Belgian eID Card Technicalities

Danny De Cock
Danny.DeCock@esat.kuleuven.be
Katholieke Universiteit Leuven/Dept. Elektrotechniek (ESAT)
Computer Security and Industrial Cryptography (COSIC)
Kasteelpark Arenberg 10
B-3001 Heverlee
Belgium
For Your Information 😊

- The copyright holder of this information is Danny De Cock (email: godot@godot.be), further referenced as the author.

- The information expressed in this document reflects the author's personal opinions and do not represent his employer's view in any way.

- All information is provided as is, without any warranty of any kind.

- Use or re-use of any part of this information is only authorized for personal or not-for-profit use, and requires prior permission by the author.
Visual Aspects

Front:
- Name
- First two names
- First letter of 3rd name
- Title
- Nationality
- Birth place and date
- Gender
- Card number
- Photo of the holder
- Begin and end validity dates of the card
- Hand written signature of the holder

Back side:
- Place of delivery of the card
- National Register identification number
- Hand written signature of the civil servant
- Main residence of the holder (cards produced before 1/1/2004)
- International Civil Aviation Organization (ICAO)-specified zone (cards produced since 1/1/2005)
Visual Security Mechanisms

- Rainbow and guilloche printing
- Changeable Laser Image (CLI)
- Optical Variable Ink (OVI)
- Alpha gram
- Relief and UV print
- Laser engraving
The Belgian eID card...

- Uses On-board key pair generation
 - Private keys cannot leave the eID card
 - Key pair generation is activated during the initialization of the eID card
- Uses JavaCard technology
- Can be used using software/middleware – free of charge – provided the Government
- Can only be managed by the Belgian government
 - Citizen identity/address data is read/write for the National Registry
 - eID card refuses update attempts from other parties than the government
Belgian eID Project Time Line

22 Sept 2000: Council of Ministers approves eID card concept study

19 July 2001: Council of Ministers approves basic concepts (smart card, citizen-certificates, no integration with SIS card, Ministry of Internal Affairs is responsible for RRN’s infrastructure, pilot municipalities, helpdesk, card production, legal framework,… Fedict for certification services

3 Jan 2002: Council of Ministers assigns RRN’s infrastructure to NV Steria

27 Sept 2002: Council of Ministers assigns card production to NV Zetes, certificate services to NV Belgacom

31 March 2003: first 4 eID cards issued to civil servants

9 May 2003: first pilot municipality starts issuing eID cards

25 July 2003: eleventh pilot municipality started

27 September 2004: start of nation-wide roll-out

25 January 2004: start of pilot phase evaluation

September 2005: all newly issued ID cards are eID cards

End of 2009: all citizens have an eID card

Belgian eID Card Technicalities

Slide 6
9 October 2006
Who gets an electronic Identity Card?

- A new eID card is issued to
 - New Belgian citizens
 - Every youngster at the age of 12
 - People changing from one address to another in the local municipality
 - Replace a lost, stolen, damaged or expired (e)ID card
 - Specific groups who requested a priority
 - Medical doctors, lawyers, eID software companies,…

- A kid@card is issued to
 - Children younger than 12
 - E.g., 307,000 identity proofs issued to children in 2005
Belgium issuing eID cards

- 1 Million cards produced and issued in 6 months
- All 589 municipalities issue eID cards
- Today over 4 million eID cards produced and about 3.5 million activated
- Starting to issue kid@cards
- Planning foreigners card
eID Card Content

PKI

Authentication
Digital Signature
RRN, Root CA, CA,...

Citizen Identity Data

ID
ADDRESS

RRN SIGNATURE
RRN SIGNATURE

140x200 Pixels
8 BPP
3.224 Bytes

RRN = National Register

Belgian eID Card Technicalities

Slide 9
9 October 2006
Identity Files Content

- Identity file (~160 bytes)
 - Chip-specific:
 - Chip number
 - Citizen-specific:
 - Name
 - First 2 names
 - First letter of 3rd first name
 - RRN identification number
 - Nationality
 - Birth location and date
 - Gender
 - Noble condition
 - Special status
 - SHA-1 hash of citizen photo
 - Card-specific:
 - Card number
 - Validity’s begin and end date
 - Card delivery municipality
 - Document type
- Citizen’s main address file (~120 bytes)
 - Street + number
 - Zip code
 - Municipality
- Digital signature on main address and the identity file issued by the RRN
- Citizen’s JPEG photo ~3 Kbytes

- Digital signature on identity file issued by the RRN

Belgian eID Card Technicalities
9 October 2006

Slide 10
PKI Content – Keys & Certificates

- 2 key pairs for the citizen:
 - Citizen-authentication
 - X.509v3 authentication certificate
 - Advanced electronic (non-repudiation) signature
 - X.509v3 qualified certificate
 - Can be used to produce digital signatures equivalent to handwritten signatures, cfr. European Directive 1999/93/EC

- 1 key pair for the card:
 - eID card authentication (basic key pair)
 - No corresponding certificate: RRN (Rijksregister/Registre National) knows which public key corresponds to which eID card
Signature Types – EU Directive 1999/93/EC

- Electronic Signatures
 - E.g., email signature

- Advanced Electronic Signatures
 - Article 2.2 (PKI technology)
 - E.g., digital signature

- Qualified Electronic Signature
 - Article 5.1 (identification/enrolment)
 - +Annex I: Q-Cert
 - +Annex II: Q-CSP
 - +Annex III: SSCD

- E.g., digital signature combined with qualified certificate
Certificates for Government web servers, signing citizen files, public information,…

Card Administration:
update address, key pair generation, store certificates,…

2048-bit RSA

Belgium Root CA

2048-bit RSA

Card Admin CA

CRL

Card Admin

Cert Admin

1024-bit RSA

Citizen CA

Auth Cert

Non-rep Cert

Gov CA

Server Cert

Code sign Cert

RRN Cert

Certificates for Government web servers, signing citizen files, public information,…

Belgian eID Certificates Hierarchy

Location of the Certificates

Certificate embedded in most commercial browsers

Certificate obtained by applications using eID cards

Certificate stored in full in every eID card

Public key of this certificate is stored in every eID card

Belgium Root CA

Card Admin CA

Card Admin

Certificate

Cert Admin

CRL

ARL

Belgium Root CA

CRL

CRL

Citizen CA

Auth Cert

Non-rep Cert

Gov CA

Server Cert

Code sign Cert

RRN Cert

Belgian eID Card Technicalities

9 October 2006
eID Card Types

- 0-6 years
 - Kids Card, no certificates
- 6-12 years
 - Kids Card, only authentication certificate
- 12-18 years
 - eID Card, only authentication certificate
- 18- years
 - eID Card, both authentication and non-repudiation certificate
- Non-Belgians
 - Foreigners card
eID Card Issuing Procedure (1/2)

1. Face to face identification
2. Municipality
3. National Register (RRN)
4. Certification Authority (CA)
5. Card Personalizer (CP)
6. Card Initializer (CI)
7. Citizen
8. Citizen PIN & PUK
9. Card Personalizer (CP)
10a. Card Initializer (CI)
10b. Face to face identification
11. Municipality
12. Belgian eID Card Technicalities

Slide 16
9 October 2006
eID Card Issuing Procedure (2/2)

0: Citizen receives a convocation letter or takes the initiative
1: Visit municipality with photo
2: Formal eID request is signed
3,4: CP receives eID request via RRN
5: CP prints new eID card, CI starts on-card key pairs generation
6: RRN receives part of the eID card activation code PUK1
7: CA receives certificate requests
8: CA issues two new certificates and issues new CRLs
9: CI stores these certificates on the eID card
10a: CI writes citizen data (ID, address,...) to the card, deactivates the card
10b: CI sends invitation letter with citizen’s PIN and activation code PUK2
11: Citizen receives invitation letter
12: Civil servant starts eID card activation procedure
13: eID card computes a signature with each private key, CA removes certificates from CRL
Citizen Certificate Details

Citizen Qualified certificate (~1000 bytes)

Version: 3 (0x2)
Serial Number:
10:00:00:00:00:00:00:8d:8a:fa:33:d3:08:f1:7a:35:b2
Signature Algorithm: sha1WithRSAEncryption (1024 bit)
Issuer: C=BE, CN=Citizen CA, SN=200501
Not valid before: Apr 2 22:41:00 2005 GMT
Not valid after: Apr 2 22:41:00 2010 GMT
Subject: C=BE, CN=Sophie Dupont (Signature),
SN=Dupont, GN=Sophie Nicole/serialNumber=60050100093
Subject Public Key Info:
RSA Public Key: [Modulus (1024 bit): 4b:e5:7e:6e: ...
Exponent: 65537 (0x10001)]
X509v3 extensions:
Certificate Policies:
 Policy: 2.16.56.1.1.1.2.1
 CPS: http://repository.eid.belgium.be
Key Usage: critical, Non Repudiation
Authority Key Identifier: [D1:13: ...
CRL Distribution Points:
 URI: http://crl.eid.belgium.be/eidc0002.crl
Netscape Cert Type: S/MIME
Authority Information Access:
 CA Issuers - URI: http://certs.eid.belgium.be/belgiumrs.crt
 OCSP - URI: http://ocsp.eid.belgium.be
Qualified certificate statements: [00......F..]
Signature: [74:ae:10: ...

Citizen Authentication certificate (~980 bytes)

Version: 3 (0x2)
Serial Number:
10:00:00:00:00:00:00:00:8d:9a:91:b1:21:dd:00:a2:7a
Signature Algorithm: sha1WithRSAEncryption (1024 bit)
Issuer: C=BE, CN=Citizen CA, SN=200501
Not valid before: Apr 2 22:40:52 2005 GMT
Not valid after: Apr 2 22:40:52 2010 GMT
Subject: C=BE, CN=Sophie Dupont (Authentication),
SN=Dupont, GN=Sophie Nicole/serialNumber=60050100093
Subject Public Key Info:
RSA Public Key: [Modulus (1024 bit): cf:ca:7a:77: ...
Exponent: 65537 (0x10001)]
X509v3 extensions:
Certificate Policies:
 Policy: 2.16.56.1.1.1.2.2
 CPS: http://repository.eid.belgium.be
Key Usage: critical, Digital Signature
Authority Key Identifier: [D1:13: ...
CRL Distribution Points:
 URI: http://crl.eid.belgium.be/eidc0002.crl
Netscape Cert Type: SSL Client, S/MIME
Authority Information Access:
 CA Issuers - URI: http://certs.eid.belgium.be/belgiumrs.crt
 OCSP - URI: http://ocsp.eid.belgium.be
Qualified certificate statements: [00......F..]
Signature: [10:ac:04: ...

Belgian eID Card Technicalities
9 October 2006
Today’s eID Card Applications
Today’s eID Card Applications

- **eGovernment**
 - Official document requests
 - Marital status, Birth certificate,…
 - Access to RRN database

- **eTax**
 - Tax form declaration + consultation

- **eJustice**
 - Electronic submission of conclusions in court cases

- **eAccess**
 - Client authentication for web servers
 - Access control, e.g., container park, library, swimming pool,…

- **eMove**
 - Water invoices
 - Energy contracts

- **eLogin**
 - Windows Gina, Vista, Citrix

- **eCommerce**
 - Online opening of new account
 - Digital Rights Management
 - Qualified signature
 - Contract signing

- **eBanking**
 - Online mortgage request

- **eMail**
 - Registered mail
 - Authenticated email

- **eWork**
 - Time registration

- **eAdministration**
 - Data capture
 - Car matriculation registration
 - Signing eForms
 - Signing PDFs

- **eHealth**
 - Access to patient file

Belgian eID Card Technicalities

Slide 20
9 October 2006
eID Card Chip Specifications

- Cryptoflex JavaCard 32K
 - CPU (processor): 16 bit Microcontroller
 - Crypto-processor:
 - 1100 bit Crypto-Engine (RSA computation)
 - 112 bit Crypto-Accelerator (DES computation)
 - ROM (OS): 136 kB (GEOS Java Virtual Machine)
 - EEPROM (Application + Data): 32 KB (Cristal Applet)
 - RAM (memory): 5 KB

- Standard - ISO/IEC 7816
 - Format & Physical Characteristics ⇔ Bank Card (ID1)
 - Standard Contacts & Signals ⇔ RST, GND, CLK, Vpp, Vcc, I/O
 - Standard Commands & Query Language (APDU)
eID Card Middleware

- **PKCS#15 file system for ID applications**
 - All eID-related data (certificates, photo, address, identity files, ...)
 - No key management
- **PKCS#11 standard interface to crypto tokens**
 - Abstraction of signing functions (authentication, digital signatures)
 - Access to certificates
 - Available for Unix, Windows, MacOSX, ...
- **CSP for Microsoft Platforms**
 - Only keys & certificates available via MSCrypto API
 - Allows authentication (& signature)
 - For Microsoft Explorer, Outlook, ...
Typical Smartcard Architecture

Citizen’s Computer System

- Browser
- PCSC
- ISO 7816

Smartcard Reader

- PIN Pad
- Display
- Look
- Feel

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816

Typical Smartcard Architecture

- Citizen’s Computer System
- Browser
- PCSC
- ISO 7816
PIN Entry...
Various Authentication Interfaces

- Authentication of a transaction, client authentication, digital signature, ... requires a PIN to be presented to reflect the cardholder’s consent.
Terrifying Window

PIN entry Window

Your eID card is about to create a qualified signature

Enter your PIN for qualified signatures: ******

O.K. Stop
Typical Use Cases
Using an Authentication Certificate

Case study: Alice visits a website which uses client authentication

1. The web server Alice visits sends a random challenge to her browser
2. Alice confirms she wants to log in on the web site by presenting her PIN to her eID card and authorizes the signature generation
3. The browser sends the hashed challenge to Alice’s eID card to sign it
4. The browser retrieves the signature and Alice’s certificate from her eID card
5. The web server receives Alice’s signature and certificate
Signature Generation/Verification

1. Compute hash of message
2. Prepare signature
3. Present user PIN
4. SCD generates digital signature
5. Collect digital signature
6. Retrieve signer certificate
7. Verify the certificate’s revocation status
8. Retrieve public key from signer certificate
9. Retrieve digital signature on the message
10. Compute hash on received message
11. Verify digital signature
12. SVD outputs ‘valid signature’ or ‘invalid signature’

Beware – Bob should validate Alice’s certificate – Beware
Signature Generation Steps

Alice’s application
1. Calculates the cryptographic hash on the data to be signed
2. Prepares her eID card to generate an authentication signature or to generate a non-repudiation signature
3. Alice presents her PIN to her eID card
4. Her card generates the digital signature on the cryptographic hash
5. The application collects the digital signature from her eID card

Bob receives an envelope with a digitally signed message and a certificate
Signature Verification Steps

Bob

6. Retrieves the potential sender’s certificate
7. Verifies the certificate’s revocation status
8. Extracts Alice’s public key from her certificate
9. Retrieves the signature from the message
10. Calculates the hash on the received message
11. Verifies the digital signature with the public key and the hash
12. If the verification succeeds, Bob knows that the eID card of Alice was used to produce the digital signature

“The message comes from Alice” is a business decision
A CRL is valid for seven days after it is issued.

A new CRL is issued together with a new Delta CRL.

A Delta CRL refers to a particular Base CRL which is always younger than 7 days.

OCSP queries the database with the most recent certificate status information.

Signing Key Pair Properties

- Private signing key only available to the signer
 - **Signer explicitly authorizes** the Signature Creation Engine to generate a digital signature with the signing key, e.g., by **presenting a PIN** (personal identification number, cfr. Bank cards)
 - **Signer protects** the hash of his/her message with his/her signing key
 - **Verifier recovers** this hash correctly only if the right verification key is used

- Private signing key corresponds to the public verification key
 - If the Signature Verification Engine (SVE) outputs ‘valid signature’, **the verification key corresponds to the signing key**
 - If the SVE outputs ‘invalid signature’ the triplet **(message, digital signature, verification key)** does not match:
 - The message may have been **altered**
 - The **verification key may be wrong**, i.e., does not correspond to the signing key
 - The **certificate** of the signer **may have been revoked** (or **suspended**)

- Private signing key is kept in the smartcard

- Public verification key usually accompanies the digital signature
 - **Integrity of the verification key** is protected through the **signer’s certificate**
Archiving Signed Data

- Digital signatures *remain valid forever* if one stores:
 - The digitally signed data
 - The digital signature on the data
 - The signer’s certificate
 - A proof of validity of the signer’s certificate
 - The verification timestamp of the signature

- Bottom line:
 - The integrity of this data should be protected!
 - There is no need to retrieve the status of a certificate in the past!
 - Protect your proofs in a digital vault
Signature & Certificate Validation
Signature Validation

- A digital signature protects the integrity of information
- A digital signature computed on some data is valid if and only if
 - The signature verification engine confirms that the hash value computed on the data matches the digital signature when applying the signature verification mechanism using the public key found in the corresponding certificate
 - The certificate is valid (cfr. next slide)
 - All the key usage and certificate policies of the certificates in the certificate chain match the context wherein the data is used (e.g., code signing, client authentication, server authentication,…)
- Caveat:
 - When was this signature computed?
- Revoked ≠ Invalid
 - Keep a log of valid signatures

Hash function features:
- Given a hash value of a document: hard to find a document with that hash value
- Given a document and its hash value: hard to find a second document with the same hash value
- Hard to find two distinct documents that have an identical hash value
Certificate (Chain) Validation

- A certificate protects the identity of the holder of the corresponding private key.

- Given a self-signed certificate Root CA protects the CA certificate which is used to validate a non-CA certificate.

- A certificate Cert is valid if and only if:
 - The certificate's digital signature is (cryptographically) valid given the certificate issuer's certificate (CA certificate).
 - The certificate issuer's certificate is valid (using that certificate's issuer certificate. This may be the same certificate if self-signed).
 - The time of certificate validation lies within the validity period of all these certificates.
 - All certificate extensions must match the respective profiles and key usages.
 - None of these certificates is known as invalid, i.e.,
 - Their serial numbers have not been revoked.

- Check the revocation status of a certificate using CRLs or OCSP:
 - Depending on the required security level, one may decide to rely on the OCSP, or on a local CRL copy, or on a local CRL copy in combination with a recent Delta CRL.
 - Offline validation is possible using CRL, preferably combined with Delta CRL.
 - OCSP (Online Certificate Status Protocol) requires a live network connection.

- Certificate chain is linked with the CRLs through the Authority Key Identifier.

- Valid ≠ Trustworthy
 - One should check whether the self-signed (Root CA) certificate can be trusted.
Certificate Revocation Lists (CRLs)

- **Complete CRL**
 - Enumerates all certificate serial numbers that should not be trusted
 - Typically (very) large, e.g., >500 Kbytes
 - “NextUpdate” 7 days after creation
 - Certificates of new eID cards
 - Appear as on hold
 - Disappear when activated
 - Suspended certificates appear as on hold for up to 7 days
 - Items without reason code remain revoked forever
 - One complete CRL is referred to as the Base CRL

- **Delta CRL**
 - Lists all differences between the current complete CRL and the current Base CRL
 - Typically small, e.g., <25 Kbytes
 - “NextUpdate” 7 days after creation
 - Reason codes:
 - On hold — newly issued eID card certificate is not yet activated, or has been suspended
 - Remove from CRL — eID card certificate has been activated
 - None — eID card certificate has been revoked

Complete CRLs

Delta CRLs vs. Base CRL
OCSP vs. CRLs – “Is the certificate valid?”

- Two options to make this **business decision**:
 - Do it yourself and use CRLs and Delta-CRLs
 - Trust a third party and use OCSP
- Use the Online Certificate Status Protocol (OCSP) where a trusted OCSP Responder answers the question with either “yes”, “no”, or “I do not know”
 - Remaining issues:
 - An OCSP Responder **may** use the most recent certificate status information (CSI)
 - An OCSP Responder does not have to use the most recent CSI!
 - The Responder typically uses CRLs to produce its answers
 - How to trust the OCSP Response?
 - Ideal for a few situations:
 - If only a few certificates per time unit must be validated
 - E.g., for citizens who wish to validate a certificate “from time to time”
 - To authenticate high-impact transactions
 - E.g., cash withdrawal, account closure, physical or electronic access control
- **Certificate Revocation Lists (CRLs)**
 - The digital signature verifier collects the (most recent) CRLs for the certificates in the certificate chain
 - These CRLs may become extremely large (e.g., several megabytes) ⇒ Delta-CRLs
 - Delta-CRLs may be very large (e.g., half a megabyte) ⇒ Delta-Delta CRLs
 - Note: Delta-Delta-CRLs are typically a few kilobytes each, but there is no standard…
Summary on Validity Statuses

- **Digital Signature**
 - Valid
 - Invalid

- **eID Card (Signature Creation Device)**
 - Valid
 - Invalid
 - Suspended
 - Revoked
 - Expired

- **CRL, OCSP Response**
 - Valid
 - Invalid
 - Expired

- **Certificate**
 - Valid
 - Invalid
 - Suspended
 - Revoked
 - Expired
 - Unknown
Signature Validity Over Time
Signature Validity

- [CJ]: New valid signatures may be generated
- [AC], [K,∞[]: All signature verifications fail
- [J,∞[): Illegal to generate new signatures
- [C,∞[): Signatures can be legally binding if verified in [CJ]

Time

Certificates expire
eID card expires

A B C D E

Signature verification
Signature generation

eID card activation
eID certificates stored in eID card

eID card initialization

F G H I

J K

[Image]
Signature Validity with Revocation

- **eID card activation**
- **Signature generation**
- **Signature verification**
- **Revoked certificate**
- **Suspended certificate**
- **Last valid signature before the incident**

Certification Expiry
- **J K**
- **Certificates expire**
- **eID card expires**

Time

- **[GH]**: Signatures created in [GI] should be invalid, H may be equal to I
- **[I,∞]**: Illegal to generate new signatures
- **[CG]**: New valid signatures may be generated
- **[AC]**, **[H,∞]**: Signature verification returns invalid
- **[CF]**: Signatures validated before F may be valid forever
Long Term Signatures

- Alice produces a digital signature on data D that will resist time:
 - Alice collects a time stamp t_1 from a trusted third party (TTP)
 - Alice produces a digital signature $S_{Alice}(D, t_1)$ on the time stamp t_1 and the data D
 - TTP validates a digital signature $S_{Alice}(D, t_1)$ at time t_2
 - TTP computes a digital signature $S_{TTP}(S_{Alice}(D, t_1), t_2)$ if and only if the TTP
 - Has validated Alice’s digital signature, and
 - Confirms that the signature and Alice’s full certificate chain was valid at time t_2
 - Alice can now indefinitely rely on $S_{TTP}(S_{Alice}(D, t_1), t_2)$, even if her certificate must be revoked, e.g., at time t_3 (after t_2), or if her certificate expires

- Note: This procedure assumes that no cryptographic weaknesses are discovered in the signature generation and validation algorithms and procedures
eID Test Cards & Shop
eID Shop (1/2)

http://www.eid-shop.be
eID Shop (2/2)

- **eID Development Toolkit**

- **eID Starter Kit premium + option**

- **eID Starter Kit Premium**
 - 1 smart card with a pair of valid certificates
 - 3 pair of soft certificates (expired, revoked and suspended)
 - + eID tested smart card reader
 - + 3 additional smart cards with certificates
 - revoked, suspended and expired

- **eID Yearly Versioning Service**
 - 4 eID test cards, yearly update
 - + eID development tools (JAVA crypto library, sample codes, documentation, …)

Data used without explicit authorization from Certipost/Zetes
Summary – Good To Know (1/2)

- An eID card is **valid for 5 years**
- **Signing** functions of an eID card issued to **minors** (<18 years) is **not activated**
- Any citizen can ask to deactivate the authentication and signature functions
 - Once deactivated, always deactivated
- Professional groups can request an eID card, even before their local municipality has become eID-enabled
- **24/7 helpdesk** is available
 - In case of loss, theft or destruction of an eID card
 - An eID card is first suspended before it is irreversibly revoked
 - Phone: **02/518.21.17** (Dutch), **02/518.21.16** (French)
 - Fax: **02/518.25.21**
 - Email: helpdesk@rrn.fgov.be
Summary – Good To Know (2/2)

- All electronic signatures can be used as an alternative for a handwritten signature, given that one can prove that the signature corresponds to something which only the author of the content to be signed could create.

- A judge may ask:
 - “Is this handwritten signature yours?”
 - “Did you sign this electronic data?”

- Everyone older than 14 must carry his/her (e)ID card.

- The qualified electronic signature is the only type of signature that will automatically be given the same legal value as a handwritten signature.
 - A qualified signature is an advanced electronic signature based on a qualified certificate and produced by a secure signature creation device.
That’s it...
Questions?

Belgian eID card information on the Internet
http://eid.belgium.be
http://www.rijksregister.fgov.be
http://www.fedict.be
http://www.belgium.be
http://www.cardreaders.be

Test cards can be ordered at
http://www.eid-shop.be

Source code examples are available at

Myself Danny.DeCock@esat.kuleuven.be
http://godot.be

Yourself https://www.mijndossier.rrn.fgov.be
https://www.mondossier.rrn.fgov.be
https://www.meindossier.rrn.fgov.be

keywords: “godot eID”
Backup Slides
eID Card Administration

- Mutual authentication of the card and the external party
 - Role-based access control
- Supported roles:
 - 1: delete/create files: data, keys, certificates
 - 2: create files: data, keys, certificates
 - 3: generate new key pairs
 - 4: store new citizen certificates
 - 5: store new Root CA certificate
 - 7: update citizen address or identity file
 - 8: store the Role-CA’s new public key
Comparing eID and Bank Card Functionalities

- Citizen Identification
- Data Capture
- Strong Authentication
 - Authentication
 - Digital Signatures
 - eID Card
- Access Control
 - Container Park, Swimming Pool, Library,…

- Customer Identification
- Data Capture
- Authentication
 - Electronic Transactions
 - ATM Transactions
 - Electronic Purse
- Access Control
 - Self-Bank
eID & Bank Cards Crypto

- **2 Citizen Key Pairs**
 - Citizen-authentication
 - X.509v3 authentication certificate
 - Advanced electronic (non-repudiation) signature
 - X.509v3 qualified certificate
 - Can be used to produce digital signatures equivalent to handwritten signatures, cfr. European Directive 1999/93/EC

- **1 eID Card-specific Key Pair**
 - eID card authentication (basic key pair)
 - No corresponding certificate: RRN (Rijksregister/Registre National) knows which public key corresponds to which eID card

- **Transactions with vending machines, ATMs, phone booths, parking meters,…**
 - MAC-based use chip card

- **Home banking**
 - MAC-based
 - Family of secret master keys
 - Uses chip card or Digipass
 - MAC authenticates login, transaction

- **PKI-based**
 - Closed user group PKI
 - Key pair stored in key file or smart card
 - Banking organization issues certificate
 - Digital signature authenticates login, transaction
CA Certificate Details

Root CA certificate (920 bytes)

Version: 3 (0x2)
Serial Number:
Signature Algorithm: sha1WithRSAEncryption (2048 bit)
Issuer: C=BE, CN=Belgium Root CA
Not valid before: Jan 26 23:00:00 2003 GMT
Not valid after : Jan 26 23:00:00 2014 GMT
Subject: C=BE, CN=Belgium Root CA

Subject Public Key Info:
 RSA Public Key: [Modulus (2048 bit): 00:c8:a1:71: ... :b0:6f,
 Exponent: 65537 (0x10001)]
X509v3 extensions:
 Certificate Policies:
 Policy: 2.16.56.1.1.1
 CPS: http://repository.eid.belgium.be
 Key Usage: critical, Certificate Sign, CRL Sign
 Subject Key Identifier: [10:F0: ... :8E:DB:E6]
 Authority Key Identifier: [10:F0: ... :8E:DB:E6]
 Netscape Cert Type: SSL CA, S/MIME CA, Object Signing CA
 Basic Constraints: critical, CA:TRUE

Signature: [c8:6d:22: ... :43:2a]

CA certificate (975 bytes)

Version: 3 (0x2)
Serial Number:
Signature Algorithm: sha1WithRSAEncryption (2048 bit)
Issuer: C=BE, CN=Belgium Root CA
Not valid before: Apr 10 12:00:00 2003 GMT
Not valid after : Jun 26 23:00:00 2009 GMT
Subject: C=BE, CN=Citizen CA

Subject Public Key Info:
 RSA Public Key: [Modulus (2048 bit): 00:c9:ae:05: ... :cb:71,
 Exponent: 65537 (0x10001)]
X509v3 extensions:
 Certificate Policies:
 Policy: 2.16.56.1.1.1.2
 CPS: http://repository.eid.belgium.be
 Key Usage: critical, Certificate Sign, CRL Sign
 Subject Key Identifier: [D1:13: ... :7F:AF:10]
 Authority Key Identifier: [10:F0: ... :8E:DB:E6]
 CRL Distribution Points:
 URI:http://crl.eid.belgium.be/belgium.crl
 Netscape Cert Type: SSL CA, S/MIME CA, Object Signing CA
 Basic Constraints: critical, CA:TRUE, pathlen:0

Signature: [b2:0c:30: ... :18:6e]
Government Certificate Details

Government CA certificate (~979 bytes)
- **Version:** 3 (0x2)
- **Signature Algorithm:** sha1WithRSAEncryption (2048 bit)
- **Issuer:** C=BE, CN=Belgium Root CA
- **Not valid before:** Jan 27 00:00:00 2003 GMT
- **Not valid after:** Jan 27 00:00:00 2009 GMT
- **Subject Public Key Info:**
 - **RSA Public Key:**
 - **Modulus (2048 bit):** 00:ac:c9:a0:…:89:13,
 - **Exponent:** 65537 (0x10001)
- **X509v3 extensions:**
 - **Certificate Policies:**
 - **Policy:** 2.16.56.1.1.1.3
 - **CPS:** http://repository.eid.belgium.be
 - **Key Usage:** critical, Certificate Sign, CRL Sign
 - **Subject Key Identifier:** [F5:DB:…:D1:8B:D6]
 - **Authority Key Identifier:** [10:F0:…:8E:DB:E6]
- **CRL Distribution Points:**
 - **URI:** http://crl.eid.belgium.be/belgium.crl
- **Netscape Cert Type:** SSL CA, S/MIME CA, Object Signing CA
- **Basic Constraints:** critical, CA:TRUE, pathlen:0
- **Signature:** [a0:53:21:…:1d:c9]

RRN certificate (~808 bytes)
- **Version:** 3 (0x2)
- **Serial Number:** 01:00:00:00:00:00:f8:20:18:9e:17
- **Signature Algorithm:** sha1WithRSAEncryption (1024 bit)
- **Issuer:** C=BE, CN=Government CA
- **Not valid before:** Oct 9 09:06:09 2003 GMT
- **Not valid after:** Jan 26 09:06:09 2009 GMT
- **Subject Public Key Info:**
 - **RSA Public Key:**
 - **Modulus (1024 bit):** 00:db:72:4d:…:80:0d,
 - **Exponent:** 65537 (0x10001)
- **X509v3 extensions:**
 - **Certificate Policies:**
 - **Policy:** 2.16.56.1.1.1.3.1
 - **CPS:** http://repository.eid.belgium.be
 - **Key Usage:** critical, Digital Signature, Non Repudiation
 - **Subject Key Identifier:** [09:22:…:30:01:37]
 - **Authority Key Identifier:** [F5:DB:…:D1:8B:D6]
- **CRL Distribution Points:**
 - **URI:** http://crl.eid.belgium.be/government.crl
- **Signature:** [12:89:cd:…:ca:2a]
Certificate Revocation List details

Citizen CRL (+500 Kbyte)

<table>
<thead>
<tr>
<th>Version 2 (0x1)</th>
<th>Signature Algorithm: sha1WithRSAEncryption (2048 bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issuer: C=BE, CN=Citizen CA</td>
<td></td>
</tr>
<tr>
<td>Creation date: Apr 6 15:19:23 2004 GMT</td>
<td></td>
</tr>
<tr>
<td>Next update: Apr 13 15:19:23 2004 GMT</td>
<td></td>
</tr>
</tbody>
</table>

CRL extensions:

- **Authority Key Identifier:** [D1:13: ... :7F:AF:10]
- **CRL Number:** 4294995040

Revoked Certificates:

- **Serial Number:** 100000000000000B823FAE7B1BB44B1
 - **Revocation Date:** Jan 14 12:56:50 2004 GMT
 - **CRL Reason Code:** Certificate Hold
- **Serial Number:** 1000000000000062F6A1BB1431902D4
 - **Revocation Date:** Oct 23 23:15:11 2003 GMT
 - **CRL Reason Code:** Certificate Hold
- **Serial Number:** 10000000000001243778BEFF61123DE
 - **Revocation Date:** Jan 12 10:19:24 2004 GMT
 - **CRL Reason Code:** Certificate Hold
- **Serial Number:** 1000000000000125DC2DF2031534033
 - **Revocation Date:** Sep 5 09:49:44 2003 GMT
 - **CRL Reason Code:** Certificate Hold
- **Serial Number:** 100000000000091ACC84FC377F8A6ECE
 - **Revocation Date:** Dec 16 17:24:15 2003 GMT
 - **CRL Reason Code:** Certificate Hold
- **Serial Number:** 100000000000092135CE8FB8F0D66093
 - **Revocation Date:** Nov 13 17:18:49 2003 GMT
 - **Delta CRL Indicator:** critical, 4294995040

Signature:

- **Signature:** [95:19:b2: ... :21:31]

Citizen Delta CRL (~15 Kbyte)

<table>
<thead>
<tr>
<th>Version 2 (0x1)</th>
<th>Signature Algorithm: sha1WithRSAEncryption (2048 bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issuer: C=BE, CN=Citizen CA</td>
<td></td>
</tr>
<tr>
<td>Creation date: Apr 8 17:43:14 2004 GMT</td>
<td></td>
</tr>
<tr>
<td>Next update: Apr 15 17:43:14 2004 GMT</td>
<td></td>
</tr>
</tbody>
</table>

CRL extensions:

- **Authority Key Identifier:** [D1:13: ... :7F:AF:10]
- **CRL Number:** 4294995072
- **Delta CRL Indicator:** critical, 4294995040

Revoked Certificates:

- **Serial Number:** 100000000000007E5B11506303959320
 - **Revocation Date:** Apr 8 16:33:23 2004 GMT
 - **CRL Reason Code:** Certificate Hold
- **Serial Number:** 1000000000000091ACC84FC377F8A6ECE
 - **Revocation Date:** Apr 8 16:55:14 2004 GMT
 - **CRL Reason Code:** Remove From CRL
- **Serial Number:** 1000000000000127BE2DA18842E8A7BAC
 - **Revocation Date:** Apr 8 15:20:13 2004 GMT
 - **CRL Reason Code:** Remove From CRL
- **Serial Number:** 1000000000000FDFF72C4E59AD46AFC21
 - **Revocation Date:** Apr 8 17:33:31 2004 GMT
 - **CRL Reason Code:** Remove From CRL
- **Serial Number:** 1000000000000FE6A4ACD4ECF04233442
 - **Revocation Date:** Apr 8 15:32:38 2004 GMT
- **Serial Number:** 100000000000092135CE8FB8F0D66093
 - **Revocation Date:** Nov 13 17:18:49 2003 GMT

Signature:

- **Signature:** [64:20:22: ... :c3:5e]
Decryption vs Signing

- Alice encrypts data for Bob using his encryption key
- Bob decrypts the message with his private decryption key
- Initial step: Alice must fetch Bob’s encryption certificate beforehand
- Decryption key should be backed up to deal with “emergencies”
- Alice signs data using her private signing key
- Bob validates Alice’s signature with her public verification key
- Single step: Alice pushes her certificate to Bob
- Backups of a signing key compromise non-repudiation properties
No need for encryption certificates!

Alice sends a digitally signed message to Bob

Bob asks Alice’s encryption key

Bob sends an encrypted message

Alice

Bob
Cryptographic Primitives

These slides can be downloaded at http://godot.be → recently presented slides
Typical Secure Communications

Requirements:
- **Confidentiality**: nobody other than Alice and Bob should be able to get access to the **Message**
- **Integrity of data**: Bob must be sure that the **Message** is not altered while in transit
- **Authenticity of sender**: Bob must be sure that the **Message** is sent by Alice

Methods:
- Confidentiality: encryption
- Data integrity and sender’s authenticity: digital signature
Symmetric Encryption

- **Alice** and **Bob** share a symmetric encryption key
 - **Alice** produces the **Cipher text** given her **Message** and the symmetric encryption **key**
 - sends the **Cipher text** over an insecure network
 - **Bob** recovers the actual **Message** applying the symmetric encryption **key** to the **Cipher text**
Asymmetric Encryption

- **Bob** has a public encryption key and a private decryption key.

- **Alice** uses **Bob**’s public encryption key to produce the Cipher text given her Message and **Bob**’s public encryption key.

- **Alice** sends the Cipher text over an insecure network.

- **Bob** recovers the Message by applying his private decryption key to the Cipher text.
Asymmetric Authentication Mechanism

- **Alice** has a public verification key and a private signing key.
- **Bob** uses Alice’s public verification key.
 - Alice produces a Digital signature on the Message using her private signing key.
 - Sends the Message together with the Digital signature over an insecure network.
 - Bob receives Message and verifies the Digital signature using Alice’s public verification key.
Symmetric Authentication Mechanism

- **Alice** and **Bob** share a secret key.
- Both **Alice** and **Bob** can compute a valid MAC using that key.
 - **Alice** produces a MAC on the Message using her secret key.
 - sends the Message together with the MAC over an insecure network.
 - **Bob** receives the Message and verifies the MAC using the secret key he shares with **Alice**.

MAC = Message Authentication Code
European Directive 1999/93/EC
European Directive 1999/93/EC

- Intention
- Definitions
- Requirements
 - Annex I — qualified certificates
 - Annex II — certificate service provider
 - Annex III — secure signature creation device
- Recommendations
 - Annex IV — signature verification
Directive – Intention

1. An **advanced electronic signature** (i.e., a signature which is linked to (s)he who created it using a signature creation device which only (s)he can control) **satisfies the legal requirements** of a signature in relation to data in electronic form in the **same manner as a handwritten signature** satisfies those requirements in relation to paper-based data; and is admissible as evidence in legal proceedings
 - Legislation on handwritten signatures can easily be recycled!!

2. An **electronic signature** is not **denied legal effectiveness** and admissibility as evidence in legal proceedings solely on the grounds that it is:
 1. in electronic form, or
 2. not based upon a qualified certificate, or
 3. not based upon a qualified certificate issued by an accredited certification-service-provider, or
 4. not created by a secure signature-creation device
Directive – Definitions

- **Electronic signature**: data in electronic form attached to or logically associated with other electronic data and which serve as a method of authentication.
- **Advanced electronic signature**: an electronic signature which meets the requirements that:
 1. it is uniquely linked to the signatory
 2. it is capable of identifying the signatory
 3. it is created using *means that the signatory can maintain under his sole control*, and
 4. it is linked to the data to which it relates in such a manner that any subsequent change of the data is detectable.
- **Signatory**: a person who holds a signature-creation device and acts either on his own behalf or on behalf of the natural or legal person or entity he represents.
- **Signature-creation data**: unique data, such as private cryptographic keys, which are used by the signatory to create an electronic signature.
- **Signature-creation device**: configured software or hardware to produce the signature-creation data.
- **Secure-signature-creation device**: a signature-creation device which meets the requirements specified in Annex III.
- **Signature-verification-data**: data, such as public cryptographic keys, which are used for the verification of an electronic signature.
- **Certificate**: an electronic attestation which links signature-verification data to a person and confirms the identity of that person.
- **Qualified certificate**: a certificate which meets the requirements in Annex I and is provided by a certification-service-provider who fulfils the requirements in Annex II.
- **Certification-service-provider**: an entity or a legal or natural person who issues certificates or provides other services related to electronic signatures.
Annex I – Qualified Certificates Conditions

Requirements for qualified certificates

- Qualified certificates must contain:
 1. an indication that the certificate is issued as a qualified certificate
 2. the identification of the certification-service-provider and the State in which it is established
 3. the name of the signatory or a pseudonym, which shall be identified as such
 4. provision for a specific attribute of the signatory to be included if relevant, depending on the purpose for which the certificate is intended
 5. signature-verification data which correspond to signature-creation data under the control of the signatory
 6. an indication of the beginning and end of the period of validity of the certificate
 7. the identity code of the certificate
 8. the advanced electronic signature of the certification-service-provider issuing it
 9. limitations on the scope of use of the certificate, if applicable; and
 10. limits on the value of transactions for which the certificate can be used, if applicable
Annex II – CA Requirements

Requirements for certification-service-providers issuing qualified certificates

- Certification-service-providers must:

 1. demonstrate the reliability necessary for providing certification services
 2. ensure the operation of a prompt and secure directory and a secure and immediate revocation service
 3. ensure that the date and time when a certificate is issued or revoked can be determined precisely
 4. verify, by appropriate means in accordance with national law, the identity and, if applicable, any specific attributes of the person to which a qualified certificate is issued
 5. employ personnel who possess the expert knowledge, experience, and qualifications necessary for the services provided, in particular competence at managerial level, expertise in electronic signature technology and familiarity with proper security procedures; they must also apply administrative and management procedures which are adequate and correspond to recognized standards
 6. use trustworthy systems and products which are protected against modification and ensure the technical and cryptographic security of the process supported by them
 7. take measures against forgery of certificates, and, in cases where the certification-service-provider generates signature-creation data, guarantee confidentiality during the process of generating such data
 8. maintain sufficient financial resources to operate in conformity with the requirements in the Directive, in particular to bear the risk of liability for damages, for example, by obtaining appropriate insurance
 9. record all relevant information concerning a qualified certificate for an appropriate period of time, in particular for the purpose of providing evidence of certification for the purposes of legal proceedings. Such recording may be done electronically
 10. not store or copy signature-creation data of the person to whom the certification-service-provider provided key management services
 11. before entering into a contractual relationship with a person seeking a certificate to support his electronic signature inform that person by a durable means of communication of the precise terms and conditions regarding the use of the certificate, including any limitations on its use, the existence of a voluntary accreditation scheme and procedures for complaints and dispute settlement. Such information, which may be transmitted electronically, must be in writing and in readily understandable language. Relevant parts of this information must also be made available on request to third-parties relying on the certificate
 12. use trustworthy systems to store certificates in a verifiable form so that:

 - only authorized persons can make entries and changes,
 - information can be checked for authenticity,
 - certificates are publicly available for retrieval in only those cases for which the certificate-holder's consent has been obtained, and
 - any technical changes compromising these security requirements are apparent to the operator
Annex III – SSCD Requirements

Requirements for secure signature-creation devices:

1. Secure signature-creation devices (SSCD) must, by appropriate technical and procedural means, ensure at the least that the signature-creation data used for signature generation:
 1. can practically occur only once, and that their secrecy is reasonably assured
 2. cannot, with reasonable assurance, be derived and the signature is protected against forgery using currently available technology
 3. can be reliably protected by the legitimate signatory against the use of others

2. Secure signature-creation devices must not alter the data to be signed or prevent such data from being presented to the signatory prior to the signature process
Annex IV – Verification Recommendations

Recommendations for secure signature verification:

During the signature-verification process it should be ensured with reasonable certainty that:

1. the data used for verifying the signature correspond to the data displayed to the verifier
2. the signature is reliably verified and the result of that verification is correctly displayed
3. the verifier can, as necessary, reliably establish the contents of the signed data
4. the authenticity and validity of the certificate required at the time of signature verification are reliably verified
5. the result of verification and the signatory's identity are correctly displayed
6. the use of a pseudonym is clearly indicated; and
7. any security-relevant changes can be detected
eID-specific Legislation
eID-specific Legislation

 - Changes the law of 8 August 1983 which regulates a national register of natural persons
 - Changes the law of 19 July 1991 on the population registers and identity cards
- Royal Decree of 25 March 2003 (B.S. 28 March 2003)
 - Regulates ID cards
- Royal Decree of 25 March 2003 (B.S. 28 March 2003)
 - Transitional measures for eID cards
 - Defines the layout of the request form to obtain an eID card
- Royal Decree of 30 November 2003 (B.S. 12 December 2003)
 - Change the Royal Decree of 25 March 2003 on transitional measures for eID cards
Suggested PIN Entry Window

Your eID card is about to create a qualified signature

Enter your PIN to authorize this signature: ******

WYSIWYS Details?
Your eID card is about to create a qualified signature on the following SHA-1 hash:
“AB CD EF 12 34 56 78 90 AB CD EF 01 23 34 56 78 90 AB CD EF”

Click **Save** or **View** to save/view the data to be signed

Enter your PIN if you agree to create the qualified signature: *****