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1 Introduction 

The concept of balancing consists in representing a sys- 
tem in state space form, so that the external proper- 
ties of the system are reflected at the level of state. A 
balanced basis for the state space allows to determine 
which of the state variables have smaller contribution 
to the external behavior of the system. The problem 
of balancing has been given wide attention in the past, 
cfr. [I], [a ] ,  [3], [5]  (where the notion of Riccati balanc- 
ing was introduced), [6] (the pioneering work in this 
area, where Lyapunov balancing was discussed), [lo] 
(of which the present work constitutes a generaliza- 
tion) 

The interest in this topic has two main motivations. 
First. once a balanced state space representation has 
been computed, a heuristic procedure for model reduc- 
tion consists in truncating the state vector, originally of 
n components, to  the first k components. In the clas- 
sical approach to balancing, as advocated in [6] ,  the 
rationale behind this procedure is that states which re- 
quire large energy to be reached and from which small 
energy future outputs can be extracted can in good con- 
science be neglected, if one wishes to obtain a model 
which approximately has the same impulse response as 
the original one. Moreover, the reduced order model 
obtained in this way enjoys some desirable properties, 
see [7]. A second reason why balanced state space re- 
alizations have been given such attention in the past 
is their use in concrete algorithms to perform Hankel- 
norm approximation, as illustrated in the seminal work 

0-7803-3590-2/96 $5.00 0 1996 IEEE 

~41. 

694 

In this note we consider the problem of model reduc- 
tion by balancing from the behavioral point of view, 
as illustrated in [11, 121. We consider general quadra- 
tic measures on the external signals of a system; Lya- 
punov and Riccati balancing are special cases of this 
situation. Using the concept of state map, introduced 
in [8], we describe how to compute a balanced state 
space representation from the original equations of the 
system, without the need to construct an intermedi- 
ate state space representation. Once a balanced state 
space representation has been computed, a reduced or- 
der model of order IC is obtained by considering only 
the subsystem corresponding to the first k components 
of the state. 

Why should one choose the behavioral approach to Sys- 
tem Theory to address the problem at hand? In our 
opinion, one of the advantages is that a higher level 
of generality can be attained. For example, no input- 
output partition of the external variables is assumed, 
so that models of phenomena that do not allow a nat- 
ural cause-effect relationship can be balanced, as can 
the more classical, input-output ones. Another reason 
is that no a priori choice of a state space representation 
is necessary, and a balanced state space representation 
is computed directly from the equations describing the 
model. This possibility makes the approach described 
here suitable in the common situation in which the be- 
havior of a complex model obtained from first principles 
(and therefore consisting of a number of higher order 
equations, possibly with algebraic constraints), is to be 
simulated by a simple state space model. 



2 Linear, time-invariant differential systems 

In this section we introduce the notions of the behav- 
ioral approach to system theory more relevant to the 
problem at hand. The reader is referred to [ll, 121 for 
more details. 

For simplicity of exposition, in this note we consider 
systems with two external variables, which we will de- 
note with w1 and w2. We will assume that these two 
quantities are related to each other via a linear, time- 
invariant, differential equation. Therefore, one way of 
describing the behavior t? of the system, that is, the set 
of trajectories satisfying the laws of the system, is the 
kernel representation 

where p ( $ )  and d ( $ )  are polynomial differential op- 
erators associated with the polynomials p ( [ )  and d(<).  
For the moment, let us gloss over the issue of which 
function class w1 and w2 belong to, and let us introduce 
another representation for the behavior of the system. 

If we assume that p ( t )  and d ( t )  are coprime, an alterna- 
tive representation of the behavior (1) is the observable 
image representation 

where e is a latent variable. It can be shown that the 
set of trajectories w = ( w 1 , w z )  such that (1) holds, 
coincides with the external behavior of (2), that is, with 
the set of trajectories w for which there exists an 4 such 
that (2) holds. 

Of course the problem arises to what class of functions 
w l ,  w2 and e of (1) and (2) belong. In the following, 
we will assume that they are L",.(($ R) functions, with 
equality in (1) and (2) interpreted in the sense of distri- 
butions. It has been shown in [lo] that every system in 
the form (1) with w1, w2 in Lkc(($JR) corresponds to 
a pair of coprime polynomials p ( [ )  and q ( [ ) ,  and there- 
fore in the following we deal without loss of generality 
with systems in the form (2). 

A state variable is a special kind of latent variable satis- 
fying the axiom of state (see [8]). It has been shown in 
[8] that a state variable can be induced by a state map ,  
that is, by a polynomial differential operator that, act- 

ing on the variables of a system as x = X ( $ )  , 
induces a new variable x that satisfies the axiom of 
state. A state map is called minimal  if the correspond- 
ing state variable 2 is minimal, in the sense of having 
the least possible number of components. It can be 
shown that, starting from knowledge of a state map 
and of a representation in kernel or image form, one 

(3 

can compute quite directly a representation of the sys- 
tem consisting of equations of first order in x and of 
zeroth order in w. 

The following result characterizes the state maps act- 
ing on the latent variable. We denote with n := 
m a x ( d e g  P ( t )  7 deg d ( 6 ) ) .  

Proposition 2.1 Let  a system be represented as an 
(2). A polynomial differential operator X (  -$) acting 
o n  the latent variable e is  a state map  i f  and only if 
the  rows of the polynomial vector X ( t )  span &-I[(], 
the vector space (over R) of polynomials of degree n o t  
larger than n - 1. X (  8 )  is a minimal  state map  i f  and 
only i f  the rows of X ( [ )  f o r m  a basis of lI&-l[S]. 

It is easy to verify that X ( d )  is a minimal state map 

singular matrix T .  
if and only if X ( t )  = Tcol(( 7 )3=0,...,n-1, for some non- 

3 Quadratic differential forms 

In the context of many control and system theory prob- 
lems, for example, in linear quadratic optimal control 
and Lyapunov stability theory, the analysis of the be- 
havior of a quadratic functional of the system variables 
is performed (by minimization of the integral of a qua- 
dratic expression in the external variables of the sys- 
tem, in the case of optimal control; in the determina- 
tion of a quadratic functional of the system variables, 
satisfying certain conditions in the case of Lyapunov 
theory). It has been shown in [9] that such quadratic 
functionals can be effectively represented by quadratic 
differential forms (QDF's). In this section we introduce 
some notation and some basic facts about QDF's; more 
details can be found in [9]. 

For the purposes of this paper, we will deal with dif- 
ferential functionals acting on two-dimensional system 
trajectories. 

Let 4 E R2x2 [c, 113 be a real symmetric polynomial ma- 
trix in the indeterminates c and rl; that is, 4(C,r]) = 

to q5 a bilinear differential functional (BDF) L,: 
N 

E,,,=, dk,jCkrlg,  and d(C, rl)  = 4(rl, S F -  We associate 

L,  : C"(R, R) x C"(R, R) -+ P ( R ,  R) 

(3) 

Note that this definition is given for infinitely differen- 
tiable trajectories v and W .  It can however be shown 
that under suitable conditions' on $(C, q) ,  the signals 
we deal with in the context of representations (2) ex- 
hibit enough smoothness for (3) to be a well defined 
function. 
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Of course, besides the BDF L+, we can associate a QDF 
with the polynomial $(<, q):  

Given a system described in image form (2) and a QDF 
&$, it is often convenient for technical reasons to con- 
sider the QDF induced by Q d  on the latent variable 
e. This QDF is associated to the polynomial q5'(clq) 
defined as: 

and it satisfies, for all w and k' for which (2) holds, 
Qd(w) = Qdt(l). Note that #(C,q) is a two variable 
polynomial. If it has degree R,  we will say that Ld (or 
Q m )  has degree n. 

Let us now illustrate these concepts with an example. 
Assume that a representation ( 2 )  is given, and consider 
the squared &-norm of the external variable w: 

P o 0  

This norm can be effectively represented by the integral 
of the QDF Q d  associated with 

in the sense that 

llwll~ = Q d w ) ( W  
--M 

Note that this norm is induced also by the QDF Qd, 
acting on the latent variable k? and associated with the 
polynomial 

d'(51 r l )  = P(Z)P(r l )  + d(04rl)l  

in the sense that 
CO 

l l ~ l l ~  = LCO Q+j(f)(t)dt. 

In the sequel of the paper, the concept of positivity of 
a QDF wiIl play an important role. We introduce this 
notion with reference to QDF's acting on the latent 
variable of a system represented as in (2). We will call 
Q+ positive if Q4(!) > 0 V e E LFc(IR, IR). The question 
whether a quadratic differential form is positive can be 
effectively answered as follows (see [9]): Qd((e) 2 0 if 
and only if d(<,rl) = rT(q)r (q) ,  where r(X)  # 0 Q X E 
@. Note that this implies that $(- iw, iw)  > 0 V w. 

4 The continuation and the antecedent map 

The previous two sections introduced the basic defini- 
tions and tools that we need to approach the problem 
of balancing. In this section we use QDF's to measure 
the importance of a trajectory, via the introduction of 
a Hilbert space structure on the past and on the fu- 
ture of the behavior. We also introduce and study an 
operator which measures, in a way made precise in the 
following, the minimal effect that a system trajectory 
restricted to the past time axis ( - c m , O )  will have on 
the future behavior of the system. 

Assume that a system (2) is given. Its external behav- 
ior B is the direct sum of the past behavior and of the 
future behavior, defined as 

8- := {w- I w- = wl(-m,o), w E 8) 
B+ := {w+ I 'U+ = 'W~[O,-M), w E al. 

We will call w- the past of w, and w+ the future of 
w. Observe that w = w- A w+, with A denoting the 
concatenation at zero: (f1 A f 2 ) ( t )  equals f i ( t )  if t < 0, 
and f i ( t )  if t 5 0. 

We now equip B- and B+ with the structure of a 
Hilbert space. Let L4- be a BDF acting on past tra- 
jectories and induced by a symmetric matrix q5-, such 
that the associated QDF Q+- is positive. Define the 
inner product < .,. >- on B- as 

0 

< w-,wL >-:= L + - ( w - , d ) ( t ) d t .  L 
Let now L++ be a BDF acting on future trajectories 
and induced by a symmetric matrix 4+, such that the 
associated QDF Q4,. is positive; define the inner prod- 
uct < +, . >+ on B+ as 

00 

w + ~ w k  >+:= L++(w+,wk)(t)dt. 

We will assume that B- and B+ are Hilbert spaces, 
with the norms induced by the given inner products. 
This implies that they are closed subspaces of B and 
that the inner products are positive. 

Given a past trajectory w-, any w+ such that w- A 

w+ E B will be called a continuation of w-. Given a 
future trajectory w+, any w- such that w- A w+ E 13 
will be called an antecedent of w+. 

Of course, given a past trajectory w-, in general there 
is a number of compatible continuations; intuitively, 
these continuations are future trajectories emanating 
from the same state to which w- led the system to. 
However, there exists only one continuation of w- with 
minimal squared norm. To see this, observe that since 
p(<) and d(c)  of (2) are coprime, w- and w+ correspond 
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to uniquely determined past and future latent variable 
trajectories e- and e+ (see [12]). Consider now the 
QDF Q4; acting on e and induced by Q@+ (see section 
3). For the sake of exposition, we will assume that 
Q6i has degree n. Since Qb; is nonnegative, there 
exists a Hurwitz polynomial r+(( )  of degree n such 
that q5\([, -5) = r+([ )r ; (J) .  Here r;(E) := r+(- - t ) .  
Define (Ker r+(&))+ as 

d {e!+ = el,,,,, I e/ E cp,  ( r + ( z ) W )  = 0 t 2 01, 

and the minimum energy system (with time set R+) 
associated with Q4+, described by the equations 

d 
dt o = r+(-)e+ 

where the latent and the external variable have been 
subscripted with + to emphasize that (5) is consid- 
ered to hold for t 2 0. The external behavior of (5) 
is a n-dimensional subspace of B+ consisting of linear 
combinations of Bohl functions whose characteristic ex- 
ponents are the roots of r+(E). We will denote it with 
a:". It can be shown that consists of the continu- 
ations of minimum squared norm. Since is closed, 
observe that B+ = @ (BGPt) l ,  with orthogonality 
defined in terms of the inner product <, - , a  >+. 

Analogously, for every w+ E B+ there exists a unique 
antecedent of minimum squared norm. Consider QQL , 
the quadratic differential form acting on e induced by 
Q@-. For the sake of exposition we will assume that 
Q@- has degree n. Let & ( E ,  - E )  = r-(<)rZ([),  with 
r-  ( E )  anti-Hurwitz. Denote with (Ker r- ($))- the 
set 

d 
dt {e!. = e;+,,o) I e' E cp, &(-)e')(t) = o t < o}. 

It can be shown that the past behavior B- is the direct 
sum of the finite dimensional external behavior of the 
minimum energy system (with time set R- ) 

which we will denote with and of the orthogonal 
subspace (Bopt)'-, with orthogonality defined in terms 
of the inner product < ., . >-. B"Pt is a n-dimensional 
subspace of B- and consists of the antecedents of min- 
imum squared norm. 

Consider now the map r- : B- + B+ that associates 
to w- its future continuation of minimal squared norm, 

and the map I?+ : B+ + B- that maps w+ into its 
antecedent of minimal squared norm. Formally, 

:= arg min {11w+11+ I 20- A w+ E B }  
r+(w+)  := arg min { ~ ~ w - ~ ~ -  I w- A w+ E B }  

We will call r- the continuation map and r+ the an- 
tecedent map. It can be shown that I?- and I?+ are well- 
defined, linear, continuous, and bounded. Moreover, 
Im r- = B:pt, Im r+ = Gopt, Ker r- = ( B o p t ) l ,  and 
Ker r+ = (B:pt ) l .  r- and r+ are also compact, and 
it can be shown that they admit a Schmidt expansion 

n 

i=l 

As we will show in the next section, the Schmidt ex- 
pansion of I"- is instrumental in the determination of 
a balanced state space representation. Let us therefore 
digress a bit and show how to compute the Schmidt 
pairs (w;, w:) of r-, I?+. Introduce the QDF's Q++ 
and Q$- acting on the latent variable and induced by 
the polynomials 

4: (C,  77) - r- (C)r? (77) 
s+rl 

@-(C,r l )  := 

We will call Q$+, Q$- the future and the past Gramian 
associated with the QDF's QQ;, Q ~ L ,  respectively. It 
can be shown that, for trajectories satisfying (5) or (6), 
the value of Q$+ and of Q$- at t = 0 coincides with 
the past, respectively, the future norm of the external 
signals of the system (analogously to the classical case, 
in which the controllability and observability Gramians 
measure the &-norm of the inputs and the outputs). 
This allows us to state the following result: 

Proposition 4.1 The Schmidt pairs (wi,wr) of I?- 
correspond to the trajectories e-, [+ of (Ker r - (  &))-? 
(Ker r + ( $ ) ) + ,  respectierely, such that 

P? := m m  Q++(e+)(O) 
Q$-(e-)(o) = 1 

Q+-(e-,eF)(o) = 0 
v e\ s.t. w- E IL, (7) 

where the maximum is taken over all e+ such that e- A 
e+ is n - 1 times continuously differentiable, and V, is 
defined as: fi := {O}, := span {w;, . . . ,w;}, i 3 1. 

The problem of finding e-, e+ that solve (7) can be 
shown to be equivalent to a generalized eigenvalue 
equation. We will not go into the details here. 
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5 Balanced state maps 

We now define minimal balanced state maps. 

Definition 5.1 A minimal  state map  X ( $ )  acting o n  
the latent variable e of the system (2) is  sazd t o  be bal- 
anced if 

where e ,  is  the i-th vector of the canonical basis of Rn, 
is  the latent variable trajectory corresponding t o  the 

Schmidt  vector w: and the singular value pi of r-, 
and E% = il. 

The rationale behind this definition is that by map- 
ping the trajectories w;& A f iw:  at time t = 0 
into the canonical basis, a choice of the state space is 
made so that states that correspond to a low energy of 
the past external trajectory and to a high energy of the 
future external trajectory are given more relevance. In 
this sense, the notion of balanced state map is a direct 
generalization of the concept of balanced state space 
basis. Note also that the idea of using a basis of suit- 
ably normalized Schmidt vectors to obtain a balanced 
realization is at the core of the results of [a, 31, where 
in place of r-, the Hankel operator associated with the 
transfer function of the system is used. 

A characterization of minimal balanced state maps can 
be given as follows. Consider the nonsingular n x n 
matrix LC defined by 

L := (.e?+ . * .  .eo,+) 
c := diag(JI-12)2=1,...,n, (8) 

where := col(t$),=o,. .,%-I is the initial conditions 
vector of the trajectory la. The following result holds: 

Proposition 5.1 X ( $ )  i s  a minimal  balanced state 
map  acting o n  l f o r  the system (2) if and only i f  
X ( < )  = SC-1L-1coZ(<3),=~, , ,n-l, where S 2s a sig- 
nature matrzx. 

In the classical state space setting, balancing consists 
in the determination of a basis for the state space, such 
that the Gramians have a diagonal representation. The 
following proposition relates that point of view with the 
notion of balanced state map and of past and future 
Gramian put forward in this note. 

Proposition 5.2 Let  the system equations (2) and the 
future and past Gramians &$+, &?I- be given. If X (  $) 
is  a balanced state map,  then 

where C := diag(&)i=i, ..., n. 

The notion of balanced state map is instrumental for 
computing a balanced state space representation, from 
which a reduced order model is readily obtained. This 
is the subject of the next section. 

6 Model reduction 

The notion of balancing has been introduced in Sys- 
tem Theory as a tool to obtain lower order state space 
models of dynamical systems. The idea underlying the 
procedure of model reduction is that once a balanced 
state space representation has been obtained, one can 
eliminate from the equations the state variables which 
contribute less to the external behavior of the system, 
obtaining a lower order model which behaves approxi- 
mately as the original one. 

We now show how to compute a reduced order state 
model for a system described by (1). The procedure 
starts by computing a balanced state map, from which 
balanced state space equations are readily obtained. To 
obtain a balanced state map, one has first to solve the 
n problems (7) and to compute the latent trajectories 
e,, corresponding to the Schmidt pairs (w;, w:) of 
r-. Let L and C be given as in (8), and let xb([) := 
C-lL-lcol(<'),=o,. .,n-l. As stated in proposition 5.1, 
X , ( & )  is a balanced state map. 

Assume without loss of generality that n = deg d(6). 

There exists a polynomial u( t )  of degree n and constant 
matrices A E Rnxn, B E Etnx1, C E R"", D E R such 
that 

txb(<) =AXb(<) +Bu(c) (9) 
P ( t )  = cXb(<) + Du(<). 

To see this, consider that if X ( < )  = ~ o l ( ~ ~ ) ~ = o , . . . , ~ - - l ,  
by choosing U ( ( )  = d(<), a realization of (I) in canoni- 
cal controller form yields matrices A,, B,, c,, D, such 
that 

In the case of Lyapunov balancing, it is a matter of 
straightforward verification to show that the realization 
(A ,  B ,  C, D) corresponding to (9) is a balanced state 
space representation in the classical sense. In fact, it 
can be shown that the coordinate transformation rep- 
resented by C-l L-l diagonalizes the observability and 
the controllability Gramian. 
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Assume now that an approximate state space model of 
order IC < n is desired for the system (1). Partition A,  
B, C, of (9) as 

c = ( C l  C2)  
where All is k x IC, B1 is k x 1, C is 1 x k. The desired 
model is described by the equations 

E = Al lX+Blwl  

~2 = C l x + D w l .  (11) 

7 Conclusions 

In this note we have illustrated a framework for model 
reduction by balancing for systems described by high- 
order differential equations. This point of view is par- 
ticularly significant in that it allows the computation 
of a reduced order state space model of a complex sys- 
tem described by higher-order linear differential equa- 
tions, without the need to compute an intermediate 
state space model. We did not go into the details in 
this note, but it can be shown that classical Lyapunov 
and Riccati balanced model reduction are special cases 
of the approach pursued here. Moreover, in these two 
cases many of the computations necessary to obtain a 
balanced state map can be done polynomially, much 
like what has been done in 12, 31. 

Our research efforts are currently aimed in two direc- 
tions. The first one is the possibility of obtaining the 
image representation corresponding to the reduced or- 
der state space model (11) directly from knowledge of 
a balanced state map and of the equations (2). The 
second, more ambitious one, is to study the connec- 
tions between the notion of balanced state map with 
the problem of Hankel-norm approximation. 
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