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Abstract—This  paper deals with dissipativity of Il. PRELIMINARIES

uncontrollable linear time-invariant systems with quadratic A (i i . iant diff tial) behavi f d
supply rates and storage functions. A definition of dissipativity (linear time-invariant differential) behavior (for a de-

appropriate for this class of systems is given. We present a tailed treatment of behavioral theory, we refer to [4]) is
necessary and sufficient condition for dissipativeness in the the set of solutions, assumed infinitely differentiable for

single input / single output case. ease of exposition, of a system of linear constant coefficien

. o . differential equations
Keywords: Behaviors, dissipativity, storage functions, controlla- q

bility, observability. R( d
dt

o where R € R?*¥[¢] is a polynomial matrix. Note that
The roots of the theory of dissipative systems can be found

in the early papers on electrical circuit theory. In [2], the B — ker(R(i)). (1)
notion of positive realness was introduced in the context of dt

circuit synthesis. It was shown in this classic paper that @ihe set of all such behaviors will be denoted &Y.

rational functiong is the driving point impedance of a circuit A behavior8 € £V is said to becontrollableif for any
consisting of a finite number of positive resistors, indugto w_ andw, € B there exist a' > 0 and aw € B such
capacitors, and transformers if and onlyifs positive real. thatw(t) = w_(t) for all t < 0 andw(t) = w (t — T) for
Starting in the late fifties and early sixties, positive nesls all ¢ > T'. It is well-known that a behavior is controllable if
came to play a key role also in systems and control theorgind only if rank(R()\)) is the same for ali € C.

through what we now call positive real (or KYP) lemma. In  On the other extreme of controllability are autonomous
[5] dissipativity was conceptualized in terms of the steragbehaviors. A behaviof3 € £% is autonomousif for w;,
function and the supply rate. we € B, wi(t) = we(t) for all ¢ < 0 implies thatw; = wo.

One of the assumptions in the study of dissipativity has A basic result of behavioral theory states that every behav-
almost always been controllability of the system. The verjor can be written as a direct sum of a (unique) controllable
definition of a dissipative system is often given for theone and a (non-unique) autonomous one.
controllable case. There is, however, no reason to make theFor obvious reasons, representations of the type (1) are
definition of an ‘energy’-related concept like dissipaivi calledkernel representationsThere are many other ways of
dependent on a concept like controllability not related teepresenting a behavior. A representation of the type
energy at all. Even if there is a certain relationship betwee d d
these two concepts, it should follow from the definitions R(E)w = M(E)E (2)
instead of being imposed.

This paper is a step towards a dissipativity theory fowith real R, M polynomial matrices is called katent vari-
uncontrollable systems in a behavioral context, for linea@ble representationin this case.w € % if there exists a
time-invariant systems with quadratic supply rates and- stolatent variabletrajectory/ such that this system of differen-
age functions. After giving a definition of dissipativity, tial equations is satisfied. The variabkesare callednanifest
we present a necessary and sufficient condition for a (n¥riables A particular case of this arienage representations
necessarily controllable) single-input single-outpuhdegor d

to be dissipative. w = M(%)&

Jw =10
I. INTRODUCTION
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whenceB = im(M(dt)) It can be shown that a behavioris  Ill. DISSIPATIVITY OF UNCONTROLLABLE SYSTEMS
controllable if and only if it allows an image representatio  The pehaviof® € £* (not necessarily controllable) is said

Let B be a behavior withw = (wi,ws). We call wy  to bedissipativewith respect to the storage functichy, ® €
observablefrom wy if (wi,ws), (w1, wy) € B implies RWXW[C n] if there exists a latent variable representation

wh = wh. It turns out that this is the case if and only if thereR( w = (%)g of B and a¥ e R*‘[¢,n] such that
exists a polynomial matri¥’ such thatw;, ws) € B implies the d|SS|pat|on inequality

we = F( jt) Analogously, we call a latent variable d

representationbservabldf, whenever(w, ¢'), (w, £"") satisfy EQ‘P(@ < Qo (w)

(2), then?¢’ = ¢”. It can be shown that a controllabi®B

admits an observable image representation. holds for all (w, ¢) that satisfyR(f;)w = M(£)¢. Qu is

Every behavior also admits an input-output represen-alled thestorage functionWhen the dissipation inequality
tation. After a reordering, if need be, of the components di0lds as an equality, we say th@l is ¢-lossless If the
the manifest variables, we obtainw = col(u,y) wherey ~ Storage function acts ow, i.e. if ¥ € R™*™[¢,7] and
denote inputs ang outputs (see [4] for precise definitions of

these concepts). An input/output partition Bf corresponds EQ‘I’(“’) < Qo (w) ®)
to a kernel of the form for all w € B, then we call the system dissipative with an
d d observable storage function
P(2)y = Q7 )uw = (u,y) Non-negative storage functions are very important in ap-

plications, but we will not consider them in the present pape
with the properties thaP is squaredet P # 0, andP~1Qis Our storage functions need not be sign definite.
a matrix of (proper) rational functions. We call this aput- In the sequel, we confine attention to single-input single-
output representationf 8. The number of) components is Output behaviors, and (mostly) to observable storage func-
given byrank(R). tions. We assume that the behavior (with the manifest vari-
Two-variable polynomial matrices can be used in th@bPlew = col(u,y)) is governed by
theory of dissipative systems in a very effective way. Let d d d d

Ra1x49z[¢ ) denote the set of real two-variable polynomial (a)ﬁ(dt)y - (dt)a(a)u )

matrices in the indeterminatgsand . An element of this \yhereq, 3, v are scalar polynomials such thatand 3 are
set, sayd, is a finite sum co-prime andy is monic. For the supply rate, we take

n) = Z‘I)ijCiﬁj‘ o = [(1) (1)}
2]

i.e. Qo(w) = 2uy. Sincea and  are coprime, there exist

To each suchb, we associate thbilinear differential form polynomialsp and ¢ such that

7 17 —
Lafo,w) = (50 Ty (). ot ie=1 ®
i,j A decomposition of the behavi®8, defined by (4), into con-
trollable and autonomous parts can be obtained as follows.
Note thatLe is mapping frome€> (R, R1) x €*°(R,R%®) | et
to €°(R,R). If ® is square then it induces quadratic R, = [a 75}

differential formgiven by d also let )
and also le

Qa(w) = La(w,w). RZ:[ Ya —w}

q+av p-—pPv
The QDFQq, or simply ®, is said to benonnegative along for some polynomiab. Define

B if Qp(w) >0 for all w € B. d
Bilinear and quadratic differential forms have been stddie Be = ker RC(E)
in detail in [6]. The (related) operators®,0,* play an gnd
important role in this. Define BY = ker RY(> d )
" RUXR[C ] — REX[C 7] by &*(C,m) = @7 (n, () dt
o RUXa2[( ] — RITXG2[C, q] by@( ) = (C+ )®(¢,n), Now, B =B, ©By yieIc:is a desired decomposition. In factz
9 : Ruxa2 (¢ p] — RUX%2[¢] by 9(D)(€) = B(—¢, €), v parametrizes all possible autonomous parts. An altemativ
and* : Ra1xaz[¢] — Ra1 %92 [¢] by F*( y=FT(- ) representation for the autonomous part is given by

Note thatd(®*) = 9(®)*, L. = ch, ando(®) = . ~[p(4) _
fact, & ¢ im(*) if and only "D € ker(d), By ={wlw= [q/(;—{)] ¢ andy(Z;)¢ = 0}

1646



wherep’ :=p — v and¢' = —q — av. C, the implication

Dissipativity of a controllable behaviof8 is a well-
understood subject. The present paper is an attempt to 3(A) = 7(=A) =0 = p(=A)a(d) = ¢(=1)5()
investigate dissipativity of uncontrollable systems. Végih  ,61ds. On the other hand, the polynomdais nothing but a
by recalling well-known results for the controllable casesymmetric factor ofa3* + o*3. To see this, postmultiply
Before that, we need some nomenclature. ket R[¢] be  (6) py col(3(n), a(n)), premultiply by the transpose of
para-Hermitian, i.ex* = x. A polynomialx € R[¢] is called  co](3(5), a(n)), and evaluate at = —¢ andn = £. So
a symmetric factorof x if x = x*x. It is easy to see thata 5(\) = 0 implies thata(A\)B(—=)\) + a(-A)B(A) = 0.
symmetric factor exists if and only i(iw) is real (hencex  Together withp(—\)a()) — g(—=A\)B()) = 0, this implies
is even) and non-negative far € R. that

The following proposition gives an answer to the question {5(—)\) a(—=N) ] [a()\)] _0
when a controllable system is dissipative. The proof foow (=) —q(=N)| |BN)|

from prop'o.smor?s 52,556, gnd theorem 6.4 of [6]. However, the first factor on the left hand side is nonsingular
Proposition 1: Let 8 be given by (4) and let = 1. The ;
; . due to (5) and the second factor is honzeraxaand G are
following statements are equivalent. : ) . : :
. T ) . coprime. This means that if the polynomial equation (7) has
1) B Is @-dl_SSlpatlye with an observable storage functlonz51 solution thend and ~* are necessarily coprime. Define
2) B 'S <I>-(j*|55|pat|ye, _ §' := §*. Note thatd’ is a symmetric factor of3* + o*3
3) af” + o’ admits a symmetric factor. and (&', ) is coprime. We reach a contradiction as we found
The main contribution of the present paper is the following, symmetric factor ofy3* + o* 3 which is coprime withy.
theorem which provides a necessary and sufficient condition
for the dissipativity of an uncontrollable behavior. (2 = 1): Let § be a symmetric factor of3* + a* 3 which
Theorem 2: Let B be given by(4). Assume that has no s coprime with. Define
roots on the imaginary axis. Then, the following statements

are equivalent. U:— {5 p ] ’
1) B is ¢-dissipative with an observable storage function. >
2) af3* + oa*( admits a symmetric factor that is coprime F:=1[* 0JU ",
with . G(¢m) = = [p(Qaln) = a(Q)Bm)  a(Qpm)] U ().

Proof: (1 = 2): (by contradiction) Suppose that 1 holds
but 2 does not hold. In other words, suppose thats &-
dissipative and all symmetric factors afs* + o*3 have a
common root withy. As 9B is ®-dissipative, its controllable F*F + R*0G + 0G*R, = 09.
part is also dissipative, i.e., there exist@asuch that

Note thatU is unimodular due to (5). Straightforward com-
putation yields

Indeed, one can check above equation by pre-multiplying
(¢, n) — (C+n)¥(¢n) both sides by/* and post-multiplying by/. Therefore, there

= FT(Q)F(n) + RI(OG(C,n) + G*(C,m)Re(n) (6) ©Xists an2 such that

for some polynomial matrices” € R*?[¢] and G € (¢, n) — (C+n)Q¢,n)

RUPIC,n]. For a tajectoryw, such that F(gw. = = FT(QF(n) + RL(OG(Cn) + G (¢ ) Reln).
Re(4)we =0, Qq,,&,(wC) = 0. Consequently, dissipativity

of B implies that the bilinear differential forrﬂq) &,(w’ We) and hence
must vanish for allw € 98B and for all w. such that Qmé(wc) 20 (8)
d _ d _ :
F2(>(<i_t2)wc = Re(gg)we = 0. Therefore, there exis!, K' € o g 4, € B,. Let B, be the autonomous part correspond-
R=Z[¢, ] such that ing to v = 0. We claim thatl = Q 4+ © + uI satisfies, for
somey € R,

(¢, n) — (C+n)¥ () Q .(w)>0 ©)
- -

_ F(n) -
= RUQI(C )+ K(Cn) {Rc(n)] " forallwe B if © andT satisfy

Pre-multiplication by[p(¢) —q(¢)], post-multiplication ) Qe(we) =0 forall w. € B,

by col(8(n), «(n)), and evaluation at = —¢ andn = ¢ i) we € B andQ o (we) = 0 implies
result in L.(w,w.)=L_ «+(w,w,) for all w € B,
* * * 7. . © P—Q
pla—q" B =7"j+ ko 7 i) Qf(wc) =0 for all w, € B.,
for some polynomials and & whered = Fcol(3,a). The V) La(we) =0 for all w, € B, and
above polynomial equation is satisfied if and only if foe V) Qp(wa) <0 forall 0#w, € Ba.
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To prove this, take anw = w, + w. wherew, € B, and Note that (13) and (16) are solvable as soon as (14) and (15)

w, € B..Then, we get are. Also note that (14) and (15) are solvable if and only if
Q, o) =Q, &(wa)+2L o (wa,we) +Q o (we) o1 (¢, ) FL (1) +~(O) 11 (C,n) + Ga(Cm)
- Qq>_\i,(wa) + 2L¢_5_é(wavw6) + Q@_é(wc) = K15(¢,m) + J32(¢,m)

. i 3K215* + 7*8,]11 + 8G1 =0
Note that the first summand of the last line can be made

arbitrarily large by choosing sufficiently small due to (v). are solvable. _Clearly, the former equ_atlon is solvable a® so
The last summand is already nonnegative due to (8). Togetrt the latter is. As) and » are coprime, the latter always
with (ii), these imply that (9) holds for ally € 9B if we admits a solution.

choosey sufficiently small. To finish the proof, we will show ~ This ends the proof of theorem 2.

the existence ob andI" such that (i)-(v) are satisfied. To

do so, take Remarks: o
1. Note that the roots of3* + o* 3 are symmetric with

() = { a(C) } XT(O)LX(n) [a(y) —B(y)] (10) respect to imaginary axis. Let = v, wheres, has no
—B(¢) symmetric roots with respect to imaginary axis apd =

whereX induces a state map @, the corresponding state £75- Then, there exists a symmetric factor @8* + a*3

model is given by which is coprime withy only if af8* + o*3 and ., are
d d coprime. In particular, wher has no symmetric roots with
= (E)w‘“ = Az, w, = Cz, respect to imaginary axis (i.e., it has no even factor), the

behaviorB is ®-dissipative if and only if its controllable
for some matricesd and C' with appropriate sizes, anfl  part is.
is such thatA" L 4+ LA < 0. Such anL exists sincey has 2. In [3] a sufficient condition for the passivity of uncon-
no roots on the imaginary axis. It can be easily checkeglollable multiple input / multiple output state space syss
that (iii)-(v) are satisfied by the choice of (10). Thereforejs given. For the single input / single output, the condition
it remains to show the existence of€ satisfying (i)-(i)). given in [3] comes down to the requirement that should
We know from [6, proposition 3.2 and proposition 3.5] thathave no symmetric roots with respect to the imaginary axis.
there exists© satisfying (i)-(ii) if and only if there exist The first remark shows that this is a special case of theorem 2.
two-variable polynomial matrice#, .J, and K such that 3. When the controllable part is lossless, it can be shown
ST x that a3* + o*g is identically zero. Thus, the coprimeness
OCm) = Re (QH(Gm) + HY (G n)Re(n), (1) condition of theorem 2 holds only i is a constant and
T T F(n) hence the behavidB is controllable. On the other extreme,
(C+mO =R (G + R, (O + K [Rc(n)} - (2 when af* + a*( is a constant, the controllable part is
strictly dissipative, i.e. the dissipation inequality (Bplds

Consider the following partitions : L ) . .
ap with the strict inequality for all nonzero trajectories ..

H(GmU(n) = [H1(C,77) H2(4777)}a Then, coprimeness condition of theorem 2 readily holds
Ju(C,n)  Ji2(C,n) independently on the autonomous part.
118§, 1216,
JEmUm) = {Jm((ﬂ?) J22(C777)] ’ IV. UNOBSERVABLE STORAGE FUNCTIONS

Kii(C,n) Kis(C,m) Theorem 2 deals with observable storage functions, i.e.
KH ’ K12 ’ } . storage functions that are only functions of the manifest va

21(C, ) 2(C,n) ables. The use of uncontrollable systems and/or unobdervab
Pre-multiplying (11)-(12) byU T (¢), post-multiplying by storage functions is of considerable importance. We dsscus
U(n), and eliminating®(¢,n), yields the system of poly- this in the present section.

UT(OK(Cn) = [

nomial equations: Example: Consider the system
d d

J: , K ,md(—n) =0, 13 _ .

21(¢,m) + K11(¢,m)d(—n) (13) Y=

Ki2(¢,n) + J22(¢,m) = (C+n)HT (C,n), (14) 1t follows from theorem 2 that with respect to the supply rate
uy, this system does not have an observable storage function.

Kot (C,)8(=n) +7(O)J11(C,n) + G (C,m) Consider however the latent variable representation diyen
= ((+m)Hi(C.m). (15) L=
d
Kas(¢,m) + () J12(¢, m) + G2 ai? =0
= (C+n)(Hz(¢,m) + H3(¢,m) (16) y =12 +u.
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If we allow the storage function to be a function of thecontaining a finite number of passive resistors, capagitors
latent variables, then this system becomes dissipative. Tductors, and transformers if and only ¢fis rational and
see this, consider the storage functiQiy(z) = kzixe. positive real. This result was obtained by Brune [2] in his
So, Q, (z) = k(&Lxy)zo + kxi(Lxs) = ka3, Then, MIT Ph.D. dissertation. In 1949, Bott and Duffin [1] proved
Qo(w) — Qe (z) = uy — ka2 = u2 + uzy — ka2, It is easy that transformers are not needed.

to verify that this expression is nonnegative for @land =, It seems to us that a more ‘complete’ version of this
if k< —1/4. classical problem is to ask for the realization of a diffeian

behavior. This problem is somewhat more general than the
An important area of application of the ideas of thisdrving pointimpedance problem, because of the existefice o

article is the area of electrical circuits. uncontrollable systems. For example, a unit resistor zesl
the transfer function of the system
d d
I —V+V=—I+1
? a’ " a T
exltf)rrltlal as its driving point impedance, but not its behavior (which

admits, for example, the short circuit respongg) =
et V(t) = 0, not realized by the resistor). An example
of a circuit that does realize this behavior exactly is the
above circuit, withl = 1,C = 1,R;, = 1,Rc = 1, so
Consider for example the circuit shown, and regdrd/)  this uncontrollable behavids realizable.
as manifest and the internal branch currents and voltagesThis leads to two nice open problems:
as latent variables (see [4], pages 10-13, 160-161, and 175-proplem 1: What behaviors® € £2 are realizable as
176 for a derivation of the equations and the analysis of th@e port behavior of a circuit containing a finite number of
controllability and observability properties of this aif). Of  passive resistors, capacitors, inductors, and transfosét
course, this circuit is dissipative with respect to the $ypp jg easy to see thaB must be single input / single output,
rate VI with the internal energy;CVZ + 3LI7 (in the and that the transfer function must be rational and positive
obvious notation) as the storage function.afRc # -, real. In addition must be passive, but in general with a

this circuit is controllable and observable (in the sens# thnon-observable storage function, and therefore it is resrcl
the branch currents and voltages are observable from tigat this says in terms dB.

port voltage and current). However, whéfRc = -, the Problem 2: Is it possible to realize a controllable single

differential equation that govern@’, I) is input / single output system with a rational positive real
Re d d transfer function as the behavior of a circuit containing a
(R_L + CRC%)V =1+ CRCE)RcL finite number of passive resistors, capacitors, and indscto

but no transformersNote that in a sense this is the Bott-
The variables(V¢, Ir,) are then unobservable froifi/,I),  Duffin problem, the issue being that the Bott-Duffin synthesi
and hence, the stored energy becomes an unobservapitecedure usually realizes a non-controllable systemithat
storage function. WherCRs = RLL and Rc # Ry, the correct transfer function (i.e., the correct contiua
then the manifest behavior is controllable. So, there &xispart), but not the correct behavior. There are standard syn-
an observable storage function. In fact, classical resulteesis procedures known that do realize the correct behavio
from electrical circuit synthesis allow to conclude thag th but they need transformers.

port behavior can also be realized using passive elements
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