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0.1 Abstract

We conjecture that the solution set of a system of linear constant coefficient
PDE’s is Markovian if and only if it is the solution set of a system of first
order PDE’s. An analogous conjecture regarding state systems is also made.
Keywords: Linear differential systems, Markovian systems, state systems,
kernel representations.

0.2 Description of the problem

0.2.1 Notation

First, we introduce our notation for the solution sets of linear PDE’s in the n
real independent variables x = (x1, . . . , xn). Let D′

n denote, as usual, the set
of real distributions on Rn, and Lw

n the linear subspaces of (D′
n)

w consisting
of the solutions of a system of linear constant coefficient PDE’s in the w
real-valued dependent variables w = col(w1, . . . , ww). More precisely, each
element B ∈ Lw

n is defined by a polynomial matrix R ∈ R•×w[ξ1, ξ2, . . . , ξn],
with w columns, but any number of rows, such that

B = {w ∈ (D′
n)

w | R(
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn
)w = 0}.

We refer to elements of Lw
n as linear differential n-D systems. The above

PDE is called a kernel representation of B ∈ Lw
n. Note that each B ∈ Lw

n

has many kernel representations. For an in depth study of Lw
n, see [1] and

[2].
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Next, we introduce a class of special three-way partitions of Rn. Denote
by P the following set of partitions of Rn:

[(S−, S0, S+) ∈ P] :⇔ [(S−, S0, S+ are disjoint subsets of Rn)
∧ (S− ∪ S0 ∪ S+ = Rn) ∧ (S− and S+ are open, and S0 is closed)].

Finally, we define concatenation of maps on Rn. Let f−, f+ : Rn → F,
and let π = (S−, S0, S+) ∈ P. Define the map f−∧π f+ : Rn → F, called the
concatenation of (f−, f+) along π, by

(f− ∧π f+)(x) :=
{

f−(x) for x ∈ S−
f+(x) for x ∈ S0 ∪ S+

0.2.2 Markovian systems

Define B ∈ Lw
n to be Markovian :⇔

[(w−, w+ ∈ B ∩ C∞(Rn, Rw)) ∧ (π = (S−, S0, S+) ∈ P)
∧ (w−|S0 = w+|S0)] ⇒ [(w− ∧π w+ ∈ B].

Think of S− as the ‘past’, S0 as the ‘present’, and S+ as the ‘future’.
Markovian means that if two solutions of the PDE agree on the present,
then their pasts and futures are compatible, in the sense that the past (and
present) of one, concatenated with the (present and) future of the other, is
also a solution. In the language of probability: the past and the future are
independent given the present.

We come to our first conjecture:

B ∈ Lw
n is Markovian

if and only if
it has a kernel representation that is first order.

I.e., it is conjectured that a Markovian system admits a kernel representation
of the form

R0w + R1
∂

∂x1
w + R2

∂

∂x2
w + · · ·Rn

∂

∂xn
w = 0.

Oberst [2] has proven that there is a one-to-one relation between Lw
n and

the submodules of Rw[ξ1, ξ2, . . . , ξn], each B ∈ Lw
n being identifiable with its

set of annihilators

NB := {n ∈ Rw[ξ1, ξ2, . . . , ξn] | n>(
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn
)B = 0}.

Markovianity is hence conjectured to correspond exactly to those B ∈ Lw
n

for which the submodule NB has a set of first order generators.
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0.2.3 State systems

In this section we consider systems with two kind of variables: w real-valued
manifest variables, w = col(w1, . . . , ww), and z real-valued state variables,
z = col(z1, . . . , zz). Their joint behavior is again assumed to be the solu-
tion set of a system of linear constant coefficient PDE’s. Thus we consider
behaviors in Lw+z

n , whence each element B ∈ Lw+z
n is described in terms of

two polynomial matrices (R,M) ∈ R•×(w+z)[ξ1, ξ2, . . . , ξn] by

B = {(w, z) ∈ (D′
n)

w × (D′
n)

z |

R(
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn
)w + M(

∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn
)z = 0}.

Define B ∈ Lw+z
n to be a state system with state z :⇔

[((w−, z−), (w+, z+) ∈ B ∩ C∞(Rn, Rw+z)) ∧ (π = (S−, S0, S+) ∈ P)
∧ (z−|S0 = z+|S0)] ⇒ [(w−, z−) ∧π (w+, z+) ∈ B].

Think again of S− as the ‘past’, S0 as the ‘present’, S−+ as the ‘fu-
ture’. State means that if the state components of two solutions agree on
the present, then their pasts and futures are compatible, in the sense that
the past of one solution (involving both the manifest and the state vari-
ables), concatenated with the present and future of the other solution, is
also a solution. In the language of probability: the present state ‘splits’ the
past and the present plus future of the manifest and the state trajectory
combined.

We come to our second conjecture:

B ∈ Lw+z
n is a state system
if and only if

it has a kernel representation
that is first order in the state variables z

and zero-th order in the manifest variables w.

I.e., it is conjectured that a state system admits a kernel representation of
the form

R0w + M0z + M1
∂

∂x1
z + M2

∂

∂x2
z + · · ·Mn

∂

∂xn
z = 0.
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0.3 Motivation and history of the problem

These open problems aim at understanding state and state construction for
n-D systems.

Maxwell’s equations constitute an example of a Markovian system. The
diffusion equation and the wave equation are non-examples.

0.4 Available results

It is straightforward to prove the ‘if’-part of both conjectures. The conjec-
tures are true for n = 1, i.e. in the ODE case, see [3].
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