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Abstract— This paper deals with dissipativity of
uncontrollable linear time-invariant systems with quadratic
supply rates and storage functions. A definition of dissipativity
appropriate for this class of systems is given. We present a
necessary and sufficient condition for dissipativeness in the
single input / single output case.
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I. I NTRODUCTION

The roots of the theory of dissipative systems can be found
in the early papers on electrical circuit theory. In [2], the
notion of positive realness was introduced in the context of
circuit synthesis. It was shown in this classic paper that a
rational functiong is the driving point impedance of a circuit
consisting of a finite number of positive resistors, inductors,
capacitors, and transformers if and only ifg is positive real.
Starting in the late fifties and early sixties, positive realness
came to play a key role also in systems and control theory,
through what we now call positive real (or KYP) lemma. In
[5] dissipativity was conceptualized in terms of the storage
function and the supply rate.

One of the assumptions in the study of dissipativity has
almost always been controllability of the system. The very
definition of a dissipative system is often given for the
controllable case. There is, however, no reason to make the
definition of an ‘energy’-related concept like dissipativity
dependent on a concept like controllability not related to
energy at all. Even if there is a certain relationship between
these two concepts, it should follow from the definitions
instead of being imposed.

This paper is a step towards a dissipativity theory for
uncontrollable systems in a behavioral context, for linear
time-invariant systems with quadratic supply rates and stor-
age functions. After giving a definition of dissipativity,
we present a necessary and sufficient condition for a (not
necessarily controllable) single-input single-output behavior
to be dissipative.

II. PRELIMINARIES

A (linear time-invariant differential) behavior (for a de-
tailed treatment of behavioral theory, we refer to [4]) is
the set of solutions, assumed infinitely differentiable for
ease of exposition, of a system of linear constant coefficient
differential equations

R(
d

dt
)w = 0

whereR ∈ R
q×w[ξ] is a polynomial matrix. Note that

B = ker(R(
d

dt
)). (1)

The set of all such behaviors will be denoted byLw.
A behaviorB ∈ Lw is said to becontrollable if for any

w− and w+ ∈ B there exist aT > 0 and aw ∈ B such
that w(t) = w−(t) for all t < 0 andw(t) = w+(t − T ) for
all t ≥ T . It is well-known that a behavior is controllable if
and only if rank(R(λ)) is the same for allλ ∈ C.

On the other extreme of controllability are autonomous
behaviors. A behaviorB ∈ Lw is autonomousif for w1,
w2 ∈ B, w1(t) = w2(t) for all t < 0 implies thatw1 = w2.

A basic result of behavioral theory states that every behav-
ior can be written as a direct sum of a (unique) controllable
one and a (non-unique) autonomous one.

For obvious reasons, representations of the type (1) are
calledkernel representations. There are many other ways of
representing a behavior. A representation of the type

R(
d

dt
)w = M(

d

dt
)` (2)

with real R,M polynomial matrices is called alatent vari-
able representation. In this case,w ∈ B if there exists a
latent variabletrajectory` such that this system of differen-
tial equations is satisfied. The variablesw are calledmanifest
variables. A particular case of this areimage representations,

w = M(
d

dt
)`,



whenceB = im(M( d
dt

)). It can be shown that a behavior is
controllable if and only if it allows an image representation.

Let B be a behavior withw = (w1, w2). We call w2

observable from w1 if (w1, w
′
2), (w1, w

′′
2 ) ∈ B implies

w′
2 = w′′

2 . It turns out that this is the case if and only if there
exists a polynomial matrixF such that(w1, w2) ∈ B implies
w2 = F ( d

dt
)w1. Analogously, we call a latent variable

representationobservableif, whenever(w, `′), (w, `′′) satisfy
(2), then `′ = `′′. It can be shown that a controllableB
admits an observable image representation.

Every behaviorB also admits an input-output represen-
tation. After a reordering, if need be, of the components of
the manifest variablew, we obtainw = col(u, y) whereu
denote inputs andy outputs (see [4] for precise definitions of
these concepts). An input/output partition ofB corresponds
to a kernel of the form

P (
d

dt
)y = Q(

d

dt
)u,w = (u, y)

with the properties thatP is square,det P 6= 0, andP−1Q is
a matrix of (proper) rational functions. We call this aninput-
output representationof B. The number ofy components is
given by rank(R).

Two-variable polynomial matrices can be used in the
theory of dissipative systems in a very effective way. Let
R

q1×q2 [ζ, η] denote the set of real two-variable polynomial
matrices in the indeterminatesζ and η. An element of this
set, sayΦ, is a finite sum

Φ(ζ, η) =
∑

i,j

Φijζ
iηj .

To each suchΦ, we associate thebilinear differential form

LΦ(v, w) =
∑

i,j

(
di

dti
v)>Φij(

dj

dtj
w).

Note thatLΦ is mapping fromC∞(R, Rq1) × C∞(R, Rq2)
to C∞(R, R). If Φ is square then it induces aquadratic
differential formgiven by

QΦ(w) = LΦ(w,w).

The QDFQΦ, or simplyΦ, is said to benonnegative along
B if QΦ(w) ≥ 0 for all w ∈ B.

Bilinear and quadratic differential forms have been studied
in detail in [6]. The (related) operators∗,• , ∂,? play an
important role in this. Define
∗ : R

q1×q2 [ζ, η] → R
q2×q1 [ζ, η] by Φ∗(ζ, η) = Φ>(η, ζ)

• : R
q1×q2 [ζ, η] → R

q1×q2 [ζ, η] by
•

Φ(ζ, η) = (ζ+η)Φ(ζ, η),
∂ : R

q1×q2 [ζ, η] → R
q1×q2 [ξ] by ∂(Φ)(ξ) = Φ(−ξ, ξ),

and ? : R
q1×q2 [ξ] → R

q1×q2 [ξ] by F ?(ξ) = F>(−ξ).
Note that∂(Φ∗) = ∂(Φ)?, L•

Φ
= d

dt
LΦ, and ∂(•) = 0. In

fact, Φ ∈ im(•) if and only if Φ ∈ ker(∂).

III. D ISSIPATIVITY OF UNCONTROLLABLE SYSTEMS

The behaviorB ∈ Lw (not necessarily controllable) is said
to bedissipativewith respect to the storage functionQΦ,Φ ∈
R

w×w[ζ, η] if there exists a latent variable representation
R( d

dt
)w = M( d

dt
)` of B and aΨ ∈ R

`×`[ζ, η] such that
the dissipation inequality

d

dt
QΨ(`) ≤ QΦ(w)

holds for all (w, `) that satisfyR( d
dt

)w = M( d
dt

)`. QΨ is
called thestorage function. When the dissipation inequality
holds as an equality, we say thatB is Φ-lossless. If the
storage function acts onw, i.e. if Ψ ∈ R

w×w[ζ, η] and

d

dt
QΨ(w) ≤ QΦ(w) (3)

for all w ∈ B, then we call the system dissipative with an
observable storage function.

Non-negative storage functions are very important in ap-
plications, but we will not consider them in the present paper.
Our storage functions need not be sign definite.

In the sequel, we confine attention to single-input single-
output behaviors, and (mostly) to observable storage func-
tions. We assume that the behavior (with the manifest vari-
ablew = col(u, y)) is governed by

γ(
d

dt
)β(

d

dt
)y = γ(

d

dt
)α(

d

dt
)u (4)

whereα, β, γ are scalar polynomials such thatα andβ are
co-prime andγ is monic. For the supply rate, we take

Φ =

[

0 1
1 0

]

i.e. QΦ(w) = 2uy. Sinceα and β are coprime, there exist
polynomialsp andq such that

αp + βq = 1. (5)

A decomposition of the behaviorB, defined by (4), into con-
trollable and autonomous parts can be obtained as follows.
Let

Rc =
[

α −β
]

and also let

Rν
a =

[

γα −γβ
q + αν p − βν

]

for some polynomialν. Define

Bc = kerRc(
d

dt
)

and
B

ν
a = kerRν

a(
d

dt
)

Now, B = Bc ⊕Bν
a yields a desired decomposition. In fact,

ν parametrizes all possible autonomous parts. An alternative
representation for the autonomous part is given by

B
ν
a = {w | w =

[

p′( d
dt

)
q′( d

dt
)

]

` andγ(
d

dt
)` = 0}



wherep′ := p − βν andq′ = −q − αν.
Dissipativity of a controllable behaviorB is a well-

understood subject. The present paper is an attempt to
investigate dissipativity of uncontrollable systems. We begin
by recalling well-known results for the controllable case.
Before that, we need some nomenclature. Letχ ∈ R[ξ] be
para-Hermitian, i.e.χ? = χ. A polynomialκ ∈ R[ξ] is called
a symmetric factorof χ if χ = κ?κ. It is easy to see that a
symmetric factor exists if and only ifχ(iω) is real (henceχ
is even) and non-negative forω ∈ R.

The following proposition gives an answer to the question
when a controllable system is dissipative. The proof follows
from propositions 5.2, 5.6, and theorem 6.4 of [6].

Proposition 1: Let B be given by (4) and letγ = 1. The
following statements are equivalent.

1) B is Φ-dissipative with an observable storage function,
2) B is Φ-dissipative,
3) αβ? + α?β admits a symmetric factor.

The main contribution of the present paper is the following
theorem which provides a necessary and sufficient condition
for the dissipativity of an uncontrollable behavior.

Theorem 2: Let B be given by(4). Assume thatγ has no
roots on the imaginary axis. Then, the following statements
are equivalent.

1) B is Φ-dissipative with an observable storage function.
2) αβ? + α?β admits a symmetric factor that is coprime

with γ.

Proof: (1 ⇒ 2): (by contradiction) Suppose that 1 holds
but 2 does not hold. In other words, suppose thatB is Φ-
dissipative and all symmetric factors ofαβ? + α?β have a
common root withγ. As B is Φ-dissipative, its controllable
part is also dissipative, i.e., there exists aΨ such that

Φ(ζ, η) − (ζ + η)Ψ(ζ, η)

= F>(ζ)F (η) + R>

c (ζ)G(ζ, η) + G∗(ζ, η)Rc(η) (6)

for some polynomial matricesF ∈ R
1×2[ξ] and G ∈

R
1×2[ζ, η]. For a trajectorywc such that F ( d

dt
)wc =

Rc(
d
dt

)wc = 0, Q
Φ−

•

Ψ
(wc) = 0. Consequently, dissipativity

of B implies that the bilinear differential formL
Φ−

•

Ψ
(w,wc)

must vanish for allw ∈ B and for all wc such that
F ( d

dt
)wc = Rc(

d
dt

)wc = 0. Therefore, there existJ,K ∈
R

2×2[ζ, η] such that

Φ(ζ, η) − (ζ + η)Ψ(ζ, η)

= R>(ζ)J(ζ, η) + K(ζ, η)

[

F (η)
Rc(η)

]

.

Pre-multiplication by
[

p(ζ) −q(ζ)
]

, post-multiplication
by col(β(η), α(η)), and evaluation atζ = −ξ and η = ξ
result in

p?α − q?β = γ?j̃ + k̃δ. (7)

for some polynomials̃j and k̃ whereδ = F col(β, α). The
above polynomial equation is satisfied if and only if forλ ∈

C, the implication

δ(λ) = γ(−λ) = 0 ⇒ p(−λ)α(λ) = q(−λ)β(λ)

holds. On the other hand, the polynomialδ is nothing but a
symmetric factor ofαβ? + α?β. To see this, postmultiply
(6) by col(β(η), α(η)), premultiply by the transpose of
col(β(η), α(η)), and evaluate atζ = −ξ and η = ξ. So
δ(λ) = 0 implies that α(λ)β(−λ) + α(−λ)β(λ) = 0.
Together withp(−λ)α(λ) − q(−λ)β(λ) = 0, this implies
that

[

β(−λ) α(−λ)
p(−λ) −q(−λ)

] [

α(λ)
β(λ)

]

= 0.

However, the first factor on the left hand side is nonsingular
due to (5) and the second factor is nonzero asα andβ are
coprime. This means that if the polynomial equation (7) has
a solution thenδ and γ? are necessarily coprime. Define
δ′ := δ?. Note thatδ′ is a symmetric factor ofαβ? + α?β
and(δ′, γ) is coprime. We reach a contradiction as we found
a symmetric factor ofαβ? + α?β which is coprime withγ.

(2 ⇒ 1): Let δ be a symmetric factor ofαβ? +α?β which
is coprime withγ. Define

U : =

[

β p
α −q

]

,

F : =
[

δ? 0
]

U−1,

G(ζ, η) : =
[

p(ζ)α(η) − q(ζ)β(η) q(ζ)p(η)
]

U−1(η).

Note thatU is unimodular due to (5). Straightforward com-
putation yields

F ?F + R?
c∂G + ∂G∗Rc = ∂Φ.

Indeed, one can check above equation by pre-multiplying
both sides byU? and post-multiplying byU . Therefore, there
exists anΩ such that

Φ(ζ, η) − (ζ + η)Ω(ζ, η)

= F>(ζ)F (η) + R>

c (ζ)G(ζ, η) + G∗(ζ, η)Rc(η),

and hence
Q

Φ−
•

Ω
(wc) ≥ 0 (8)

for all wc ∈ Bc. Let Ba be the autonomous part correspond-
ing to ν = 0. We claim thatΨ = Ω + Θ + µΓ satisfies, for
someµ ∈ R,

Q
Φ−

•

Ψ
(w) ≥ 0 (9)

for all w ∈ B if Θ andΓ satisfy

i) QΘ(wc) = 0 for all wc ∈ Bc,
ii) wc ∈ Bc andQ

Φ−
•

Ω
(wc) = 0 implies

L •

Θ
(w,wc) = L

Φ−
•

Ω
(w,wc) for all w ∈ B,

iii) Q•

Γ
(wc) = 0 for all wc ∈ Bc,

iv) L•

Γ
(,̇wc) = 0 for all wc ∈ Bc, and

v) Q•

Γ
(wa) < 0 for all 0 6= wa ∈ Ba.



To prove this, take anyw = wa + wc wherewa ∈ Ba and
wc ∈ Bc.Then, we get

Q
Φ−

•

Ψ
(w) = Q

Φ−
•

Ψ
(wa) + 2L

Φ−
•

Ψ
(wa, wc) + Q

Φ−
•

Ψ
(wc)

= Q
Φ−

•

Ψ
(wa) + 2L

Φ−
•

Ω−
•

Θ
(wa, wc) + Q

Φ−
•

Ω
(wc).

Note that the first summand of the last line can be made
arbitrarily large by choosingµ sufficiently small due to (v).
The last summand is already nonnegative due to (8). Together
with (ii), these imply that (9) holds for allw ∈ B if we
chooseµ sufficiently small. To finish the proof, we will show
the existence ofΘ and Γ such that (i)-(v) are satisfied. To
do so, take

Γ(ζ, η) =

[

α(ζ)
−β(ζ)

]

X>(ζ)LX(η)
[

α(η) −β(η)
]

(10)

whereX induces a state map forBa, the corresponding state
model is given by

x = X(
d

dt
)wa,

d

dt
x = Ax, wa = Cx,

for some matricesA and C with appropriate sizes, andL
is such thatA>L + LA < 0. Such anL exists sinceγ has
no roots on the imaginary axis. It can be easily checked
that (iii)-(v) are satisfied by the choice of (10). Therefore,
it remains to show the existence of aΘ satisfying (i)-(ii).
We know from [6, proposition 3.2 and proposition 3.5] that
there existsΘ satisfying (i)-(ii) if and only if there exist
two-variable polynomial matricesH, J , andK such that

Θ(ζ, η) = R>

c (ζ)H(ζ, η) + H∗(ζ, η)Rc(η), (11)

(ζ + η)Θ = R>

c (ζ)G + R>

a (ζ)J + K

[

F (η)
Rc(η)

]

. (12)

Consider the following partitions

H(ζ, η)U(η) =
[

H1(ζ, η) H2(ζ, η)
]

,

J(ζ, η)U(η) =

[

J11(ζ, η) J12(ζ, η)
J21(ζ, η) J22(ζ, η)

]

,

U>(ζ)K(ζ, η) =

[

K11(ζ, η) K12(ζ, η)
K21(ζ, η) K22(ζ, η)

]

.

Pre-multiplying (11)-(12) byU>(ζ), post-multiplying by
U(η), and eliminatingΘ(ζ, η), yields the system of poly-
nomial equations:

J21(ζ, η) + K11(ζ, η)δ(−η) = 0, (13)

K12(ζ, η) + J22(ζ, η) = (ζ + η)H∗

1 (ζ, η), (14)

K21(ζ, η)δ(−η) + γ(ζ)J11(ζ, η) + G1(ζ, η)

= (ζ + η)H1(ζ, η), (15)

K22(ζ, η) + γ(ζ)J12(ζ, η) + G2

= (ζ + η)(H2(ζ, η) + H∗

2 (ζ, η)) (16)

Note that (13) and (16) are solvable as soon as (14) and (15)
are. Also note that (14) and (15) are solvable if and only if

K21(ζ, η)F1(η) + γ(ζ)J11(ζ, η) + G1(ζ, η)

= K∗

12(ζ, η) + J∗

22(ζ, η)

∂K21δ
? + γ?∂J11 + ∂G1 = 0

are solvable. Clearly, the former equation is solvable as soon
as the latter is. Asδ and γ are coprime, the latter always
admits a solution.

This ends the proof of theorem 2.

Remarks:
1. Note that the roots ofαβ? + α?β are symmetric with

respect to imaginary axis. Letγ = γ1γ2 whereγ1 has no
symmetric roots with respect to imaginary axis andγ2 =
±γ?

2 . Then, there exists a symmetric factor ofαβ? + α?β
which is coprime withγ only if αβ? + α?β and γ2 are
coprime. In particular, whenγ has no symmetric roots with
respect to imaginary axis (i.e., it has no even factor), the
behaviorB is Φ-dissipative if and only if its controllable
part is.

2. In [3] a sufficient condition for the passivity of uncon-
trollable multiple input / multiple output state space systems
is given. For the single input / single output, the condition
given in [3] comes down to the requirement thatβγ should
have no symmetric roots with respect to the imaginary axis.
The first remark shows that this is a special case of theorem 2.

3. When the controllable part is lossless, it can be shown
that αβ? + α?β is identically zero. Thus, the coprimeness
condition of theorem 2 holds only ifγ is a constant and
hence the behaviorB is controllable. On the other extreme,
when αβ? + α?β is a constant, the controllable part is
strictly dissipative, i.e. the dissipation inequality (3)holds
with the strict inequality for all nonzero trajectories ofBc.
Then, coprimeness condition of theorem 2 readily holds
independently on the autonomous part.

IV. U NOBSERVABLE STORAGE FUNCTIONS

Theorem 2 deals with observable storage functions, i.e.
storage functions that are only functions of the manifest vari-
ables. The use of uncontrollable systems and/or unobservable
storage functions is of considerable importance. We discuss
this in the present section.

Example: Consider the system

d

dt
y =

d

dt
u.

It follows from theorem 2 that with respect to the supply rate
uy, this system does not have an observable storage function.
Consider however the latent variable representation givenby

d

dt
x1 = x2

d

dt
x2 = 0

y = x2 + u.



If we allow the storage function to be a function of the
latent variables, then this system becomes dissipative. To
see this, consider the storage functionQΨ(x) = kx1x2.
So, Q •

Ψ
(x) = k( d

dt
x1)x2 + kx1(

d
dt

x2) = kx2
2. Then,

QΦ(w) − Q •

Ψ
(x) = uy − kx2

2 = u2 + ux2 − kx2
2. It is easy

to verify that this expression is nonnegative for allu andx2

if k ≤ −1/4.

An important area of application of the ideas of this
article is the area of electrical circuits.

−

L

C
R

C

L

V

I

+

R

external
port

Consider for example the circuit shown, and regard(V, I)
as manifest and the internal branch currents and voltages
as latent variables (see [4], pages 10-13, 160-161, and 175-
176 for a derivation of the equations and the analysis of the
controllability and observability properties of this circuit). Of
course, this circuit is dissipative with respect to the supply
rate V I with the internal energy,1

2
CV 2

C + 1
2
LI2

L (in the
obvious notation) as the storage function. IfCRC 6= L

RL

,
this circuit is controllable and observable (in the sense that
the branch currents and voltages are observable from the
port voltage and current). However, whenCRC = L

RL

, the
differential equation that governs(V, I) is

(
RC

RL

+ CRC

d

dt
)V = (1 + CRC

d

dt
)RCI.

The variables(VC , IL) are then unobservable from(V, I),
and hence, the stored energy becomes an unobservable
storage function. WhenCRC = L

RL

and RC 6= RL,
then the manifest behavior is controllable. So, there exists
an observable storage function. In fact, classical results
from electrical circuit synthesis allow to conclude that the
port behavior can also be realized using passive elements
(resistors and one capacitor, in fact), and with observable
branch currents and voltages. However, whenCRC = L

RL

and RC = RL, the port behavior becomes uncontrollable
and theorem 2 shows that there does not exist an observable
storage function. In fact, in this case, it can be shown
that there does not exist a passive synthesis with only one
reactive element. So, in this sense, the realization which we
started from is a minimal one. Of course, all this shows
the limited relevance of the classical notion of minimal
(controllable and observable) state space representations in
the context of physical systems.

The most classical result of circuit theory is undoubtedly
the fact thatg is the driving point impedance of a circuit

containing a finite number of passive resistors, capacitors,
inductors, and transformers if and only ifg is rational and
positive real. This result was obtained by Brune [2] in his
MIT Ph.D. dissertation. In 1949, Bott and Duffin [1] proved
that transformers are not needed.

It seems to us that a more ‘complete’ version of this
classical problem is to ask for the realization of a differential
behavior. This problem is somewhat more general than the
driving point impedance problem, because of the existence of
uncontrollable systems. For example, a unit resistor realizes
the transfer function of the system

d

dt
V + V =

d

dt
I + I,

as its driving point impedance, but not its behavior (which
admits, for example, the short circuit responseI(t) =
e−t, V (t) = 0, not realized by the resistor). An example
of a circuit that does realize this behavior exactly is the
above circuit, withL = 1, C = 1, RL = 1, RC = 1, so
this uncontrollable behavioris realizable.

This leads to two nice open problems:
Problem 1: What behaviorsB ∈ L2 are realizable as

the port behavior of a circuit containing a finite number of
passive resistors, capacitors, inductors, and transformers? It
is easy to see thatB must be single input / single output,
and that the transfer function must be rational and positive
real. In additionB must be passive, but in general with a
non-observable storage function, and therefore it is not clear
what this says in terms ofB.

Problem 2: Is it possible to realize a controllable single
input / single output system with a rational positive real
transfer function as the behavior of a circuit containing a
finite number of passive resistors, capacitors, and inductors,
but no transformers?Note that in a sense this is the Bott-
Duffin problem, the issue being that the Bott-Duffin synthesis
procedure usually realizes a non-controllable system thathas
the correct transfer function (i.e., the correct controllable
part), but not the correct behavior. There are standard syn-
thesis procedures known that do realize the correct behavior,
but they need transformers.
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