters are equal. Hence it suffices
to prove that the characters Xp G -- ]K, defined by Xp(g)’= Wrace(pg()), are
independent of A ]K. Let p - mpl m m( 2P2 ( ( kPk @’" be a decomposition

is independent ofof p in terms of irreducible representations. We prove that mk
is given by). Now mk mk =< Xp, Xpk := fXXkdg, where dg is the normalized

is continuous as a function of A forHaar measure [9] of G. This implies that mk
must therefore be constant forit is integer-valued mk]K. However, since mk

A ]K. This shows that all the p’s are isomorphic.
2) The first part of the proof yields the existence of a map M ]K -- GL(]Kn)

such that

(20) pg(A)M(A) M(A)pg(O)

for all A E ]K and g G. We now show that this implies the existence of a polynomial
matrix R lK[s] with detR 0 such that

(21) pg(s)R(s) R(s)p(O)

for all g G. In other words, we show that the set of equations

(ee) a e

has a polynomial solution X nn[8] with det X 0. Note that we can rewrite

(22) in vector-matrix notation as

(23) Aa(s)x(s) O, g e G
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with x E ]Kn Is] and Ag En2n Is]. The vector x corresponds to the elements of X
in (22), while the matrix Ag corresponds to the coefficients of the linear equations in
(22). Since (23) must be satisfied for each g G, there are, in principle, an infinite
number of linear equations in (23). Now consider the rows of the matrices Ag and
view them as vectors of rational functions, as elements of IKln (s). Write (23) as

A’(s) ] -0
A"(s)

with A such that its rows form a basis over ]K(-) for the span of the rows of all the
matrices Ag, g G. Now observe that, by premultiplying x and A by a unimodular
matrix, we may as well assume that A is in Smith form, as follows:

A’(s) [D(s) 0]

with D(s) diag (dl(S), d2(s),..., dk(s)) and d, 0 for 1, 2,..., k. This yields

that in a conformable partition A" will be of the form A"(s) [A’(s) 0]. Obviously,
this implies that each vector polynomial

x(s) col(xl(s),... ,xk(s),xk+(s),... ,Xn2(8))

with x x2 Xk 0 yields a solution X(s) of (23).
To show that there is at least one of these solutions with det X 0, we will use

(20). This equation yields, for each A e iK, a solution m(A) to (23) with, in (23),~s
replaced by A. Pick a A ]K such that di() 0 for 1, 2,..., k. Clearly, m(A)
must be of the form col(0,..., 0, hk+l,..., rh,.). Now pick a solution x(s) _of (23) such
that x() m(). The solution X(s) of (22) thus obtained will have X(A) M(),
whence det X 0. This shows that (21) has a solution with det R 0.

3) Now consider the dynamical system (, ]KS, kerR (d/dt)). Obviously, by
(21), , is p(0)-symmetric, and R (d/dt)w 0 is a minimal representation of ,,. By
Theorem 3, there exists a U e GL(n,]K[s]) and a representation p’ G - GL(]Kn)
such that

(24)

for all g e G. Comparing (21) and (24) yields

(u(,)) p U(s),

which is the claim of the corollary.
Remark. Let p: G - Gi(q, ]K[s]) be a representation of G on Gi(q, ]K[s]). Let

E (R, ]Kq, B) /:q be p-symmetric, meaning that pg (d/dt) B B for all g G. Note
that this is a dynamic symmetry, in contrast (see 3.3) with the static symmetries
studied in this paper. However, Corollary 12 shows that, by a dynamic change of
variables w - U (d/dt)w, with U a suitable unimodular polynomial matrix, the
study of this type of dynamic symmetry reduces to a static symmetry.
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