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DISTURBANCE DECOUPLING BY MEASUREMENT FEEDBACK
WITH STABILITY OR POLE PLACEMENT*

JAN C. WILLEMSt AND CHRISTIAN COMMAULT

Abstract. In this paper we solve the disturbance decoupling problem by measurement feedback and
requiring stability or pole placement on the closed loop system. The problem is attacked using the geometric
approach through the concepts of A(mod )-invariant and controllability subspaces and their duals,
Al’{-invariant and complementary observability subspaces. The solution of this problem has an interesting
structure consisting of a feedback processor which decomposes into (i) a disturbance decoupling loop; (ii) a
disturbance input stabilization or pole placement loop, and (iii) a controlled output stabilization or pole
placement loop.

1. Introduction. Consider the dynamical system with signal flow graph depicted
in Fig. 1.
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If this system is controlled by means of the feedback processor shown in Fig. 2,
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then one obtains the closed loop system shown in Fig. 3.
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One of the most easily motivated control synthesis questions is the problem of
designing a feedback processor such that in the closed loop system,
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(i) The disturbances are completely decoupled from the controlled outputs; and
(ii) the closed loop system is internally stable or
(ii)’ (in the linear case) the closed loop poles may be arbitrarily assigned.

We will call these problems, following the acronym perversion propagated in [1]:
DDPM (for (i)), the disturbance decoupling problem with measurement feedback;
DDPMS (for (i) and (ii)), the disturbance decoupling problem with measurement
feedback and stability; and DDPMPP (for (i) and (ii))’, the disturbance decoupling
problem with measurement feedback and pole placement.

The disturbance decoupling problem in all its variations has been studied exten-
sively before, and has motivated much of the development of the geometric approach in
linear (and recently also in nonlinear) system theory. However, the early papers in this
area have primarily been about disturbance decoupling using state feedback with or
without stability or pole placement requirements [1, 4.3, 5.6]. These results are
based on the concepts of A(mod )-invariant and controllability subspaces. There
have also been a number of papers on DDEP, the disturbance decoupled estimation
problem, or, what amounts to the same thing, the unknown input observer design
problem (see [2], [3], and for earlier references, [4], [5], [6]). This problem will be
treated in 4. The crucial concepts in this context are those of A lfff-invariant and
complementary observability subspaces. These are the duals of A(mod )-invariant
and controllability subspaces. They may be introduced by formal dualization (see [1,
Ex. 5.17], or [2], where DDEP is solved this way) but they can also be defined directly,
in a more intrinsic way in connection with observer synthesis questions [3], [5], [6].

In most industrial applications it will not be possible to assume that all the state
variables are measured. Consequently, there is a direct practical motivation for studying
the disturbance decoupling problem in the context of measurement feedback. Recently,
in fact, DDPM has been solved in I-7] and in [3]. Actually DDPM had already been
formulated by Basile and Marro who, for this purpose, introduced the notions of
controlled and conditioned invariant subspaces (we will call these A(mod )- and
Alff’-invariant subspaces) and they actually obtained as necessary conditions the
conditions which, as shown in [3], [7], are in fact sufficient and hence lead to a synthesis
for DDPM.

In all of the above references, the stability or pole placement question was not
considered. It goes without saying that in applications one will need to consider also the
stability aspects. In the present paper we will solve this problem (see (ii) and (iii) of our
theorem).

It is quite surprising that DDPMS and DDPMPP have not been solved before even
though their solution has been very much in reach, through the combined results in the
work of Wonham [1], Basile and Marro 1-6] and the compensator design by output
feedback of Brasch and Pearson 18] (see also [1, 2.8]). The solution which we have
obtained is in a sense what could have been conjectured from I-3] or [7]. However, the
resulting synthesis is a rather intricate and complex one.

We have attempted to make the paper reasonably self contained. Given the
potential practical interest in this problem, one could hope that this true culmination of
the disturbance decoupling circle ot ideas ought to serve as the theoretical basis for
some convincing specific applications.

We would like to emphasize that the disturbances could be also state or parameter
dependent. The theorem which will be obtained also gives disturbance decoupling when
the disturbance is of the form d((x(.))(t), , t), with an (unknown) dynamic
function of the state and a an unknown parameter.
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2. Mathematical problem formulation. Consider the plant equations given by

,: ic Ax +Bu + Gd, y Cx, z Hx,

with x s " =: , the state, u s " =: q/, the control, d s q =: @, the disturbance,
y s [P =: , the measurement and z s l =: y, the controlled output.

The DDPM problem is to find (real) feedback matrices {F, E, M, N} defining the
feedback processor

,r" v Fw + Ey, u Mw + Ny,

with w k ._.: o//ff,, the state of the feedback processor, such that the closed loop system
Zcl :-" ’ X Erlfeedback’

,v_,. [.’] [A+BNCIB-FM- ][] []EC
+ d, z=[Hi0] v

which may be written compactly as .e =Aex +Ged, z--Hex e, has zero transfer
function, He(Is-Ae)- G =0; i.e., the controlled output z is influenced only by the
initial conditions and not by the disturbances d.

DDPMS requires in addition some conditions on the spectrum of A e, tr(Ae). This
stability requirement is modelled, as usual, by requiring o’(A e) Cg with Cg a given
subset of the complex plane C which is symmetric ({A Cg}C:{A Cg}; denotes the
complex conjugate), and which contains at least one point of the real axis. Simple
asymptotic stability is thus obtained by taking Cg {A CIRe A < 0}.

DDPMPP requires pole placement in the sense that for any Cg which is symmetric
and contains at least one point of the real axis it should be possible to achieve
tr(A e) Cg. (The results essentially imply that the closed loop characteristic polynomial
can be chosen arbitrarily, provided that this characteristic polynomial have a sufficiently
high degree and can be factored into two real factors of the right degree. These details
we leave to the reader to fill in.

Some notation.
1. We will throughout use lower case letters for vectors, capitals for matrices and

linear operators, and script for linear subspaces and vector spaces. If M: 2 and
=a, then MI’’--,:, denotes l--Ml, while M(mod)’x(mOdl)
’2(mod M5’1) denotes x (mod ,ffl) (Mx1)(mod MI). If 2 C 2, then
MI-2" M-X2 2 denotes 12-MI2, while M(mod 52)’ 1 2(mod 2) denotes
x (Mx1)(mod 2). If M"- and c is M-invariant then ]V" - denotes
l-Ml, while M(mod) denotes x(mod )--(Mx)(mod &o). With Q’s representing
canonical injections (Q" x-x) and P’s canonical projections (P:x-x(mod )) these
definitions may be visualized in the commutative diagrams
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If M: and 1,2c , then .1 is said to be M(mod2)-invariant if,.for all
la, Mlax(modz). It is said to be M[-invariant if, for all
Ml .z. Thus 1 is M(mod z)-invariant iff Mc1+2 and M[z-invariant iff
M(fqz)2. These concepts, which are very natural in the context of a linear
algebra, also turn out to have very natural system theoretical interpretations!

The spectrum of M:Y’- is denoted by r(M). It is a set with multiplicity. The
characteristic polynomial of M will be denoted by XM.

2. Consider the system E" Ax + Bu, y Cx, which we will sometimes denote
n--1

by (A, B, C). Let := Im B and Y" := Ker C. Then (AI) := --o A denotes
the reachable subspacc, while =(Y{IA):= -=o A-Y{ denotes the unobscrvablc
subspace. Both and c are A-invariant subspaces. In fact, they are respectively the
infimal A-invariant subspacc containing and the supremal A-invariant subspacc
contained in Y’. The system is reachable iff , and observable itt c- {0}. If both
conditions hold, then wc will call the system minimal. If A (rood ) and AiV arc stable
(relative to some C), then wc will call stabilizable and detectable.

The reachability index of Y, , is defined as the smallest integer such that
l--1 i=oA , while the observability index of , is defined as the smallest integer

such that l-
i=0 A-iy[ V’.

It is well known that { stabilizable and detectable (relative to Cg)}c=>{there exists a
feedback compensator such that the closed loop system is stable (relative to Cg)} and
that { minimal}<=> {for any Cg there exists a feedback compensator such that the closed
loop poles ar contained in Cg}. The required dimension of the feedback compensator
achieving these properties is bounded above by (min (, u)- 1).

Let be A-invariant. Then one may define the system by ]f := {A’, B’, C’}
with A’ := A[, B’ := B[ and C’ := CIr. Similarly the system (mod) is defined
by (mod ):= {A", B", C"} with A" := A(mod ), B" := B(mod) and C" :=
C(mod ’). These are illustrated in the commutative diagram.

B A C

;(mod )" (mod) a(m )
,(mod )’C’(m ei’(md C)

3. We will use, as standard notation, AF for A +BF and AH for A +HC.
3. DDP. Consider the linear system N" 2 Ax + Bu, y Cx. Let ;x denote all

state trajectories of this system. Formally, Ex := {x’N-lx abs. cont. and 2(t)-
Ax(t)e 1 := Im B a.e.}. A subspace is said to be a controlled invariant subspace iffor
all x0 e there exists x e Ex such that x(0)= Xo and x(t)e for all t. A subspace is
said to be a controllability subspace if for all x0, x there exists T > 0 and x e Ex such
that x(O) xo, x(T) x, and x(t)e for all t. We will denote the set of all controlled
invariant subspaces by and the set of all controllability subspaces by __.

It is well known [1, Chaps. 4, 5] that {’ is controlled invariant}:{ is A(mod N)-
invariant}: {A c F + }={there exists F such that ’ isAinvariant}. The family of
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all such F’s will be denoted by if(W). Furthermore: { is a controllability subspace}:>
{_there exists F and 1 Y3 such that (AI) Y}{ _, and for any real poly-
nomial p of degree=dimY, there exists F such that XAFI=p}Cr){IE

_
and

X(AF, B, -)[ is controllable for all if(Y/)}.
Finally, if W E

_
is such that there is an F if(7/’) such that tr(AFIW) c Cg, then we

call W a stabilizable controlled invariant subspace (relative to Cg). The family of all
stabilizable subspaces is denoted by _g.

It is well known and easy to prove that _, _, and _g are closed under subspace
addition, and thus there exists a supremal element of all elements of _7/’, _, and
contained in any given subspace of . These subspaces will be denoted by U.,
and *Wg.e, respectively. We recall the following algorithms for computing 7/’ and

Algorithm (ISA) (the invariant subspace algorithm; see [1, p. 91])"

/r.+l := OA-l(/,,.+); /,o =.
Algorithm (ACSA) (the almost controllability subspace algorithm; see [1, p. 106]

and [9], [10]: . := f) (A.+ 9); o {0}.

The sequence reaches, strictly decreasingly, its limit o//. dim&’+l
e 7/’e and "reaches, strictly increasingly, its limit Y dim.LP

e Ye Furthermore

Computing a corresponding feedback matrixF such that AFI/’e c [/’ requires solving a
set of linear equations. Finding an F such that

AFI 1: and XAe P,

requires a standard pole placement computation.
One of the main applications of the above concepts is the disturbance decoupling

problem. The main results are summarized in the following proposition.
PROPOSITION 1. (See [1, ’s 4.3 and 5.6]). Consider 2 Ax + Bu + Gd, z Hx and

the control law u Fx. Then"
(i) DDP. There exists Fsuch thatH(Is-AF)-IG=O iff Im G 7/’er H.

(ii) DDPS. There exists Fsuch that H(Is-AF)-aG 0 and tr(Av) Ca iff (A, B)
is stabilizable (relative to Cg) and Im G c g.Ker H.

(iii) DDPPP. For any Cg there exists Fsuch that H(Is-Av)-IG 0 and tr(AF)
Cg, iff (A, B) is reachable and Im G R*KerH.

An important refinement of the above proposition occurs when one allows a
feedforward term in the control.

PROPOSITION 2. (See [1, Ex. 4.10, 5.12]). Consider2 Ax +Bu + Gd, z Hx and
the control law u Fx + Rd. Then"

(i) DDP’. There exist F, R such that H(Is-AF)- (G+BR)=O iff ImGc
r+.

(ii) DDPS’. There existF, R such thatH(Is-AF)- (G +BR) 0, and o’(AF)C
Ca, iff (A, B) is stabilizable (relative to Cg) and Im G //’g,Ker/4 + N.

(iii) DDPPP’. For any Cg there exist F, R such that H(Is AF)-1 (G + BR) 0 and
o’(AF) c Cg, iff (A, B) is reachable and Im G 9e/4 + N.

Proof of Propositions 1 and 2. Because of the references given it suffices to prove
(iii) which, however, follows directly from the fact that g*.Kr/4--*Kr/4 whenever
Ca rl o’((AFI ?/’*Kr/4) mod *Kr/4) , for any F e _F(:er/4).
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To contrast with what is to come we summarize some of the main features of the
above results.

1. The situation with the spectrum may be illustrated (see [11]) as follows:

fixed

assignable

fixed

assignable

(AI) + //’*Ker H

Ker H

Ker H

2. We use the following notion of genericity. Consider all (A, B, C, G, H)
belonging to a given algebraic variety Z. Let Z t.J/u= Zi, be a decomposition of Z into
its irreducible components. Let denote all (A, B, C, G, H) for which a given problem
(e.g., DDP) is not solvable. Then we will say that the problem is generically solvable iff
Zi 715 is a proper subvariety of Zi for all i.

If we consider all elements of (A, B, C, G, H) to be free, then DDP is never
generically solvable; DDP’ is generically solvable iff

4 controls_-> : controlled outputs.
This condition also holds for the generic solvability of DDP, if we consider the subclass
of systems with HG -0. For DDPPP’ the condition becomes

4 controls> : controlled outputs,

while DDPPP needs again the added a priori assumption HG -O.

4. DDEP. The dual notion of controlled invariance is that of conditioned
invariance which has been introduced in [6] and further studied in [3], [12] (see also [13]
and [1, Ex. 5.17]). We prefer the following definition.

DEFINITION. Consider the system Ax, y Cx. A subspace e X is said to be
conditionally invariant if there exist matrices F, E such that z := x(mod ) satisfies. =Fz +Ey.

This definition may seem a bit "ad hoc". In fact, its discrete time analogue may
be introduced in a more intrinsic way by defining 5 to be conditionally invariant
for x(t+l)=Ax(t), y(t)=Cx(t), if there exists f such that x(t+l)(modSe)=
f(x(t)(mod 5), y(t)).

The following conditions are equivalent: { is a conditioned invariant subspace}:
{5 is A]Ker C invariant}" :{A(Sef3 Ker C) = }:{L exists such that ASe= 9} (L is
related to F, E in the above definition by F A(mod 5), and E =-L(mod 5e)).
Indeed, assume that 0 is a conditioned invariant subspace. Then if x Ker C, it follows
that ()(mod 5) (d/dt)(x (mod )) Fx(mod 0) (Ax)(mod ow), which shows that
A(0f3 Ker C)= 5. A simple linear algebra calculation shows that this implies the
existence of L such that A = 5. For such an L there holds (for Ax, y Cx)

---a (x(mod 5e)) (k)(mod 5’)= (Ax)(mod
dt

(ALx)(mod 5e)-L(mod 9)y

AL(mod 9)x (mod 9)-L(mod St)y,
which shows the equivalence of the above statements.
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The class of all conditionally invariant subspaces will be denoted by _5 and for
6 _5, _(5) := {LIALc }.

It follows from the definitions that AlKer C-invariant subspaces are immediately
related to the construction of observers. For the stability properties of conditionally
invariant subspaces it is not tr(ALIS) but tr(AL(mod 5)) which is relevant. Indeed,
consider the data processor, AL(mod )z L(mod 5)y,

as estimator for x (mod 5e) in Ax, y Cx. Define e := z x (mod ) and note that in
this case we need not have z(t)=x(t)(mod 5), since it is not assumed that z(0)=
x(0)(mod 6). Then e is governed by =AL(mod )e. Consequently, the error
dynamics are governed by tr(AL(mod 6)), which leads naturally to the following
definition.

DEFINITION. A conditionally invariant subspace S is said to be a complementary
observability subspace if for any given real polynomial p of degree n-dim 5, there
exists L _(6) such that

/’AL(mod 6) P"

It is said to be a complementary detectability subspace (relative Cg) if there exists
L _(6), such that tr(At’(mod 5)) c

There holds: {5 is a complementary observability subspace}::,{6 _6 and =IL,
’{1 9’[ := Ker C such that (:IIA ’) 6e} {6e _6e and (AL, -, C)(mod ) is
observable for any L _(6)}.

These statements follow immediately from duality. Indeed, let and _6eg denote all
complementary observability and detectability subspaces associated with a given pair
(A, C). It is easily seen that AlKer C-subspaces behave dually to Ar(mod Im.Cr)
subspaces: 6e _6 (resp. _, g) relative to (A, C), iff 6e+/- _7/(resp. , _7/g) relative to
(A T, cT). In particular _6, _5, and

_
are closed under subspace intersection and thus

there exist infimal elements of all elements of _6, _Se,, and containing a given subspace
[ of . These subspaces will be denoted by * 5* andW respectively.YC g,

In order to compute . and ., it suffices to dualize the algorithms given before.
Let f :- Ker C, and consider the following algorithms.

Algorithm (ISA)’:

5+’ := ’ +A(" f3 [)’, 0 ={0}.

Algorithm (ACSA)"

z := &’ + (A-1N.’) f’) tr;

The sequence 6. reaches (strictly increasingly) its limit 6:e--
,_n -dim .L’+ ,t/,n -dimand N., reaches (strictly decreasingly) its limit ..Furthermore,

and NS 6. +N. N..
Computing a corresponding output injection matrix L such that

requires solving a set of linear equations. Finding an L such that

AL,AfS C d/S and XaL(modAC) P,

requires a standard pole placement computation.
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Before introducing the disturbance decoupled estimation problem, we give a
simple but very useful result concerning the role of dynamic extensions of linear
systems.

Let E: Ax + Bu, y Cx be given. We will call the system e.. Ax + Bu,
v, considered as a system with input (u, v) and output (y, w), denoted as ze: e=
Aex + Beu e, ye CeX e, with e 6() o, etc., an extension of ,E. The dimension of V
is called the dimension of this extension. We will denote by P the canonical projection

P
x (x, w) x. It is important to note that static feedback around e corresponds to
dynamic feedback around Y_,, and that any (finite dimensional) feedback processor
around E may be visualized in this way. We have the following simple relations between
invariant subspaces of and Ee.

PROPOSITION 3. Let _e be an extension of ,. Then,

{a/,e

_
} cr> {po]/,e

_
}, {,.e C=

_
e},::> {,_e n },

and {5 e }<=>{Y n
{7

_
e}4p{P7e

_
}, {afl E _fle}:::) {

_
Consider now the plant Y_,: k Ax +Bu + Gd, with observation (y, u) where y

Cx, and the output to be estimated z Hx. The disturbance decoupled estimation
problem DDEP is the problem of constructing a data processor, (an observer) Ep:
Fw /Ey + Ku Mw +Ny / Su, such that the resulting estimation error e := z
depends only on the initial conditions and not on the disturbance d or on the input u.
The resulting signal flow graph is then as shown in Fig. 4.

DISTURBANCES . TO BE ESTIMATED OUTPUTS ./’ESTIMA_TION ERROR

P T_u
CONTROLS MFASUREIVlENTS ] DATA I

_IPROCESSOR|

FIG. 4

We emphasize again that, as in the disturbance decoupling problem, the disturbance
may also depend on the state through an unknown function or on unknown parameters.

Since in a disturbance decoupled observer the transfer function d, u e is zero, all
signals e(. ), obtainable by varying the initial conditions x(0), w(0), are exactly those
obtainable by varying the initial conditions v(0) as the output of a system of the form
3 Pv, z Qv, for some P, Q. If (P, Q) is observable (which we may always assume
to be the case) then we will call tr(P) the spectrum (or poles) of the error dynamics of the
observer. Note that in an input decoupled observer x(0)= 0 and w(0)= 0 together
imply e(t)= 0 for all (i.e., we have the possibility of perfect tracking of the to be
estimated signal by means of the observed signal).

The following proposition treats the disturbance decoupled estimation problem
DDEP. This refers to the possibility of finding a disturbance decoupled observer. The
problems DDEPS and DDEPPP add the stability or pole placement requirement to the
estimation error dynamics.

PROPOSITION 4. Consider the system Ax +Bu + Gd, with observation (y, u)
where y Cx, and the to be estimated output z Hx. Consider an observer of the form

Fw +Ey + Ru, Mw +Ny + Su. Then"
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(i) DDEP. There exists a disturbance decoupled observer, iff 9*m fqKer C c

KerH.
(ii) DDEPS. There exists a disturbance decoupled observer with error spectrum

Cg, iff g*. Im G f’ Ker C = Ker H.
(iii) DDEPPP. For any Cg there exists a disturbance decoupled observer with error

spectrum contained in Cg, iff WI*m (3 Ker C Ker H.
Proof. Claims (i) and (ii) are essentially proven, by duality arguments, in [2] (see

also the references of this paper). For completeness, we include a short proof.
I Necessity. Let e :=z-., and consider the dynamics of x =(x, w)/g

written as e =Aex +Ge(u, d), e =Hex +De(u, d). This must have zero transfer
function (u, d)-e. Equivalently, D 0 and (Aellm Ge) (Ker HelAe) =: See.
Obviously, St is Aeoinvariant and Im B See Ker Ce. Now y_.e. Ax + Bu + Gd
rO Fw +Ey +Ku is clearly obtainable from an extension of Z by extended output
injection. Hence any Ae-invariant subspace belongs to _See. St 6 _See and, from Pro-
position 3, 9e=:ow, which implies ImG=f’lImGe=S=KerHe=
Ker (H-NC), which yields 5 (3 Ker C c Ker H. This proves (i). To prove (ii) it suffices
to note that the spectrum of the dynamics e equals the spectrum of A (mod 5e). Hence
if,e6 _ff,, and thus 5t’ _fig (see Proposition 3), if DDEPS is solvable, whereas the
condition for DDEPPP follows directly from the fact that g*. Im NIm 6, whenever
Cg f3 o’(AL(mod 5t’*m )lWm (mod 5*m )) , for any L _L(SI*m ).

II Sufficiency. Assume _St’, Im G 5, and 5t’f3 Ker C Ker H. By this last
inclusion there exists M,N such that Hx =Mx(modS)+NC. Let L_L(_5a) and
consider the observer ff AL(mod 5) w -L(mod )y +B(mod) u, Mw + Ny,
with -(mod 5), and M, N such that Hx Mx(mod if’) + NCx. A simple cal-
culation then shows that the following equation holds,

d L

td
--:x(md St)= A (mod 6e)x(mod 6e)-L(mod ff’)y + B(mod 9)u.

Thus e := z ., is governed by AL(mod 6e)r, e Nr, with r := x (mod if’)- w. Hence
the transfer function (u, d)-e is zero, which yields (i). If 6 _g. ImG, or o(7/9 _Im G, then
this reasoning yields (ii) and (iii).

Remarks.
1. In some applications it may be desired that the observations should in any case

be "filtered" before being used in .. This requirement is translated into the constraints
N 0, S 0. The results of Proposition 4 then need to be modified, respectively, to:

(i) DDEP’. 6e*m c Ker H,
(ii) DDEPS’. 6eg*. Im G C Ker H,
(iii) DDEPPP’. W*m c Ker H.

2. The estimate given on the order of the observer given in the above proposition
is, in general, conservative. In fact, the minimal order estimator design is the dual of the
minimal dynamic cover problem, and is not solved at this point. However, it is easily
seen from the above proposition that if the to be estimated output is the state, then the
dimension of the required observer is at least n-Rank C. The proposition hence also
shows in what sense the "Luenberger observer" is minimal. In fact, the order of the
observer which achieves pole placement needs, assuming (A, C) to be observable, only
be n-Rank C, whereas the above proposition would predict n. This is due to the result
described in [1, Lemma 3.5, Th. 3.3]. The procedure described there may actually be
generalized to the situation at hand, but we will not go into that here.
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3. The situation with the spectrum of conditioned invariant subspaces may be
illustrated [11] as follows"

assignable {
fixed {

assignable {
fixed {

{0}

(Ker CIA) 0 ST*m

4. If we assume all elements of (A, B, C, G, H) to be arbitrary, then DDEP is
generically solvable iff

measurements >- disturbances.

This condition also holds for DDEP’ provided we add the a priori requirement HG O.
DDEPP instead requires

# measurements> # disturbances

while DDEPP’ again needs the a priori assumption HG O.

5. DDPM. In this section we will give the main result of this paper" the dis-
turbance decoupling problem with measurements and stability or pole placement
requirements.

DEFINITION. Consider the system 2 Ax + Bu, y Cx. The subspace = F is
said to be an (A, B, C)-invariant subspace if there exists K such that (A + BKC) .

We will denote all (A, B, C)-invariant subspaces by _. The following proposition is
easily seen.

PROPOSITION 5. ’ o//, .
In fact, if _, then it is a matter of solving a set of linear equations to compute a

suitable for it.
The following elegant result of [3] shows how one can produce (A, B, C)-invariant

subspaces by extension.
PROPOSITION 6. Let t/"

_
and 5a _5a, with 5a 7/’. Then there exist an extension of

Y of dimension _-<dim o//._ dim 5a and an e
_

e, such that 7# pe, and 5a e fq .
Proof. The idea behind this proof is shown in Fig. 5. Take //’(mod 5a), i.e.,

dim dim ?/’-dim 5a, and e := ff3 7/7. Let 7’ be such that 7/’ 5a ’, and
= o//., //., such that CI o//., f-) o/ {0} and dim ’ dim ’ dim /4/’. Now
e :_._ ,1,_, will have the required properties (see Fig. 5). 71

FIG. 5
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Remark. The above proposition in effect shows how one can produce an
(A, B, c)e-invariant subspace from a pair 6e c 7/’. Actually this result also solves the
following problem. Consider A Ax +Bu, y Cx. Let c and suppose that we
would like to make V invariant by feedback from y. Clearly for this V needs to be
A(mod )-invariant. A systematic procedure for achieving such a feedback law is given
in Proposition 6. First choose an A lKer C-invariant subspace 6e c V, taking 6e {0}
shows that it is always possible to achieve this.

Now lete be such thatpe o//,, ande i’ ,-. Then (e I _e, and, hence, there
exists g (defining a dynamic feedback law) such that (A +Betece)e ,e. The
ensuing closed loop system will have the property that if x (0) e, then x (t) e, i.e.,
pxe(t) F" for all t, as desired. Actually this procedure may be viewed in terms of
separation, with an observer used to estimate the feedback law u Fx, with F

We continue with a lemma which is an interesting generalization of well-known
results about stabilizability and pole placement by output feedback.

LEMMA. Let : Ax + Bu, y Cx be given, and letLbe an A-invariantsubspace
o.

I. Consider the system [and assume that it is stabilizable and detectable. Then
there exists an extension of and a static feedback law Ke around such that, with
A 1,cl := A +Beg Ce,

(i) o/.1 is A 1,c/-invariant,
(ii) o-(A 1,c/l(@ l) Cg,
(iii) r(A 1,1 r(A 1,c1).[ (@ /1)) LI r(A(mod S)).

This can always be achieved with an extension of dimension of at most

3’1 := min (:xlL, v.lL)- 1 _-<min (Kx, vx)- 1. Moreover, if[is minimal, then given any
real polynomial px of degree >-dim + 3"1 one can in fact achieve this with the charac-
teristic polynomial ofAx,/[(L’ o/.) equal to pl.

II. Consider the system Z(mod ), and assume that it is stabilizable and detectable.
Then there exists an extension Zz of and a static feedback law K2 around 2 such that,
with A2,cl := A _[_ B eK2eC

(i) is Az,cl-invariant,
(ii) o’(A 2,c/(mod ’)) Cg,
(iii) cr(A2,cl) o’(A[) cr(A2./(mod )).

This can always be achieved with an extension of dimension of at most 3"2 :=
min (K(mod), VX(mode))-- 1 --< min (z, v)-- 1. Moreover, if. (mod ) is minimal,
then given any real polynomial p2 of degree >- n-dim + 3"2, one can in fact achieve
this with the characteristic polynomial of A2,/(mod ’) equal to p2.

Proof. In an suitable basis with @W(mod ), - (mod - ),
C (mod C), E may be written as

1 X1Yl(12) (1 12 12A22’(12)+( (2) (;2)=(11IB22]

In this representation,1 {A 11, Bll, Cll} and Y_,(mod ) {A22, B22, C22}. In order
to prove the lemma it suffices to synthesize a Brasch-Pearson stabilization or a
placement compensator (see [1, 3.8]) from y to Ul for (i), or Y2 to U2 for (ii).

It remains to be shown that min(gzl,Vl,z), min((mode),V=(mode))_--<
min (:x, v=). This however is due to the fact that Kle <-- . (this follows from the results
in [14]) and that vele _-<v, which is easily derived from first principles. Dually,
K,V.,(mod.’) KX, and Vxl. -<- vx,
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The above lemma shows under what conditions stabilization or pole placement by
feedback from y to u can be done in a decentralized fashion by feedback from yl to ul
and from u2 to u2 without destroying the special subsystem structure induced by the
A-invariant subspace

We are now in a position to state .and prove our main result.
THEOREM. Consider the system ,:2 =Ax +Bu + Gd, y Cx, z =Hx, and the

feedback processor Er" Fw + Ey, u Mw + Ny. Let Eel be the resulting closed loop
system with

Acl :=
/C I/’- J"

Then

(i) DDPM ([2], [3]). There exists , such that the transfer function d z in ,c is
zero iff 2f*Im CrI. Moreover the required dim /4/’_-< dim //’r --dim 6e*m .

(ii) DDPMS. There exists , such that the transfer function d z in ,a is zero and
r(Acl)C Cg iff Y is stabilizable and detectable and 6g*,m l/’g*,r . Moreover the
required dim /’_-< dim //’g*,Cr U--dim 6eg*,im o-2(min (uz, v.)-1).

(iii) DDPMPP. For any Cg there exists Ysuch that the transferfunction d z in Ect
is zero and r(At)c Cg iff Y is minimal and 3C*mO R*rU. Moreover, the required
dim 7g/’_<- dim *ru-dim I*m 2(min (u., vz)-1).

Proof.
I. Necessity. Assume that a required ; exists. Consider the extension e on which

static feedback results in a Y_, with zero transfer function d z, and write it as
"cl" 2 AclX + Ged, z Hex e. Hence, (A/llm Ge) (Ker HelAcl) =: e. Obviously
oe is Acl-invariant and hence, as shown in the proof of Proposition 4, .e _e
_e _ce. Furthermore, Im G .e Ker He. Hence, Im G c fq. Im G e ’__: oqa c :__ p.oe p Ker H Ker H. From Proposition 3, it follows that e and
6e e _6e, as desired.

The above reasoning also shows the solvability of DDPMS. Indeed, when Act is
stable then Acl[ is stable as well; thus .e

_
_;, which by the above reasoning

shows that there exist 7/’g _g and 6eg e _6eg such that Im G c 6eg c 7/’g c Ker H. That
stabilizability and detectability of Y- is also a necessary condition follows from general
principles.

Consider now DDPMPP. If Cr((AFl//’*KerH)(modCerH))Cg= for F
F(cier H), then * *g.Ker H and, dually, if cr(Ac(mod 6*m )1Ker H

3C*m a(mod *m )) f-1Cg , for L L(6em_ a), then 6eg.im* a 3C*m a. Hence, there
’s such that Cg,Ker* H --lKerH and 6eg.im* a 3C*m , which yieldsexist plenty of Cg

,A/’Im (7 Ier H, since if DDPMPP is solvable, then DDPMS is solvable for those Cg’s,
as required. That minimality of 2; is also a necessary condition follows again from
general principles.

II. Sufficiency. This part of the proof is constructive and the procedure may be
divided into three parts. ,

Step 1 (Disturbance decoupling). Since 9’*m a c CKern there exists, by Proposition
7 a first extension of E, Y_, of dimension <dim V* -dim S*m and an (A, B, C)KerH G

invariant subspace L such that *m= f’lX cp F*ern. Write E as 2
lX +BUl +G d, yl =ClX, z =HlX. Hence Im Gc cKerH. Thus there

exists K such that is Al.c/(: Ae +BeKC )-invariant. Since (Al,/lIm G
c (KerH IA 1.c) this yields the solution to DDPM. The resulting closed system is

.__e1,cl: fl =Al,clXl +BlUl +Gd, y =Cx,z =Hx1.
It is disturbance decoupled but enjoys no further stability properties as yet.
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We now consider DDPMS. If E is stabilizable and detectable, so are E and ,X ,cl.
oQgg,Im G g,Ker H.Let 01 be cOnstructed as in the previous paragraph starting from * o//..

Hence is A 1,c/-invariant, Im G c c Ker H, and _6e,g fq ,g. Consider
X,,c/l and E,t (mod S). Now, Eel,cll is stabilizable and detectable; stabilizable
because _W,g, and detectable because E is. Dually, ,X,z (modA is stabilizable
and detectable; stabilizable because E,t is and detectable because _6el,g.

Using these properties of E,cll- and E,I (mod) it is now possible to carry
out the stabilization steps by a decentralized procedure, by first putting feedback
around E,cll,V_, (we will call this the disturbance loop stabilization) and then putting
feedback around .,et,cl (mod) (we will call this the controlled output loop stabiliza-
tion ).

Step 2 (Disturbance loop stabilization). Let us now use procedure (i) of the lemma
on ,,clle. This yields a new extension ,X and a feedback such that 0 := (R) 74/2
is A.,/-invariant, tr(A2,I1) c Cg, and tr(A2,/(mod S’)) tr(A 1,/(mod ’)) Cg.
Furthermore, Im G c KerH remains satisfied, which still yields a disturbance
decoupled system.

Step 3 (Controlled output stabilization). Let us now use procedure (ii) of the lemma
on X,,c(mod ). (Note that ,/(mod)= ,S_,,/(mod’ ).) This yields an extension

X and a feedback such that [ remains A3,/-invariant, which implies Im G
KerH and hence, the DDPM conditions will remain satisfied. Furthermore,

cr(A3,/(mod )) Cg and o’((A3,/)loL’) 0"((A2,/)[.) Cg, which yields DDPMS.
We still need to show the estimate on the required order of the extension. This

follows from the estimates

x., (mod <= K x., Kx x,
nd

with similar estimates for the observability indices.
Turning now to DDPMPP we see that the procedure sketched above will also work

with an arbitrary Cg provided N*m C YKer H, since ,l, as constructed in Step 1, will
then be such that Y. ,c/(mod ’ and E,l] are both minimal, and hence Steps 2 and 3
can be done with pole placement.

This ends the sketchy proof of the theorem. 1-1
Remarks. 1. DDPM is solvable only if HG O. However, in this subclass we have

generic solvability if and only if

# controls_-> # controlled outputs,

# observations_-> # disturbances.

For DDPMPP this condition becomes:

# controls> # controlled outputs,

: observations> # disturbances,

Finally, if feedforward is allowed (i.e., d is measured and available in the feedback
processor) then we have solvability of DDPM, (resp. DDPMPP) iff we have it for DDP,
(resp. DDPPP).

2. Note that the estimates for the dimension of the feedback processors as given in
the theorem and the lemma are conservative, and may in any specific situation be
improvable by analyzing the comrollability and observability indices of EI and
E(mod f). Of course, the minimal order required, or generically required, is not known
and will be a complex combination of the minimal cover and the minimal order
stabilizing compensator design (research) problems.
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3. We have been referring to Step 2 in the proof of our theorem as disturbance loop
stabilization because it stabilizes the loop which is influenced by external disturbances
(even though it does not influence the to be controlled outputs). Step 3 is called
controlled output stabilization because it stabilizes the loop which influences the to be
controlled outputs (even though it is not influenced by the disturbances).

The total design procedure with the disturbance decoupling loop and the two
stabilization loops has an appealing hierarchical structure. This structure may be made
more elegant yet by viewing all three control loops in terms of a separation philosophy,
with the observer elements driven by the estimation errors and having their own
internal control feedback. It seems appropriate to mention at this point that, as shown in
[3], in a closed loop configuration it is in general not possible to distinguish observer error
dynamic modes and state feedback controlled modes.

The signal flow graph of the controller may be visualized as shown in Fig. 6.

d z

Y
ue ye

DISTUPANCE DECOUPLING

STABI LIZATION

FIG. 6

Altogether this results in a complex, but nevertheless logically structured and,
from a cybernetic point of view appealing, synthesis. Even though the order of the feed-
back control compensator may be up to three times the dynamic order of the plant,
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the resulting feedback controller could be implemented on a microprocessor for
moderately complicated plants.

4. The synthesis procedure explained in the proof of the theorem can obviously be
made into a computer-aided design algorithm. In the case of DDPMPP one would
proceed as follows:

Data. A, B, C, G, H, (which must satisfy HG 0), and the desired Cg (or the
desired symmetric set of poles A 1, A 2, , AN, or the desired characteristic polynomial p
of degree N. The synthesis will work as long as N is large enough and as long as a
factorizability condition on p, which comes out of the structure of the controller, is
satisfied).

Verify whether m > and p > q. If so, proceed with confidence (see Remark 1). If
not, count on luck due to special structure of the system matrices.

Step 1. Compute Ci*m and KerH using, e.g., the linear algorithms given above. If
N*m c Yer n, proceed. Otherwise, look for some other control system
design approach, e.g., an LQG approach.

Step 2. Solve DDPM by computing and K, using the ideas in the proofs of
Proposition 6 and Step 1 of the theorem.

Step 3. Design Brasch-Pearson compensators for E(mod 5) and
Obviously, in order to implement such procedures into good working high level

computer-aided design packages, a lot of numerical work remains to be done [15].
However, it seems very important that such packages be developed, and the failure of
control theorists to give adequate attention to such efforts undoubtedly contributes to
the widely advertised gap between control theory and practice.
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