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Abstract— This paper studies dissipativity for a class of
infinite-dimensional systems, called pseudorational, in the be-
havioral context. A basic equivalence condition for dissipativity
is established as a generalization of the finite-dimensional
counterpart. For its proof, we derive a new necessary and
sufficient condition for entire functions of exponential type (in
the Paley-Wiener class) to be symmetrically factorizable. These
results play crucial roles in characterizing dissipative behaviors
and LQ-optimal behaviors in pseudorational settings.

I. Introduction
The notion of dissipativity [14], [15] is one of the most

important properties in system theory. It can be viewed as a
natural generalization of Lyapunov stability to open systems.
Most of robust stability conditions make use of this property.

It is well known that quadratic differential forms
(QDF) [18] play an important role in describing dissipativity
for linear time-invariant finite-dimensional systems. For ex-
ample, the theory of analysis and synthesis of dissipative
systems are developed in [12], [19] using QDF’s. Small
gain theorems or the celebrated Popov criterion can also be
deduced using such forms [17].

However, for infinite-dimensional systems, the dissipativ-
ity described by QDF’s is not well explored. In this paper,
based on the theory of QDF’s developed in [23], we study the
dissipativity of a class of infinite-dimensional systems called
pseudorational [20], [22]. A basic equivalence condition for
dissipativity is established as a generalization of the finite-
dimensional counterpart. For its proof, we derive a new
necessary and sufficient condition for entire functions of
exponential type (in the Paley-Wiener class) to be symmet-
rically factorizable.

Utilizing these results, we then study the problem of
characterizing dissipative behaviors with respect to a given
quadratic supply rate, which is studied by [8] for finite-
dimensional systems. We also give a characterization of LQ-
optimal behaviors following [16] in a pseudorational setting.

This paper is organized as follows. After preparing neces-
sary notations in Section II, we investigate the dissipativity
of pseudorational behaviors in Section III. Utilizing the
result of this section, we study a characterization problem of
dissipative behaviors in Section IV. The LQ-control problem
is also discussed in Section V.
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II. Notation and Convention
The real and complex fields are denoted by R and C,

respectively. Let C+ := {s ∈ C : Re s > 0} and C− :=
{s ∈ C : Re s < 0}. For a vector space X, Xn and Xn×m

denote, respectively, the space of n products of X and the
space of n × m matrices with entries in X. For a complex
matrix M, its transpose is denoted by M� and its complex
conjugate transpose by M∗.

C∞(R,Rq) ((C∞)q for short) denotes the space of Rq-
valued C∞ functions on R. The space of functions having
compact support is denoted by D(R,Rq) (often abbreviated
as Dq). By E ′(R) we denote the space of distributions having
compact support in R. E ′(R) is a convolution algebra and
every p ∈ E ′(R) acts on C∞(R,R) by the action C∞(R,R)→
C∞(R,R) : w �→ p∗w. The image and kernel of the mapping
are denoted by im p and ker p, respectively. For τ ∈ R, δτ
denotes the Dirac’s delta placed on τ. The subscript τ is
omitted when τ = 0. Finally E ′(R2) denotes the space of
distributions in two variables having compact support in R2.

The Laplace transform of p ∈ E ′(R) is defined by

L [p](ζ) = p̂(ζ) := 〈p, e−ζt〉t
where the distribution action is taken with respect to t.
Similarly, for p ∈ E ′(R2), its Laplace transform is defined
by

p̂(ζ, η) := 〈p, e−ζs−ηt〉s,t
where the action is taken with respect to two variables s
and t.

By the well-known Paley-Wiener theorem [10], a distribu-
tion p belongs to E ′(R) if and only if its Laplace transform p̂
is an entire function of exponential type satisfying the Paley-
Wiener estimate

| p̂(ξ)| ≤ C(1 + |ξ|)mea |Re ξ| (1)

for some C ≥ 0, a ≥ 0, and a nonnegative integer m. We
denote by PW the class of entire functions satisfying the
estimate above. In other words, PW = L [E ′(R)].

For Φ ∈ E ′(R2)n×m, define Φ∗ ∈ E ′(R2)m×n and ∂Φ ∈
E ′(R)n×m by Φ̂∗(ζ, η) := Φ̂(η, ζ)� and (∂Φ)ˆ(ξ) := Φ̂(−ξ, ξ)
in the Laplace transform domain.

Let F be a Cn×m-valued function. F is said to be entire if
each entry of F is entire. If F is entire, F is said to be of
exponential type if each entry of F is of exponential type. We
say that F is para-Hermitian if F equals to its para-Hermitian
conjugate F ˜ defined by F ˜(ξ) := F(−ξ̄)�.

For x > 0 let log+(x) := max{0, log x}. For a matrix A,
‖A‖ denotes its maximal singular value. In a vector space X,
span M denotes the vector subspace spanned by a subset M
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of X. When a functional f takes only nonnegative values,
we will write f ≥ 0.

III. Dissipativity of Pseudorational Behaviors

The characterization of dissipativity for behaviors of finite-
dimensional systems [11, Theorem 4.3] has been extensively
utilized in the vast literature. The theorem states that, for the
behaviors that admits an image representation, dissipativity
with respect to a QDF induced by a polynomial is equivalent
to the existence of a storage functions or that of a dissipation
function.

In this section, following [11], we study dissipativity
for a class of infinite-dimensional systems, called pseu-
dorational [21], with respect to the quadratic supply rate
described by the QDF introduced in [23]. The QDF is
induced by a distribution having compact support and is a
natural extension of that induced by a polynomial.

We first introduce the notion of dissipativity, storage
functions, and dissipation functions in the pseudorational
setting.

Definition 3.1: Let B ⊂ C∞(R,Rq) and QΦ be the QDF
induced by Φ = Φ∗ ∈ E ′(R2)q×q.
• The pair (B,QΦ) is said to be dissipative if∫ ∞

−∞
QΦ(w) dt ≥ 0, ∀w ∈ B ∩D(R,Rq). (2)

• The QDF QΨ induced by Ψ = Ψ∗ ∈ E ′(R2)q×q is said
to be a storage function for (B,QΦ) if

d
dt

QΨ(w) ≤ QΦ(w), ∀w ∈B. (3)

• The QDF QΔ induced by Δ = Δ∗ ∈ E ′(R2)q×q is said to
be a dissipation function for (B,QΦ) if

QΔ(w) ≥ 0, ∀w ∈ B (4)

and∫ ∞
−∞

QΦ(w) dt =
∫ ∞
−∞

QΔ(w) dt, ∀w ∈B ∩D(R,Rq).

The purpose of this section is to show a basic equivalence
condition for dissipativity, as a generalization of the finite-
dimensional counterpart [11, Theorem 4.3]:

Theorem 3.2: Let B = im M be a behavior in image
representation with M ∈ E ′(R)q×m and Φ = Φ∗ ∈ E ′(R2)q×q.
Suppose that M has a left inverse in E ′(R)m×q, i.e., there exist
M† ∈ E ′(R)m×q such that M† ∗M = δIm. Then the following
conditions are equivalent:

1) (B,QΦ) is dissipative;
2) Define Φ̂0 by

Φ̂0(ζ, η) := M̂(ζ)�Φ̂(ζ, η)M̂(η).

Then
Φ̂0(− jω, jω) ≥ 0, ∀ω ∈ R; (5)

3) (B,QΦ) admits a storage function;
4) (B,QΦ) admits a dissipation function.

The proofs of 4)⇒ 3), 3)⇒ 1), and 1)⇒ 2) can be done in
the same way as in the finite-dimensional case [11]. However,

to show the implication 2) ⇒ 4) we need a special type of
factorization of Φ̂0(−ξ, ξ), called symmetric factorization.

When Φ̂0(−ξ, ξ) is a polynomial, it is well-known [2] that
inequality (5) ensures the existence of such a factorization.
However, in Theorem 3.2, Φ̂0(−ξ, ξ) is not a polynomial
but an entire function. In the next subsection we derive a
new necessary and sufficient condition for the existence of
symmetric factorizations over PW .

A. Symmetric Factorization over PW

We define the notion of symmetric factorization
over PW q×q as follows:

Definition 3.3: Let Γ ∈ PW q×q be para-Hermitian. F ∈
PW q×q is said to induce a symmetric factorization of Γ if

Γ(ξ) = F ˜(ξ)F(ξ). (6)

The aim of this subsection is to prove the following
theorem:

Theorem 3.4: Let Γ ∈ PW q×q be para-Hermitian. Γ
allows a symmetric factorization if and only if

Γ( jω) ≥ 0, ∀ω ∈ R. (7)

The necessity is trivial in this theorem. For sufficiency, we
begin by quoting a basic result from the factorization theory
of operator valued entire functions [9]:

Proposition 3.5 ([9, Theorem 3.6]): Let Γ be a Cq×q-
valued entire function of exponential type. Suppose that (7)
holds and the integral

∫ ∞
−∞

log+ ‖Γ( jω)‖
1 + ω2 dω (8)

is finite. Then there exists a Cq×q-valued entire function F of
exponential type such that (6) holds and det F has no zeros
in C+.

This proposition plays a crucial role in proving Theo-
rem 3.4. To make use of this proposition, we additionally
need to show that

1) the integral (8) always exists for every Γ ∈PW q×q;
2) the function F in Theorem 3.4 belongs to PW q×q if
Γ belongs to PW q×q.

First, the existence of the integral (8) can be established
by the Paley-Wiener estimate (1):

Proposition 3.6: The integral (8) is finite if Γ belongs
to PW q×q.

Proof: Let Γ belong to PW q×q. Then each entry of Γ
satisfies the Paley-Wiener estimate (1). From this we can
easily check that the function ‖Γ(ξ)‖ also satisfies the Paley-
Wiener estimate; i.e., there exist C > 0, a > 0, and a
nonnegative integer m such that

‖Γ(ξ)‖ ≤ C(1 + |ξ|)mea |Re ξ|.

Substituting jω into ξ we have

‖Γ( jω)‖ ≤ C(1 + |ω|)m, ∀ω ∈ R. (9)
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Integrate over R the log+ of both sides divided by 1 + ω2.
Then we have∫ ∞

−∞
log+ ‖Γ( jω)‖

1 + ω2 dω

≤
∫ ∞
−∞

log+C
1 + ω2 dω + m

∫ ∞
−∞

log(1 + |ω|)
1 + ω2 dω

≤ π log+C + 3m.

Hence the integral (8) is finite.

We then show that, in Proposition 3.5, if Γ belongs
to PW q×q then the function F also belongs to PW q×q:

Proposition 3.7: Let Γ and F be Cq×q-valued entire func-
tions of exponential type. Suppose that (6) holds. If Γ belongs
to PW q×q, then F also belongs to PW q×q.

Proof: See Appendix.
We are now ready to prove Theorem 3.4:

Proof of Theorem 3.4: The necessity is obvious. We
prove the sufficiency. Let Γ ∈ PW q×q be para-Hermitian
and assume that (7) holds. Since the integral (8) is finite
by Proposition 3.6, Proposition 3.5 ensures the existence
of a Cq×q-valued entire function F satisfying (6). This
function F actually belongs to PW q×q by Proposition 3.7.
This completes the proof of the theorem.

Before closing this subsection, we refer to a more spe-
cial type of symmetric factorizations, called symmetric
(anti-)Hurwitz factorization. These factorizations play a key
role, for example, in examining the existence of positive
storage functions for finite-dimensional systems [18].

Definition 3.8: Suppose that F ∈PW q×q induces a sym-
metric factorization (6) for Γ ∈PW q×q. The factorization is
said to be a symmetric Hurwitz factorization if det F(λ) = 0
implies Re λ < 0 and a symmetric anti-Hurwitz factorization
if det F(λ) = 0 implies Re λ > 0.

The next theorem is an extension of the result given in [2]:
Theorem 3.9: Let Γ ∈ PW q×q be para-Hermitian. Γ

allows both a symmetric Hurwitz factorization and a sym-
metric anti-Hurwitz factorization if and only if

Γ( jω) > 0, ∀ω ∈ R.
Proof: The statement on the symmetric Hurwitz fac-

torization is trivial because, in Theorem 3.2, det F already
has no zeros in C+. A symmetric anti-Hurwitz factorization
can then be obtained from a symmetric Hurwitz factorization
of Γ�.

B. Proof of the Main Result

Having established Theorem 3.4, we can proceed to the
proof of the main result Theorem 3.2.

Proof: We run the cycle 2) ⇒ 4) ⇒ 3) ⇒ 1) ⇒ 2).
2) ⇒ 4): By Theorem 3.4 there exists F0 ∈ PW m×m

that induces a symmetric factorization for Φ̂0(−ξ, ξ). Define
Δ̂0(ζ, η) := F0(ζ̄)

�
F0(η) and Δ̂(ζ, η) := M̂†(ζ)�Δ̂0(ζ, η)M̂†(η).

Clearly (4) holds. Noting that Φ̂0(− jω, jω) = Δ̂0(− jω, jω),
by Parseval’s identity∫ ∞
−∞

QΦ(w) dt =
1

2π

∫ ∞
−∞

ŵ(− jω)∗Φ̂(− jω, jω)ŵ( jω) dω (10)

that holds for all � ∈ Dm and Φ = Φ∗ ∈ E ′(R2)m×m,
we have

∫
QΦ0−Δ0 (�) dt = 0 for all � ∈ Dm and hence∫

QΦ−Δ(w) dt = 0 for all w ∈ B ∩Dq.
4) ⇒ 3): Suppose that (B,QΦ) admits the dissipation

function QΔ with Δ = Δ∗ ∈ E ′(R2)q×q. Defining Δ̂0(ζ, η) :=
M̂(ζ)�Δ̂(ζ, η)M̂(η) we have∫ ∞

−∞
QΦ0−Δ0 (�) dt = 0, ∀� ∈ Dm.

By [23, Theorem 6.2] there exists Ψ0 = Ψ
∗
0 ∈ E ′(R2)m×m

such that
d
dt

QΨ0 (�) = QΦ0−Δ0 (�) ≤ QΦ0 (�)

for all � ∈ (C∞)m. Let Ψ̂(ζ, η) := M̂†(ζ)�Ψ̂0(ζ, η)M̂†(η).
Then, by the image representation B = im M, QΨ gives a
storage function for (B,QΦ).

3) ⇒ 1): Let Ψ = Ψ∗ ∈ E ′(R2)q×q induce a storage
function for (B,QΦ). Then the integration of (3) for w ∈
B ∩Dq readily yields (2) and hence (B,QΦ) is dissipative.

1) ⇒ 2): We can show its contraposition by using
Parseval’s identity (10). For the detail, see the appendix.

C. Example

1) Acoustic waves in a duct: Let us study the dissipativity
of the acoustic waves in the duct (see, for example, [3])
modeled by the following wave equation

1
c2

∂p
∂t
= −ρ0

∂v
∂x
, ρ0
∂v
∂t
= −∂p
∂x

where c > 0 is the speed of sound, ρ0 > 0 is the air density, p
is the pressure in the duct, and v is the particle velocity. Let
L be the length of the duct. Under the constant impedance
condition p(L, t) = Zv(L, t) at the open end, the transfer
function from v0 = v(0, ·) to p0 = p(0, ·) is given by

G(s) = ρ0c
1 + αe−2L s

c

1 − αe−2L s
c

(11)

where
α =

Z − ρ0c
Z + ρ0c

.

We show that the behavior of
[
v0 p0

]�
admits an image

representation B = im M with M having a left inverse in E ′.
By (11) we have

B = ker
[
ρ0c(δ + αδ2L/c) −(δ − αδ2L/c)

]
.

Since both distributions δ + αδ2L/c and δ − αδ2L/c yield
surjections on C∞ via convolution [5, Theorem 2.5], we
can actually show that B admits an image representa-
tion B = im M with

M =
[
δ − αδ2L/c

ρ0c(δ + αδ2L/c)

]

that has a left inverse
[
δ δ/ρ0c

]
/2 ∈ E ′(R)1×2.

Regarding the product v0 p0 as the energy supply rate, we
check the dissipativity of the pair (B,QΦ). Defining

Φ :=
1
2

[
0 δ ⊗ δ
δ ⊗ δ 0

]
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Fig. 1. Delayed resonator

we have QΦ(w) = v0 p0. Then an easy calculation gives
Φ̂0(− jω, jω) = ρ0c(1 − α2). Hence, from Theorem 3.2,
the system is dissipative if and only if −1 ≤ α ≤ 1 or,
equivalently,

Z ≥ 0.

2) Delayed resonator: Let us consider the mechanical
system depicted in Fig. 1. In this figure, m > 0 denotes
the mass, k ≥ 0 the spring constant, and c > 0 the damping
coefficient. f is the force applied to the mass and x is the
relative position of the mass from the equibrium. gx(t − τ)
represents a delayed feedback with g ≥ 0. Such a feedback
is used in, for example, delayed resonators [7].

Since the dynamics of the system can be written by the
equation mẍ = f − kx − cẋ − gx(· − τ), the set of all
the trajectories taken by w :=

[
x f

]�
admits a kernel

representation

B = ker
[
mδ′′ + cδ′ + kδ + gδτ −δ

]
,

which clearly admits an image representation B = im M
with

M =
[

δ
mδ′′ + cδ′ + kδ + gδτ

]

having a left inverse
[
δ 0
]
∈ E ′(R)1×2. Now let

Φ :=
1
2

[
0 δ′ ⊗ δ
δ ⊗ δ′ 0

]
.

Then QΦ(w) = f ẋ represents the mechanical energy supplied
to the mass.

We check the dissipativity of the pair (B,QΦ). A straight-
forward computation gives

Φ̂0(− jω, jω) = ω (cω − g sin(τω)) .

From this equation we can see that (B,QΦ) is dissipative if
and only if (cω−g sin(τω)) ≥ 0 for all ω ≥ 0. This condition
can be shown to be equivalent to

gτ ≤ c.

IV. Characterization of Dissipative Behaviors

Theorem 3.2 answers the question when a given behavior
is dissipative with respect to a given quadratic supply rate.
Then there naturally arises the following question: given a
quadratic supply rate, can one characterize all the behavior
that is dissipative with respect to the given quadratic supply
rate? Theorem 3.2 enables us to answer this question.

For any nonnegative integers m and n, define the ma-
trix Jmn by Jmn := diag(Im,−In). We omit subscripts m
and n when they are unimportant. Given Γ ∈ PW q×q, a
nonsingular matrix K ∈ PW q×q is said to induce a J-
spectral factorization of Γ if Γ(ξ) = K(−ξ)�JmnK(ξ).

Extending [8, Theorem 3.2] for finite dimensional behav-
iors, we can give a characterization of dissipative pseudora-
tional behaviors.

Theorem 4.1: Let M ∈ E ′(R)q×m and Φ = Φ∗ ∈ E ′(R2)q×q.
Suppose that K̂ ∈ PW q×q induces the J-spectral factoriza-
tion Φ̂(−ξ, ξ) = K̂(−ξ)�JK̂(ξ). Then the following statements
are true:

1) (im M,QΦ) is dissipative if and only if (im(K ∗M),QJ)
is dissipative.

2) Let L := cofac K. If the mapping C∞ → C∞ : f �→
(det K) ∗ f is surjective, then (im M,QJ) is dissipative
if and only if (im(L ∗ M),QΦ) is dissipative.

Proof: 1): Let M0 := K∗M. Then we can easily obtain

M�(− jω)Φ(− jω, jω)M( jω) = M0(− jω)�JM0( jω).

From this equation and since 1) ⇔ 2) of Theorem 3.2 holds
without the invertibility assumption, the statement follows.

2): Since det K induces a surjection on C∞,

im M = M ∗
(
(det K) ∗ (C∞)d

)
= (det K) ∗ M ∗ (C∞)d

= K ∗ L ∗ M ∗ (C∞)d = K ∗ im(L ∗ M).

This implies that (im M,QJ) is dissipative if and only
if (K ∗ im(L ∗ M),QJ) is dissipative. This is equivalent to
saying, from the first statement, that (im(L ∗ M),QΦ) is
dissipative.

Remark 4.2: The surjectivity of the convolution mapping
induced by cofac K can be checked by, for example, [4, The-
orem 2.5], which states that a distribution of type

∑N
I=1 αIδ

(kI)
τI

with αI , τI ∈ R and nonnegative integers kI always induces
a surjection.

V. LQ-Control

Following [16], we study pseudorational LQ-optimal be-
haviors utilizing Theorem 3.9. Let B ∈ (C∞)q be a behavior
and Φ = Φ∗ ∈ E ′(R2)q×q. Define for each w ∈ B and Δ ∈
B ∩Dq the cost-degradation [16], JΦ,w(Δ), as

JΦ,w(Δ) :=
∫ ∞
−∞

QΦ(w + Δ) − QΦ(w) dt.

Now define the optimal behavior as Bopt := {w ∈ B :
JΦ,w ≥ 0, limt→∞ w(t) = 0}. A characterization of the optimal
behavior for finite-dimensional systems is given in [16].

As in Theorem 3.2, we consider only the behaviors in im-
age representation im M with a left-invertible M ∈ E ′(R)q×m.
In the similar way as in [16], the invertibility of M actually
enables us to reduce the problem to the special case of M = I.
Hence hereafter we assume M = I.

First we state an analogue of [16, Proposition 1]. The proof
can be done in the same way and hence is omitted.
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Proposition 5.1: There exists w ∈ B such that JΦ,w ≥ 0
if and only if

Φ̂(− jω, jω) ≥ 0, ∀ω ∈ R.
Furthermore, under this condition we have

{w ∈B : JΦ,w ≥ 0} = ker ∂Φ. (12)

Using this proposition we will give an estimate for the
optimal behavior. Before stating the result, we need to
examine the structure of the space ker ∂Φ. For simplicity,
we assume that all the multiplicities of the zeros of det ∂Φ̂
are equal to 1 and all the derivatives of ∂Φ̂ are nonsingular at
each zero of det ∂Φ̂. We call functions of type p(t)eλt with p
being polynomial in t as polynomial-exponential functions.

Proposition 5.2: Let T ∈ E ′(R)q×q and suppose that the
multiplicities of the zeros of det T̂ are equal to 1 and all the
derivatives of T̂ are regular at each zero of det T̂ . Then

ker T = span {eλtv : T̂ (λ)v = 0}
where the closure is taken with respect to the topology
of (C∞)q, i.e., that of uniform convergence in all derivatives
on every compact set.

Proof: Since the linear mapping f �→ T ∗ f on (C∞)q

for f ∈ (C∞)q is continuous, its kernel ker T is a closed linear
subspace of (C∞)q. Moreover ker T is clearly shift-invariant.
Therefore ker T is spanned by the polynomial-exponential
functions it contains [6].

Thus it suffices to show that any exponential-polynomial
function belonging to ker T can be written as eλtv with λ ∈ C
and v ∈ Cq satisfying T̂ (λ)v = 0. Suppose that a polynomial-
exponential function f (t) := p(t)eλt belongs to ker T . Then,
in the same way as in [23, Lemma 8.1], we have

0 = (T ∗ f )(t) =

⎛⎜⎜⎜⎜⎜⎝
N∑

k=0

T̂ (k)(λ)
k!

p(k)(t)

⎞⎟⎟⎟⎟⎟⎠ eλt (13)

where N is the degree of p as a polynomial.
Then we can show N = 0. Note that the multiplicity of

the eigenvalue 0 of T̂ (λ) equals 1 and T̂ ′(λ) is nonsingular.
Let us write p(t) =

∑N
k=0 pktk with pk ∈ Cq. It suffices

to show that N ≥ 1 implies pN = 0. Suppose N ≥ 1.
Since 0 = T̂ (λ)pN = T̂ (λ)pN−1 + NT̂ ′(λ)pN from (13), we
have pN−1 ∈ ker A2 where A := T̂ ′(λ)−1T̂ (λ). Since the
multiplicity of the eigenvalue 0 of A is equal to 1, we have
pN−1 ∈ ker A, which can be shown to be equivalent to pN = 0.

Let p(t) =: v ∈ Cq. Substituting this into (13) we have
0 = T̂ (λ)veλt. Hence T̂ (λ)v = 0.

This proposition leads us to the following result:
Theorem 5.3: Suppose that Ĥ ∈ PW q×q induces the

symmetric Hurwitz factorization as Φ̂(−ξ, ξ) = Ĥ ˜(ξ)Ĥ(ξ).
Then

Bopt ⊂ ker H.

Proof: From Proposition 5.2,

ker ∂Φ = span {eλtv : ∂Φ̂(λ)v = 0}. (14)

Since Ĥ induces a symmetric Hurwitz factorization for ∂Φ̂,
we can show

ker H = span {eλtv : ∂Φ̂(λ)v = 0, λ ∈ C−}. (15)

Let us write (C∞s )q := {w ∈ (C∞)q : limt→∞ w(t) = 0}. Then
(12) and (14) yields Bopt = (C∞s )q∩span {eλtv : ∂Φ̂(λ)v = 0}.
Since in general A∩ B̄ ⊂ A ∩ B for open subsets A and B in
a topological space [13],

Bopt ⊂ (C∞s )q ∩ span{eλtv : ∂Φ̂(λ)v = 0}
= span {eλtv : ∂Φ̂(λ)v = 0, λ ∈ C−} = ker H.

where the last equation follows from (15).

VI. Conclusion

We have studied dissipativity for a class of infinite-
dimensional systems, called pseudorational, in the behavioral
context. We have established a basic equivalence condition
for dissipativity as a generalization of the finite-dimensional
counterpart. For its proof, we derived a new necessary and
sufficient condition for entire functions in the Paley-Wiener
class to be symmetrically factorizable. Using these results,
we then studied the characterizations of dissipative behaviors
and LQ-optimal behaviors in pseudorational settings.
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Appendix

A. Proof of Proposition 3.7

We start with the following lemma which states that the
growth rate of entire functions of exponential type can be
governed by those on real and imaginary axises:

Lemma A.1 ([1, Theorem 6.2.4]): Let f be a complex
function defined at least on the closed right half plane.
Suppose that following conditions hold:

1) f is holomorphic on C+;
2) f is of exponential type on C+; i.e., there exist K ≥ 0

and τ ≥ 0 such that | f (ξ)| ≤ Keτ|ξ| for all ξ ∈ C+.
3) | f ( jω)| is bounded as a function of ω ∈ R.

Then there exists M > 0 such that

| f (ξ)| ≤ MeτRe ξ, ∀ξ ∈ C+.
With this lemma, we can prove the next lemma that

enables us to judge whether or not a given entire function
of exponential type belongs to PW from the growth rate of
the function on the imaginary axis:

Lemma A.2: Let f be an entire function of exponential
type. Suppose that there exist C > 0 and a nonnegative
integer m such that

| f ( jω)| ≤ C(1 + |ω|)m, ∀ω ∈ R. (16)

Then f belongs to PW .
Proof: Let f be an entire function of exponential type.

Suppose that there exist C > 0 and a nonnegative integer m
satisfying (16). Define a meromorphic function f0 by

f0(ξ) :=
f (ξ)

(ξ + 1)m .

We check that f0 satisfies the assumptions of Lemma A.1.
Since f is an entire function of exponential type, clearly f0
is defined on the closed right half plane, and holomorphic
and of exponential type on C+. From (16) we can check that
f0 is bounded on the imaginary axis.

Then by Lemma A.1 there exist M > 0 and τ > 0 such
that | f0(ξ)| < MeτRe ξ, ∀ξ ∈ C+. Therefore

| f (ξ)| = | f0(ξ)||(1 + ξ)m | < M(1 + |ξ|)meτ|Re ξ|, ∀ξ ∈ C+.

This is nothing but the Paley-Wiener estimate (1) on the
closed right half plane. In the similar way, we can show the
Paley-Wiener estimate on the closed left half plane using
the left-half plane version of Lemma A.1. Combining these
estimates, we obtain a Paley-Wiener estimate of f on the
entire complex plane. Hence f belongs to PW .

Now we can prove Proposition 3.7:
Proof of Proposition 3.7: Let f be any entry of F. We

show that f belongs to PW . Since F is of exponential type,
f is also of exponential type. Hence, by Lemma A.2, it is
sufficient to show that there exist C > 0 and a nonnegative
integer m satisfying (16).

From the definition of the norm for matrices, there exists
a constant M > 0 such that

| f ( jω)| ≤ M‖F( jω)‖, ∀ω ∈ R. (17)

Since (6) holds from the assumption, we have

‖F( jω)‖2 = ‖Γ( jω)‖, ∀ω ∈ R. (18)

From inequalities (17), (18), and (9), we can obtain the
estimate of type (16) as follows:

| f ( jω)| ≤ MC1/2(1 + |ω|)m/2, ∀ω ∈ R.
This completes the proof.

B. Proof of 1) ⇒ 2) in Theorem 3.2

We prove the implication 1) ⇒ 2) in Theorem 3.2 by
showing its contraposition. Suppose that there exists ω0 ∈ R
such that Φ̂0(− jω0, jω0) < 0. Then there exists v ∈ Cq such
that

v∗Φ̂0(− jω0, jω0)v < 0. (19)

Take any ρ ∈ D(R,R) with

ρ̂(0) � 0. (20)

For a positive integer N define

wN := ρ ∗ (e jω0t)|[−N,N]√
2N

v.

Using Parseval’s identity (10) we can obtain∫ ∞
−∞

QΦ0 (wN) dt =
∫ ∞
−∞

f (ω)
N
π

sinc2(Nω) dω, (21)

where sincω := ω−1 sin(ω) and

f (ω) := v∗ρ̂( jω)∗∂Φ̂0( jω + jω0)ρ̂( jω)v

We show that f belongs to the space S of testing
functions of rapid descent. First ρ̂ belongs to S because
S is invariant under the Fourier transform [13]. Second, the
growth rate of ∂Φ̂0( j·) is at most that of polynomials because
∂Φ̂0 satisfies the Paley-Wiener estimate (1). Therefore f
belongs to S .

Because (N/π) sinc2(Nω) converges to δ as N goes to ∞
with respect to the topology of S ′ [13], the right hand
side of (21) converges to f (0) = |ρ̂(0)|2v∗∂Φ0( jω0)v, which
is negative from (19) and (20). Therefore there exists wN

such that
∫ ∞
−∞ QΦ0 (wN) dt < 0 and hence (B,QΦ0 ) is not

dissipative.
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