Controlled Anonymous Connections

Claudia Díaz -- COSIC (KULeuven)

5th APES Workshop
23/11/2004
Overview

- Introduction
- Research and contributions for anonymous connections
- Anonymity Requirements
- Anonymity control at communication layer
- Building block: anonymous communication infrastructure
- Model for controlled anonymous connections
- Evaluation of anonymous connection systems
- Conclusions and Future Work

- Demo MIXimulator
Introduction

- Anonymous Connections (-> Anonymous Communication Systems)
 - Unlinkability of inputs/outputs

- Anonymous Communication Infrastructure
 - Real-time / application independent

- Application
 - Anonymous web browsing (Anonymizer: anonymous towards recipient)
 - Anonymous email system (Mixmaster: anonymous towards global passive attackers)

- Building block
 - Internet communication is traceable
 - IP numbers / other information is visible to the recipient and to observers
 - Anonymous applications cannot be implemented on top of non anonymous communication layers
Research Contributions (1)

- “Anonymous communication” (Díaz and Preneel, WHOLES’04)
 - Overview of the state-of-the-art of anonymous communication system
 - Guidelines to structure the study of mixes and dummy traffic

- “Mix cascades vs. peer-to-peer: is one concept superior?” (Böhme, Danezis, Díaz, Köpsell and Pfitzmann, PET’04)
 - Symmetric (P2P) – Asymmetric (client-server)
 - Flexibility of routing (Cascades, Restricted routes, Free routes)
 - Advantages and disadvantages of these options
Research Contributions (2)

- “Taxonomy of mixes and dummy traffic” (Díaz and Preneel, I-NetSec’04)
 - Framework and a taxonomy for the classification and analysis of mixes and dummy traffic
 - Discussion of the different issues involved in the design of anonymous connection systems.
 - Methodology of analysis

- “Reasoning about the Anonymity Provided by Pool Mixes that Generate Dummy Traffic” (Díaz and Preneel, IHW’04)
 - Extend previous work on anonymity metrics
 - Compact formulas to compute the anonymity of generalized mixes
 - Introduction of dummy traffic in the metrics
Research Contributions (3)

- “Comparison between two practical mix designs” (Díaz, Sassaman and Dewitte, ESORICS’04)
 - Analysis of the anonymity provided by Mixmaster and Reliable
 - Analysis input data: not Poisson!
 - Different anonymity for the same input traffic
 - Software tool: Java Simulators of Mixmaster and Reliable
 - Development of anonymity metrics for continuous mixes for non Poisson input traffic
 - Identification of implementation weaknesses
Requirements for Anonymous Communication Infrastructures (1)

- Application-independent communication layer
- Good anonymity level (quantity of anonymity - metrics)
- Secure anonymity (quality of anonymity)
 - Unlinkability
 - Load balancing (floods/low traffic)
 - Implementation issues (e.g., randomness sources)
 - User experience (skilled/unskilled user)
 - Attack model
 - End-to-end intersection attacks
Requirements for Anonymous Communication Infrastructures (2)

- Availability requirements
 - Access points
 - Operation of the network (DoS attacks)
 - Exit points
- Incentives to cooperate / Usability
 - Important for anonymity set size
- Scalability
- Performance
- Unobservability
- Open source / verifiable code
Conditional Anonymity?

- Law enforcement / accountability vs. Freedom of speech / access to information
- Layered view: anonymity implemented at all levels
- Conditional anonymity can be implemented on top of unconditional anonymity. Not vice versa
- Current challenges
 - Trust model
 - Incentives for the users
 - Performance
 - Scalability
- Conditional Anonymity can be implemented at the application layer, depending on the particular control requirements and risks
 - Global/Local deanonymization
Anonymity Control

- Access control blocks
 - Micro-payments to nodes
 - Proof of subscription
- Exit policies
 - Black lists
 - White lists
- Control protocols to detect/exclude malicious participants
- Reputation systems
Building Block: Anonymous Communication Infrastructure

- If the communication layer is not anonymized, efforts to anonymize participants at the application layer are useless
- Application independent
- Efficient
- Secure
- Robust
Model for Controlled Anonymous Communication
Evaluation of Anonymous Connection Systems: Requirements

- Trust model
- Application-independence
- Unlinkability
- Load balancing
- User experience / Usability
- Implementation issues
- Attack model
- Availability
 - Entry points
 - Exit points
 - Possible routes / Robustness network
- Incentives to cooperate
- Unobservability
- Scalability
- Performance
- Anonymity control
Evaluation of Anonymous Connection Systems

- Asymmetric (client-server) systems:
 - Anonymizer
 - Onion Routing
 - TOR
 - Web MIXes (JAP)
 - Freedom Network
 - Anonymity Network
 - Covert Channels in HTTP
 - Caching systems
Evaluation of Anonymous Connection Systems

- Symmetric (P2P) systems:
 - Pipenet
 - Tarzan
 - MorphMix
 - Crowds
 - Hordes
 - Herbivore
 - GNUnet
 - P5
 - Cebolla
Evaluation of TOR (1)

- Trust Model
 - Routing: Distributed among nodes in path
 - Directory servers: Trusted to provide true information
- Application Independence
 - Supports TCP-based applications
- Unlinkability
 - *Leaky pipe* topology
- Load balancing
 - Congestion control
 - No dummy traffic
Evaluation of TOR (2)

- Implementation issues
 - Separates “protocol cleaning” from anonymity

- Attack model
 - Perfect forward secrecy (stronger than OR against malicious nodes)
 - End-to-end integrity checking (tagging attacks)
 - No reordering: vulnerable to traffic analysis attacks

- User experience
 - Node operators / end users

- Availability
 - Free route network
 - Directory servers: information on topology
Evaluation of TOR (3)

- Incentives to cooperate
 - Variable exit policies
- Scalability
 - Free route
- Performance
 - No delaying
- Unobservability
 - Not provided
- Anonymity control
 - Exit policies
Conclusions

- Model for anonymity control at the communication layer:
 - Access control
 - Control protocols
 - Exit policies
- Conditional anonymity at the application layer (?)
- Definition of requirements
- Evaluation of 17 systems
- Theoretical tools for the analysis of anonymous connections (5 research papers)
- Software tools for the design and analysis of anonymous connection networks (2 simulators)
Future Work

- Extension of anonymity metrics to anonymity networks
- Better characterization of Quality of Anonymity (under attacks)
- Definition of control requirements
 - Legal requirements
- Further work on attack models
- Implementation of control mechanisms in real systems
- Batching and Dummy traffic strategies for real-time anonymous connections
MIXimulator

- Implemented in Java
 - Windows
 - Linux
- Graphical User Interface
- Design of Mix networks
 - Free route
 - Cascade
 - Hybrid topologies
- Mixes implemented: threshold/timed, simple/pool/dynamic pool
- Flexible dummy traffic policies
- User patterns: different groups
- Computes anonymity / delay for each mix