Personal Data and Citizenship
The Technical perspective

Claudia Diaz
KU Leuven – COSIC

Digital Enlightenment Forum
September 18, 2013
About this talk

• Review of different families of privacy technologies focusing on:
 – the concept of “privacy” they embed
 – their goals
 – their assumptions
 – their challenges and limitations
 – incentives/obstacles for deployment
Concepts of “privacy” in technology (1):
“Social privacy”

• Privacy concerns:
 – Technology mediation of social interactions leading to problems in the immediate social context of the user
 • Examples: “My parents discovered I’m gay”, “My boss found out that I despise him”, “My friends saw my naked pictures!”
 – Self-presentation and identity construction towards friends, family, colleagues
 – Particularly relevant in social media applications: tension between privacy and publicity
 – Decision making: cognitive overload, bounded rationality, immediate gratification, hyperbolic discounting, behavioral biases

• Goals:
 – Meet privacy expectations: system behaves as expected by the user: “don’t surprise the user!”
 – Make privacy controls more visible and understandable
 – Assist users in privacy-relevant decision making: users can predict the outcomes of their actions, such that they do not regret their actions after the fact
 – Help users develop appropriate privacy practices (e.g., etiquette)

• Examples:
 – appropriate defaults
 – usable privacy settings, tools for audience segregation (e.g., automated grouping of friends)
 – contextual feedback mechanisms (e.g., “how others see my profile”)
 – privacy nudges (e.g., timer nudge, content analysis nudge)
Social privacy technologies: challenges and limitations

• Focus on volitional actions (e.g., user-generated content)
 – Concerns relate to harms that are direct consequences of user actions
 – Typically leaving out implicit data, more abstract privacy risks
• Focus on the front-end
 – Making abstraction of how the back-end is implemented, what information is disclosed to the service provider, how it can be (stealthily) used by the provider
• Research methodology: user studies
 – Mostly conducted in Europe and North America
 – Focus on the “average consumer”
 – Limited by users’ understanding and perception of the system
• Focus on “privacy expectations”
 – Slippery slope if expectations erode
 • Example: prisoners in the Panopticon have no expectation of privacy, thus, the system design perfectly meets their privacy expectations
• Paradox of control (affects all types of privacy technologies)

• Incentives for deployment: strong
 – Aligned with industry’s interests: make users comfortable with sharing information in their systems
Concepts of “privacy” in technology (2): “Institutional privacy”

• Privacy concerns
 – Data collection without user awareness or informed consent
 – Use of data for illegitimate purposes
 – Data security:
 • Information becoming public (or widely available to third parties)
 • Safety, protection from crime: identity theft, stalking, etc.
 – Data correctness, integrity, deletion

• Goals
 – Ensure compliance with data protection principles: informed consent, purpose limitation, data security obligations, subject access rights
 – Data security: prevent (or mitigate the consequences of) data breaches
 – Auditability and accountability

• Examples:
 – appropriate defaults and privacy controls (again, but here towards organizations instead of peers)
 – tools to make privacy policies easy to understand and negotiate (e.g., P3P)
 – tools help organizations define and enforce access control policies (e.g., purpose-based access control)
 – auditing systems
 – database privacy technologies (anonymization and differential privacy techniques)
Institutional privacy technologies: challenges and limitations

• Assumes the collection and processing of personal information by organizations is good and necessary
• The organization is (semi-)trusted to be honest, competent, and act in the best interest of the user
 – Reliance on the legal system to punish lack of compliance
 • Can be bypassed: e.g., recent study on device fingerprinting – bypasses “cookie” directive, DNT
 – No (technical) protection guarantees towards organizations that want to violate user privacy by stealthily abusing the data that they hold
• Focus on limiting (mis)use of personal data, rather than collection
 – In spite of data minimization principles in data protection, it is easy to justify mass collection and/or obtain consent for it
 – Auditing and legal compliance mechanisms may result in more data being recorded
 – Does not preempt the creation of large databases
• Who has the power to define and enforce the policies on data use?
 – Do whatever we wanted to do with the data while being compliant
• Focus on “personal data”
 – Does not address inferences from anonymized or aggregated data (discrimination concerns)
• Limits on transparency posed by IP (proprietary software, algorithms, databases)

• Incentives for deployment: strong
 – Legal compliance is a very strong driver
Concepts of “privacy” in technology (3): “freedom from surveillance”

• Privacy concerns:
 – Data disclosure through the use of the ICT infrastructure
 – NSA threat model: surveillance by (possibly colluding) service providers and governments: not unreasonable given recent revelations.
 – Censorship by service providers and governments (protection of the public sphere)
 – Threats to “enlightenment ideals”: Protection of dissent, free speech, freedom of association, freedom from government intrusion, protection of democratic system (danger of totalitarianism through mass surveillance)

• Goals:
 – Prevent/minimize default disclosure of personal information to service providers and other third parties:
 • Only information explicitly disclosed is made available to intended recipients (confidentiality)
 • This includes user-generated content and implicit data
 • Minimize the need to trust others with appropriately handling data, distribute trust by avoiding single points of failure
 – Circumvent censorship
 • Availability properties

• Examples:
 – end-to-end encryption (e.g., PGP)
 – systems for anonymous communications (e.g., Tor)
 – advanced crypto protocols: private information retrieval, anonymous authentication, privacy-preserving smart metering
 – obfuscation approaches (e.g., TMN): degrade data quality with noise
Anti-surveillance technologies (PETs): challenges and limitations

• Focus on (preventing) data disclosure
 – No protection for information after disclosure
• Making secure design and implementations is hard
 – Active research
 – Importance of public algorithms and open source: “it takes a village to keep systems secure”
 – Security of end-devices: big issue
• Research methodology:
 – Narrow privacy definitions
 – Driven by threat (adversarial) models
 – Explicit (sometimes implicit) assumptions that need to hold to guarantee privacy properties
 (mathematical, behavioral, or trust assumptions)
• Making security usable is hard
 – Target: global user base, or users with stronger privacy concerns (e.g., activists, journalists)?
• Incentives for deployment: weak at best
 – Companies don’t want this: less data is bad for business
 – Governments neither: national security, law enforcement, social control, detection of fraud
 – Research on certain technologies not well funded in Europe (e.g., anonymous communications)
 • Tor: $2M annual budget (60% public funding), dozens of contributors, scrutiny from the research community
PETs implemented by the Service Provider

- Example: advanced crypto protocols:
 - identity management systems, privacy-preserving smart metering, road tolling, etc.
- Requires
 - Designing the system with the PET integrated in it
 - Significant investment
 - Expertise in implementing and integrating the PET
 - Availability of software for review (trust in the implementation)
 - Interest/incentives from the SP
Unilateral PETs

- Example: encryption plug-ins (e.g., for gmail, facebook), OTR for instant messaging, obfuscation tools (e.g., TMN), anonymizing proxies
- SPs do not need to invest or modify their services, PET only at client-side
 - Often implemented as (research) open-source projects: expertise and review required!
- Requires:
 - That the SP “tolerates” the use of the PET
 - In the terms and conditions
 - In practice: e.g., that it does not take action to make the PET unusable (plausible deniability)
 - ... or that the PET is made undetectable: possible? desirable?
Collaborative PETs

- Example: anonymous communications networks (e.g., Tor hidden services), distributed social networks, community-based systems
- The service itself is implemented in a P2P fashion, often as a (research) open-source project
- Commercial SPs still involved: communications infrastructure
 - Possibility to make PET unusable by blocking its communications
 - Governments also sometimes interested in blocking these PETs
- Requires
 - An engaged community of users, security expertise, and software review
 - Tradeoffs performance/cost/security, particularly to protect against traffic analysis
 - Protection from being outlawed
Conclusions & Refs

• Diverse landscape of privacy technologies, in terms of goals, limitations, and assumptions (trust, dependencies on technology, law, social norms or third parties)
 – hard to approach for outsiders (and even for insiders!)
• Importance of understanding embedded concepts of privacy and who gets to define those concepts and fill them with meaning!
• How to integrate the different technological approaches?
• Incentives!! Particularly, how to incentivize and support the deployment of anti-surveillance technologies?

• Recent articles:
 – Content also based on ongoing work with Seda Gürses on CS Privacy Research Paradigms
• Articles and contact info: http://homes.esat.kuleuven.be/~cdiaz/