Dr. Fré Vercauteren

Post-doc

Address:

COSIC - Electrical Engineering
Katholieke Universiteit Leuven
Kasteelpark Arenberg 10
B-3001 Heverlee
Belgium

Office : Electrical Engineering, Room 1.60

Phone: +32-16-32-1073
Fax: +32-16-32-1969

E-mail: fvercaut@esat.kuleuven.ac.be

Research Interests:


Programme Committees:


Publications:

  1. F. Vercauteren, B. Preneel, J. Vandewalle. A Memory Efficient Version of Satoh's Algorithm. In Birgit Pfitzmann (Ed.) Advances in Cryptology - EUROCRYPT 2001, Lecture Notes in Computer Science 2045, Springer 2001, p. 1-13.

  2. S. Janssen, J. Thomas, W. Borremans, P. Gijsels, I. Verbauwhede, F. Vercauteren, B. Preneel, J. Vandewalle. Hardware/Software Co-design of an Elliptic Curve Public-key Cryptosystem. In Proceedings IEEE Workshop on Signal Processing Systems, SiPS-2001, Antwerp, Belgium, 2001, p. 209-216.

  3. J. Denef, F. Vercauteren. An extension of Kedlaya's algorithm to Artin-Schreier curves in characteristic 2. In C. Fieker, D. R. Kohel (Eds.) Algorithmic number theory - ANTS V, Lecture Notes in Computer Science 2369, Springer 2002, p. 308-323.

  4. F. Vercauteren. Computing zeta functions of hyperelliptic curves over finite fields of characteristic 2. In Moti Young (Ed.) Advances in cryptology - CRYPTO 2002, Lecture Notes in Computer Science 2442, Springer 2002, p. 369-384.

  5. F. Vercauteren. Computing zeta functions of curves over finite fields. PhD thesis, Katholieke Universiteit Leuven, November 2003.

  6. A. Muzereau, N.P. Smart, F. Vercauteren. The equivalence between the DHP and DLP for elliptic curves used in practical applications. LMS J. Comput. Math, 7 (2004), p. 50-72. , 2004.

  7. J. Denef, F. Vercauteren. An extension of Kedlaya's algorithm to hyperelliptic curves in characteristic 2. Journal of Cryptology, Vol. 19 (1), Springer 2006, p. 1-25.

  8. R. Granger, A. Holt, D. Page, N.P. Smart, F. Vercauteren. Function Field Sieve in Characteristic Three. In D. Buell (Ed.) Algorithmic number theory - ANTS VI, Lecture Notes in Computer Science 3076, Springer 2004, p. 223-234.

  9. J. Scholten, F. Vercauteren. An Introduction to Elliptic and Hyperelliptic Curve Cryptography and the NTRU Cryptosystem. To appear in B. Preneel (Ed.) State of the Art in Applied Cryptography -- COSIC '03, Lecture Notes in Computer Science, Springer 2004.

  10. J. H. Silverman, N. P. Smart, F. Vercauteren. An Algebraic Approach to NTRU (q = 2^n) via Witt Vectors and Overdetermined Systems of Nonlinear Equations. In C. Blundo, S. Cimato (Eds.) Security in Communication Networks, SCN 2004, Lecture Notes in Computer Science 3352, Springer 2005, p. 278-293.

  11. J. Denef, F. Vercauteren. Computing zeta functions of C_{ab} curves using Monsky-Washnitzer cohomology. Finite Fields and Their Applications, Vol. 12 (1), Elsevier 2006, p. 78-102.

  12. R. Granger, F. Vercauteren. On the discrete logarithm problem on algebraic tori. In V. Shoup (Ed.), CRYPTO 2005, Lecture Notes in Computer Science 3621, Springer 2005, p. 66-85.

  13. D. Page, F. Vercauteren. A Fault Attack on Pairing Based Cryptography. In IEEE Transactions on Computers, Vol. 55(9), p. 1075-1080, 2006.

  14. D. Page, N. Smart, F. Vercauteren. A comparison of MNT curves and supersingular curves. In Applicable Algebra in Engineering, Communication and Computing, Vol. 17 (5), Springer 2006, p. 379-392.

  15. N. Smart, F. Vercauteren. On Computable Isomorphisms in Efficient Asymmetric Pairing Based Systems. Discrete Applied Mathematics, Vol. 155, Iss. 4, 2007, p. 538-547.

  16. A. Joux, R. Lercier, N. Smart, F. Vercauteren. The number field sieve in the medium prime case. In C. Dwork (Ed.), CRYPTO 2006, Lecture Notes in Computer Science, 4117, p. 326-344, Springer 2006.

  17. F. Hess, N. Smart, F. Vercauteren. The Eta-pairing revisited. In IEEE Transactions on Information Theory, Vol. 52(10), p. 4595-4602, 2006.

  18. W. Castryck, J. Denef, F. Vercauteren. Computing Zeta Functions of Nondegenerate Curves. International Mathematics Research Papers, vol. 2006, Article ID 72017, 57 pages, 2006.

  19. R. Granger, F. Hess, R. Oyono, N. Thériault, F. Vercauteren Ate Pairing on Hyperelliptic Curves In M. Naor (Ed.) EUROCRYPT 2007, Lecture Notes in Computer Science 4515, Springer 2007, p. 430-447.

  20. S. D. Galbraith, F. Hess, F. Vercauteren. Hyperelliptic Pairings In T. Takagi, T. Okamoto, E. Okamoto, T. Okamoto (Eds.) Pairing 2007, Lecture Notes in Computer Science 4575, Springer 2007, p. 108-131.

  21. W. Castryck, H. Hubrechts, F. Vercauteren. Computing zeta functions in families of C_{ab} curves using deformation In A. van der Poorten, A. Stein (Ed.) Algorithmic number theory - ANTS VIII, Lecture Notes in Computer Science 5011, Springer 2008, p. 296-311.

  22. S. D. Galbraith, F. Hess, F. Vercauteren. Aspects of Pairing Inversion IEEE Transactions on Information Theory 54(12): 5719-5728, 2008.

  23. F. Vercauteren. The Hidden Root Problem In Steven D. Galbraith and Kenneth G. Paterson (Eds.), Pairing 2008, Lecture Notes in Computer Science 5209, Springer 2008, p. 89-99.

  24. F. Vercauteren. Optimal Pairings IEEE Transactions on Information Theory, Volume 56 (1): 455-461, 2010.

  25. J. Daemen, M. Lamberger, N. Pramstaller, V. Rijmen, F. Vercauteren. Computational aspects of the expected differential probability of 4-round AES and AES-like ciphers Computing 85(1-2), p. 85-104, 2009.

  26. J. Fan, F. Vercauteren, I. Verbauwhede. Faster -Arithmetic for Cryptographic Pairings on Barreto-Naehrig Curves In C. Clavier, K. Gaj (Eds.), CHES 2009, Lecture Notes in Computer Science 5747, Springer 2009, p. 240-253.

  27. M. Knezevic, F. Vercauteren, I. Verbauwhede. Faster Interleaved Modular Multiplication Based on Barrett and Montgomery Reduction Methods, IEEE Trans. Computers 59(12): 1715-1721 (2010).

  28. M. Knezevic, F. Vercauteren, and I. Verbauwhede, Speeding Up Bipartite Modular Multiplication In A. Hasan, and T. Helleseth (Eds.), International Workshop on the Arithmetic of Finite Fields (WAIFI 2010), Lecture Notes in Computer Science 6087, Springer 2010, p. 166-179.

  29. J. Hermans, F. Vercauteren, and B. Preneel, Speed records for NTRU In J. Pieprzyk (Ed.), Topics in Cryptology - CT-RSA 2010, The Cryptographers' Track at the RSA Conference, Lecture Notes in Computer Science 5985, Springer 2010, p. 73-88.

  30. J. Hermans, M. Schneider, J. Buchmann, B. Preneel, and F. Vercauteren, Parallel Shortest Lattice Vector Enumeration on Graphics Cards In D. J. Bernstein, and T. Lange (Eds.), Progress in Cryptology - AFRICACRYPT 2010, Lecture Notes in Computer Science 6055, Springer 2010, p. 52-68.

  31. J. Fan, J. Hermans, and F. Vercauteren, On the claimed privacy of EC-RAC III In Siddika Berna Ors Yalcin (Eds.), Radio Frequency Identification: Security and Privacy Issues - 6th International Workshop, RFIDSec 2010, Lecture Notes in Computer Science 6370, Springer 2010, p. 66-74.

  32. Nigel P. Smart and Frederik Vercauteren Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes In Phong Q. Nguyen, David Pointcheval (Eds.), Public Key Cryptography 2010, Lecture Notes in Computer Science 6056, Springer 2010, p. 420-443.

  33. Wouter Castryck and Frederik Vercauteren. Toric forms of elliptic curves and their arithmetic Journal of Symbolic Computation, Volume 46, Issue 8, August 2011, p. 943-966.

  34. Junfeng Fan, Benedikt Gierlichs and Frederik Vercauteren. To Infinity and Beyond: Combined Attack on ECC using Points of Low Order In B. Preneel and T. Takagi (Eds.), CHES 2011, Lecture Notes in Computer Science 6917, Springer 2011, p. 143-159.

  35. Jake Loftus, Alexander May, Nigel P. Smart and Frederik Vercauteren. On CCA-Secure Somewhat Homomorphic Encryption In SAC 2011, Lecture Notes in Computer Science, Springer 2011.

  36. Jens Hermans, Andreas Pashalidis, Frederik Vercauteren and Bart Preneel. A New RFID Privacy Model In Esorics 2011, Lecture Notes in Computer Science, Springer 2011.

  37. Nigel P. Smart and Frederik Vercauteren. Fully Homomorphic SIMD Operations To appear 2011.

  38. Billy B. Brumley, Manuel Barbosa, Dan Page and Frederik Vercauteren. Practical realisation and elimination of an ECC-related software bug attack To appear 2011.

Chapters in Books:

  1. F. Vercauteren. Advances in Point Counting. In I. F. Blake, G. Seroussi, N. P. Smart (Eds.) Advances in Elliptic Curve Cryptography, 103-132, London Math. Soc. Lecture Note Ser., 317, Cambridge Univ. Press, Cambridge, 2005.

  2. D. Lubicz, F. Vercauteren. Cohomological Background on Point Counting. In Handbook of elliptic and hyperelliptic curve cryptography, 133-141, Discrete Math. Appl. (Boca Raton), Chapman & Hall/CRC, 2006.

  3. R. Lercier, D. Lubicz, F. Vercauteren. Point Counting on Elliptic and Hyperelliptic Curves. In Handbook of elliptic and hyperelliptic curve cryptography, 239-263, Discrete Math. Appl. (Boca Raton), Chapman & Hall/CRC, 2006.

  4. F. Vercauteren. p-adic Arithmetic. In Handbook of elliptic and hyperelliptic curve cryptography, 407-453, Discrete Math. Appl. (Boca Raton), Chapman & Hall/CRC, 2006.

  5. F. Vercauteren. Pairings on Elliptic Curves. In M. Joye and G. Neven (Eds.) Identity-Based Cryptography. Volume 2 Cryptology and Information Security Series, IOS Press 2009.

  6. C. Whelan, A. Byrne, D. Page, F. Vercauteren, M. Scott and W. Marnane. Implementation Attacks, Countermeasures and Performance Evaluation. In M. Joye and G. Neven (Eds.) Identity-Based Cryptography. Volume 2 Cryptology and Information Security Series, IOS Press 2009.

  7. N. El Mrabet, D. Page and F. Vercauteren. Fault Attacks on Pairing Based Cryptography: A State of the Art. In M. Joye and M. Tunstall (Eds.), Fault Analysis in Cryptography, Springer 2011.

Preprints:

  1. L. Batina, B. Gierlichs, N. Smart, M. Tunstall, F. Vercauteren. Revisiting Collision Based Power Analysis of Scalar Multiplication

Notes:


Presentations:


Curriculum Vitae:

CV available on request.
Last modified on 26/08/2011.