Chapter-1 : Introduction

• Aims/Scope
 Why study DSP ?
 DSP in applications : GSM example

• Overview
 Filter design & implementation
 Filter banks and subband systems
 Optimal and adaptive filters

• Activities
 Lectures : Course notes/literature
 Exercise sessions : Acoustic modem project
 Exam
Why study DSP?

- Analog Systems vs. Digital Systems
 - Can translate (any) analog (e.g. filter) design into digital
 - Going `digital’ allows to expand functionality/flexibility/…
 (e.g. how would you do analog speech recognition? analog audio compression? …?)

Why study DSP?

- Start with one `DSP in applications’ example:
 - DSP in mobile communications (GSM)

- Main message:
 Consumer electronics products (and many other systems)
 have become (embedded) ‘supercomputers’ (Mops…Gops/sec),
 packed with mathematics & DSP functionalities…
DSP in applications : GSM

Cellular Mobile Telephony (e.g. GSM)

• Basic network architecture:
 - Country covered by a grid of cells
 - Each cell has a base station
 - Base station connected to land telephone network and communicates with mobiles via a radio interface
 - Digital communication format

DSP in applications : GSM

• DSP for Digital Communications (‘physical layer’):
 – A common misunderstanding is that digital communications is ‘simple’ …
 – While in practice…

Transmitter 1,0,1,1,0,…

Channel +

Receiver decision

 decision 1,0,1,1,0,…

PS: This is a discrete-time system representation, see Chapter-2 for review on signals&systems
DSP in applications: GSM

- DSP for Digital Communications ('physical layer'):
 - While in practice...
 - This calls for channel model + compensation (equalization)

Transmitter: 1,0,1,1,0, 1,0,1,1,0, ...

Multipath Channel

Received signal

Receiver: noise: 0.59, 0.41, 0.76, 0.05, 0.37, ...

DSP in applications: GSM

- GSM Channel Estimation/Compensation:
 - Multi-path channel is modeled with short (3...5 taps) FIR filter

$$H(z) = a + b z^{-1} + c z^{-2} + d z^{-3} + e z^{-4}$$

Multipath Channel

\approx

PS: z^{-1} or Δ represents a sampling period delay, see Chapter-2 for review on z-transforms.
DSP in applications: GSM

- GSM Channel Estimation/Compensation (continued)
 - Multi-path channel is modeled with short (3…5 taps) FIR filter

\[H(z) = a + b.z^{-1} + c.z^{-2} + d.z^{-3} + e.z^{-4} \]

\[
\begin{bmatrix}
\text{OUT[1]} \\
\text{OUT[2]} \\
\text{OUT[3]} \\
\text{OUT[4]} \\
\text{OUT[5]} \\
\vdots \\
\text{OUT[N]}
\end{bmatrix} =
\begin{bmatrix}
\text{IN[1]} & 0 & 0 & 0 & 0 \\
\text{IN[2]} & \text{IN[1]} & 0 & 0 & 0 \\
\text{IN[3]} & \text{IN[2]} & \text{IN[1]} & 0 & 0 \\
\text{IN[4]} & \text{IN[3]} & \text{IN[2]} & \text{IN[1]} & 0 \\
\text{IN[5]} & \text{IN[4]} & \text{IN[3]} & \text{IN[2]} & \text{IN[1]} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\text{IN[N-1]} & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
a \\
b \\
c \\
d \\
e
\end{bmatrix}
\]

This leads to a least-squares parameter estimation

\[
\begin{bmatrix}
\text{OUT[1]} \\
\text{OUT[2]} \\
\text{OUT[3]} \\
\text{OUT[4]} \\
\text{OUT[5]} \\
\text{OUT[N]}
\end{bmatrix} = \begin{bmatrix}
\text{IN[1]} & 0 & 0 & 0 & 0 \\
\text{IN[2]} & \text{IN[1]} & 0 & 0 & 0 \\
\text{IN[3]} & \text{IN[2]} & \text{IN[1]} & 0 & 0 \\
\text{IN[4]} & \text{IN[3]} & \text{IN[2]} & \text{IN[1]} & 0 \\
\text{IN[5]} & \text{IN[4]} & \text{IN[3]} & \text{IN[2]} & \text{IN[1]} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\text{IN[N-1]} & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
a \\
b \\
c \\
d \\
e
\end{bmatrix}
\]

See PART-IV on ‘Optimal Filtering’

Carl Friedrich Gauss (1777 – 1855)
GSM Channel Estimation/Compensation (continued)

- Channel coefficients (cfr. a,b,c,d,e) are identified in receiver based on transmission of pre-defined training sequences (TS), in between data bits.

- Channel model is then used to design suitable equalizer (‘channel inversion’), or (better) to reconstruct transmitted data bits based on maximum-likelihood sequence estimation (e.g. ‘Viterbi decoding’).

- Channel is highly time-varying (e.g. terminal speed 120 km/hr !) => All this is done at `burst-rate` (+- 100 times per sec).

= SPECTACULAR !!

GSM Speech Coding

- Original ‘PCM-signal has 64kbits/sec = 8 ksamples/sec*8bits/sample
- Aim is to reduce this to <11kbits/sec, while preserving quality!
- Coding based on speech generation model (vocal tract…), where model coefficient are identified for each new speech segment (e.g. 20 msec).
- This leads to a least-squares parameter estimation (again), executed +- 50 times per second. Fast algorithm is used, e.g. ‘Levinson-Durbin’ algorithm.
- Then transmit model coefficients instead of signal samples.
- Synthesize speech segment at receiver (should ‘sounds like’ original speech segment).

= SPECTACULAR !!
DSP in applications : GSM

- GSM Channel Estimation/Compensation
- GSM Speech Coding
- GSM Multiple Access Schemes
 - Accommodate multiple users by time & frequency ‘multiplexing’
 - FDMA (freq.division multiple access): 125 frequency channels for GSM/900MHz
 - TDMA (time division multiple access): 8 time slots(=users) per channel, ‘burst mode’ communication
 (PS: in practice, capacity per cell << 8*125 !)
 See PART-III on ‘Filter Banks & … : Transmultiplexers’

- Etc..

= BOX FULL OF DSP/MATHEMATICS !!
(For only €25)

DSP in applications : Other…

- Digital Communications
 - Wireline (xDSL, Powerline), Wireless (GSM, 3G, Wi-Fi, WiMax, CDMA, MIMO-transmission,..)
- Speech
 - Speech coding (GSM, DECT, ..), Speech synthesis (text-to-speech), Speech recognition
- Audio Signal Processing
 - Audio Coding (MP3, AAC, ..), Audio synthesis
 - Editing, Automatic transcription, Dolby/Surround, 3D-audio,..
- Image/Video
- ...

Enabling Technology is:

- **Signal Processing**
 - 1G-SP: analog filters
 - 2G-SP: digital filters, FFT’s, etc.
 - 3G-SP: full of mathematics, linear algebra, statistics, etc...
- **Micro-/Nano-electronics**
- ...

DSP in applications

Signals & Systems Course

DSP-I

DSP-CIS

DSP-II Aims/Scope

- **Basic signal processing theory/principles**
 - filter design, filter banks, optimal filters & adaptive filters
 - as well as...
- **Recent/advanced topics**
 - robust filter realization, perfect reconstruction filter banks, fast adaptive algorithms, ...
- **Often `bird’ s-eye view’**
 - skip many mathematical details (if possible... 😊)
 - selection of topics (non-exhaustive)
Overview

• **Part I** : Introduction
 Chapter-1: Introduction
 Chapter-2: Signals and Systems Review
 Chapter-3: Acoustic Modem Project

• **Part II** : Filter Design & Implementation
 Chapter-4: IIR & FIR Filter Design
 Chapter-5: Filter Realization
 Chapter-6: Filter Implementation

Overview

• **Part III** : Filter Banks & Subband Systems
 Chapter-7: Filter Banks Intro/Applications (audio coding/CDMA/...)
 Chapter-8: Filter Banks Theory
 Chapter-9: DFT-modulated Filter Banks
 Chapter-10: Special Topics (frequency-domain processing, wavelets...)

[Diagram of subband processing]
Overview

- **Part IV**: Optimal & Adaptive Filtering
 - Chapter-11: Optimal/Wiener Filters
 - Chapter-12: Adaptive Filters/Recursive Least Squares
 - Chapter-13: Adaptive Filters/LMS
 - Chapter-14: ‘Fast’ Adaptive Filters
 - Chapter-15: Kalman Filters

Lectures

Lectures: 15 * 2 hrs

Course Material:

- **Part I-IV**: *Slides* (use version 2012-2013 !!)
 - ...download from DSP-CIS webpage
- **Part IV**: ‘Introduction to Adaptive Signal Processing’
 - (Marc Moonen & Ian.K. Proudler)
 - = support material, not mandatory !
 - ...(if needed) download from DSP-CIS webpage

PS: Time budget = (15*2hrs)*4 = 120 hrs
Literature / Campus Library Arenberg

- A. Oppenheim & R. Schafer
 ‘Digital Signal Processing’ (Prentice Hall 1977)
- L. Jackson
 ‘Digital Filters and Signal Processing’ (Kluwer 1986)
- P.P. Vaidyanathan
 ‘Multirate Systems and Filter Banks’ (Prentice Hall 1993)
- Simon Haykin
 ‘Adaptive Filter Theory’ (Prentice Hall 1996)
- M. Bellanger
 ‘Digital Processing of Signals’ (Kluwer 1986)
- etc...

Literature / DSP-CIS Library

- **Collection of books is available to support course material**
- **List/reservation via DSP-CIS webpage**
- **Contact:** beier.li@esat
Exercise Sessions: Acoustic Modem Project

- Digital communication over an acoustic channel (from loudspeaker to microphone)
- FFT/IFFT-based modulation format: OFDM (as in ADSL/VDSL, WiFi, DAB, DVB, ...)
- Channel estimation, equalization, etc...

Digital Picture (IN)

Tx

D-to-A
+filtering
+amplif.

A-to-D
+filtering
+

Rx

Digital Picture (OUT)

Exercise Sessions: Acoustic Modem Project

- Runs over 8 weeks
- Each week
 - 1 PC/Matlab session (supervised, 2.5hrs)
 - 2 ‘Homework’ sessions (unsupervised, 2*2.5hrs)

PS: Time budget = 8*(2.5hrs+5hrs) = 60 hrs

- ‘Deliverables’ after week 2, 4, 6, 8
- Grading: based on deliverables, evaluated during sessions

- TAs: alexander.bertrand@esat (English+Dutch)
 beier.li@esat (English+Chinese)
 paschalis.tsiakalis@esat (English+Greek+Dutch)
 pepe.gilcacho@esat (English+Spanish)

PS: groups of 2
Will consider digital communications over acoustic channel:

- Discrete-time transmit signal (sampling rate F_s, e.g., 10kHz)
- Discrete-time receiver signal (sampling rate F_s, e.g., 10kHz)

This will be the easy part...
Will consider digital communications over acoustic channel:

Discrete-time transmit signal (sampling rate F_s, e.g., 10kHz)

...straightforwardly realized (in Matlab/Simulink with 'Real-Time Workshop', see below)

Means we do not have to deal with hardware issues, components, etc.

Acoustic Modem Project – Preview 3/8

...and will be modeled by a linear discrete-time transfer function

Acoustic Modem Project – Preview 4/8
• Will consider digital communications over an acoustic channel:

Acoustic Modem Project – Preview

- Will use OFDM as a modulation format

Orthogonal frequency-division multiplexing
From Wikipedia, the free encyclopedia

Orthogonal frequency-division multiplexing (OFDM), essentially identical to discrete multi-tone modulation (DMT), is a frequency-division multiplexing (FDM) scheme used as a digital multi-carrier modulation method. A large number of closely-spaced orthogonal sub-carriers are used to carry data. The data is divided into several parallel data streams or channels, one for each sub-carrier. Each sub-carrier is modulated with a conventional modulation scheme (such as quadrature amplitude modulation or phase-shift keying) at a low symbol rate, maintaining total data rates similar to conventional single-carrier modulation schemes in the same bandwidth. OFDM has developed into a popular scheme for wideband digital communication, whether wireless or over copper wires, used in applications such as digital television and audio broadcasting, wireless networking and broadband internet access.

- OFDM/DMT is used in ADSL/VDSL, WiFi, DAB, DVB …
- OFDM heavily relies on DSP functionalities (FFT/IFFT, …)
Target:
Design efficient OFDM based modem (Tx/Rx) for transmission over acoustic channel

Specifications:
- Data rate (e.g. 1kbits/sec), bit error rate (e.g. 0.5%),
- channel tracking speed, synchronisation, ...

Work Plan
- Week 1: Introduction Matlab/Simulink
- Week 2: Acoustic channel measurement & modeling
 deliverable
- Week 3-4: OFDM transmitter/receiver design
 deliverable
- Week 5-6: OFDM over acoustic channel
 deliverable
- Week 7-8: OFDM with adaptive equalization
 deliverable
Exam

• Oral exam, with preparation time
• Open book
• Grading:
 5 pts for question-1
 5 pts for question-2
 5 pts for question-3
 +5 pts for Acoustic Modem Project evaluation (p.24)

= 20 pts

September Retake Exam

• Oral exam, with preparation time
• Open book
• Grading:
 5 pts for question-1
 5 pts for question-2
 5 pts for question-3
 +5 pts for question-4 on Acoustic Modem Project

= 20 pts
Website

1) TOLEDO
2) homes.esat.kuleuven.be/~pepe/dsp-cis/2012-2013
 • Contact: pepe.gilcacho@esat
 • Slides
 • Project info/schedule
 • Exams
 • DSP-CIS Library
 • FAQs (send questions to pepe.gilcacho@esat or marc.moonen@esat)

Questions?

1) Ask Teaching Assistants (during exercises sessions)
2) Send questions to pepe.gilcacho@esat or marc.moonen@esat
3) Make appointment marc.moonen@esat
 ESAT Room 01.69