Privacy at the communication layer

Claudia Diaz
K.U.Leuven ESAT/COSIC
June 16, 2009
... before we start

- Website slides:

- Location next talks (22/06/2009): different building!
 - Landbouwinstituut (Kasteelpark Arenberg 20)
 - Room 00.215
Overview

- Motivation
- Trusted and semi-trusted relays
- Mix systems
- Low-latency anonymous communications
- Concluding remarks
Motivation
Traffic analysis

- Even if communication is encrypted, traffic data can reveal a lot of information: source, destination, timing, volume, etc.
- Examples from WW II (signals intelligence):
 - Traffic analysis was used by the British at Bletchley Park to assess the size of Germany's air-force
 - Japanese traffic analysis countermeasures contributed to the surprise of their 1941 attack on Pearl Harbour
 - Increased volume: possible imminent action (example: D-day)
 - Identifying people by their typing
- Amateur plane-spotters revealed the CIA's `extraordinary rendition' programme
Some examples where sensitive data can be inferred from traffic data

- Scenario 1: Home monitoring system that sends information to oncology department
 - Source-destination enough to determine that the person living in the house has cancer
- Scenario 2: Fridge that orders food from the Kosher shop
 - Source-destination enough to determine religious beliefs
- Scenario 3: Device to hear streaming radio from a highly conservative news station
 - Source-destination enough to determine political beliefs
- Companies searching for patents/info on a subject
- Undercover police who infiltrate criminal groups and want to report back
- Two people who have looong conversations every evening (probably having an affair)
- Sensor going off
Traffic analysis

- Traffic data has less volume than content:
 - Coarser, but highly valuable information
 - Can be used to select targets for more intensive surveillance
 - Formats that are easy to process for machines
 - Harder to conceal

- Diffie and Landau, in their book on wiretapping: “traffic analysis, not cryptanalysis, is the backbone of communications intelligence“

- Anonymity at the communication layer is assumed as building block for other privacy protection technologies
Censorship resistance

- SafeWeb (anonymous communication system) was funded by In-Q-Tel (mission: identify and invest in companies developing cutting-edge technologies that serve the USA national security interests)
- Goal of funding SafeWeb was to “help Chinese and other foreign web users get information banned in their own company (sic)”

Searching for “Tiananmen Square” on Google.com and Google.cn
Censorship resistance

- Link between anonymous communications and censorship resistance
 - If the censor does not know the content and destination of the communication, blocking becomes harder
 - A rigorous study of the relationship between anonymous communication and censorship resistance has not yet been made, although the link is commonly made by researchers
- Anonymous communication services such as Tor, JAP and Anonymizer provide mechanisms for censorship resistance:
 - Tunneling, fresh addresses (arms race)
System and adversary models
Anonymity – Data and Communication Layers
Classical Security Model

- Confidentiality
- Integrity
- Authentication
- Non-repudiation
- Availability

Alice
Bob

Eve

Passive / Active

Claudia Diaz - Interdisciplinary Privacy Course
June 16, 2009
Anonymity – Concept and Model

Set of Alices

Set of Bobs
Anonymity Adversary

Recipient?

Third Parties?

- Passive/Active
- Partial/Global
- Internal/External

Claudia Diaz - Interdisciplinary Privacy Course

June 16, 2009
Anonymity Adversary

- The adversary will:
 - Try to find who is communicating with whom
 - Observe
 - All links *(Global Passive Adversary)*
 - Some links
 - Modify, delay, delete or inject messages.
 - Control some nodes in the network.

- The adversary's limitations
 - Cannot break cryptographic primitives.
 - Cannot see inside nodes he does not control.
Trusted and semi-trusted relays
Anon.penet.fi (Helsingius 1993)

- Simple proxy, substituted email headers
- Kept table of correspondences nym-email
Anon.penet.fi (Helsingius 1993)

- Supported anonymous replies
- Threat model: recipient
 - Trivial to find correspondence by observing the server
- Brought down by legal attack in 1996
 - Lesson learned: do not keep tables of correspondences!
 - Protection of users, but also protection of services themselves
Type I Cypherpunk remailers (Hughes, Finney 1996)

- No tables (routing info in messages themselves)
 - Remailers can still be forced to decrypt a message
- PGP encryption (no attacks based on content) – attacks based on size are possible
- Chains of remailers (distribution of trust)
- Reusable reply blocks
 - Source of insecurity: replay attacks
Anonymizer and SafeWeb (mid-90s)

- Web proxies: strip identifying information and forward
- Less vulnerable to legal compulsion attacks: keeping long-term logs is not needed (communication always initiated by the user)
- Filtering of active content (attacks on these features have been found)
- Connection between user and server is encrypted (SSL)
- No padding, no mixing
 - Vulnerable to attacks that correlate traffic to and from the server
 - Vulnerable to fingerprinting attacks (matching against a database of traffic signatures)
 - These attacks are more effective if we consider a sequence of linked web pages
Mix systems
Chaumian Mix (Chaum 1982)

- Messages of fixed size
 - Large messages are divided into blocks
- Original designed used randomized RSA encryption
 - Encrypted with the public key of the mix
 - Later found vulnerable to some attacks (e.g., tagging attacks)
- Several mixes could be chained to distribute trust:
 - Sender → Mix$_1$: {Mix$_2$, {Rec, msg}$_{K_{Mix_2}}$}$_{K_{Mix_1}}$
- Goal: an adversary observing the input and output of the mix is not able to relate input messages to output messages
 - Bitwise unlinkability
 - The mix performs a decryption on input messages
 - Input/output of the mix cannot be correlated based on content or size
 - Prevent traffic analysis based on message I/O order and timing
 - Achieved by batching messages
Chaumian Mix (Chaum 1982)

- Phase 1: collect inputs
- Parameter T (threshold): $T=4$ in example
Chaumian Mix (Chaum 1982)

- Phase 2: mix and flush
MixMaster (Cottrell, mid-90s)

- Type II Cypherpunk remailer: most widely deployed remailer
- Evolving since 1995
- Improved crypto format of messages to prevent tagging attacks and protect the integrity of messages
- MixMaster did not support replies
- Pool mixing: increased anonymity wrt Chaumian mixes

Threshold = 4, Pool = 2
MixMinion (Danezis et al., 2003)

- Type III Cypherpunk remailer: state-of-the-art in remailers
- Anonymous replies through SURBs (Single Use Reply Blocks)
 - Prevent replay attacks
 - Forward and backward messages are indistinguishable
- Improved cryptographic packet format
 - Two headers further divided into subheaders
 - Protection from tagging
- Trail of keys that are updated with one-way functions to provide forward security
Stop-and-Go mixes (Kesdogan 1998)

- Reordering strategy based on independently delaying each message
 - Anonymity level depends on volume of traffic
 - In threshold and pool mixes, it is the delay that depends on the volume of traffic
- Delays generated by the user from an Exponential distribution (proven optimal by Danezis)
- Timestamping to prevent active attacks
 - Trusted Time Service
Blending (n-1) attacks

1. Empty the mix from legitimate messages
2. Let the target message into the mix
3. Fill the mix with attacker-generated messages, while preventing other legitimate messages from entering the mix
Blending (n-1) attacks

4. At the time of flushing the adversary recognizes his own messages. The unknown message is the target
 - Variants of this attack break the anonymity the other types of mixes
 - The effects of the attack can be mitigated with randomization and dummy traffic
Dummy traffic

- Fake messages/traffic introduced to confuse the attacker
- Undistinguishable from real traffic
- These messages may be generated
 - By users
 - By mixes
- Dummies improve the anonymity by making more difficult the traffic analysis
- Neccessary for unobservability
- Can also be used to detect n-1 attacks: Heartbeat Traffic [Dan03]
- Dummy traffic is expensive (bandwidth)
 - Unclear how to use it in an optimal way
Long-term intersection attacks

- Family of attacks with many variants:
 - Disclosure attack (Agrawal, Kesdogan)
 - Hitting set attack (Kesdogan)
 - Statistical disclosure attack (Danezis, Serjantov)
 - Extensions to SDA (Dingledine and Mathewson)
 - Two-Sided SDA (Danezis, Diaz, Troncoso)
 - Perfect-Matching disclosure attack (Troncoso et al.)

- Assumptions:
 - Alice has persistent communication relationships (she communicates repeatedly with her friends)
 - Large population of senders, and a different subset mixes their messages with hers in each round
Long-term intersection attacks

- **Method:**
 - Combine many observations (looking at who receives when Alice sends)

- **Intuition:**
 - If we observe rounds in which Alice sends, her likely recipients will appear frequently

- **Result:**
 - We can create a vector that expresses Alice’s sending profile
 - Hard to conceal persistent communications (also in low-latency systems!)

Anonymity system

Bob
Charlie
David
Ed
Fanny

Claudia Diaz - Interdisciplinary Privacy Course
Verifiable mixing

- Mixes can be used for implementing e-voting schemes
- In e-voting applications, it is important to make sure that
 1. Votes are anonymous
 2. All votes are counted
- N-1 and intersection attacks hard to deploy in e-voting scenarios
- Mixes must prove that the outputs are a permutation of the (cryptographically transformed) inputs
- Whole body of research to attempt to create mix systems that are:
 - Robust against malicious servers that fail to deliver some votes
 - No entity learns anything except for the vote tally
 - Provide universal verifiability (correctness of the tally)
 - Provide receipt-freeness to prevent coercion/selling of votes
Low-latency anonymous communications
ISDN Mixes (Pfitzmann 1991)

- Anonymization of ISDN phone conversations
- Practical design from an engineering point of view
 - Signaling channel used to establish keys
 - Dummy traffic on the subscriber lines (no additional bandwidth needed)
- Protection against very powerful global adversaries, who control everything in the system but one mix
 - Synchronous establishment and teardown of connections
- The design was later extended to Web Mixes for IP networks
Crowds (Reiter, Rubin 1998)

- Anonymity for web browsing
- Group of users form a “crowd”
- Initiator chooses a random member of the crowd and forwards the web request to her
- The recipient of the request flips a biased coin and forwards the request to another member with probability p and to the end server with probability $1-p$
- A tunnel is established between the initiator and the exit crowd member (static paths)
Crowds (Reiter, Rubin 1998)

- Communication between members is encrypted with symmetric keys
 - BUT: all members can see the request in clear

- Adversary model:
 - Assumed adversary cannot control all links
 - Instead, the adversary controls a subset of the crowd and/or the end server

- Probability that predecessor is the initiator or just a forwarder
 - We can measure initiator anonymity as a function of the fraction of corrupted nodes and the probability of forwarding
Crowds (Reiter, Rubin 1998)

- Predecessor attacks
 - If initiator repeatedly accesses the same resource over different sessions, it will appear as predecessor of the first adversarial member more often than other crowd members
- Anonymity degrades with
 - Amount of linkable requests made in different sessions
 - Size of the crowd
Anonymizing web traffic not trivial

- Difficult to conceal traffic pattern
- Difficult to pad
 - Lots of padding: scalability / cost problem
 - Little padding: not enough to conceal pattern
- Vulnerable to strong adversaries (entry+exit)
- Fingerprinting attacks
 - Adversary observes only user side
- Internet exchanges: global adversary
Onion Routing (Reed, Syverson, Goldschlag, 1998)

- Developed at the Navy Research Lab
- Bi-directional, low latency communication
 - Onion routers do not perform “mixing”, instead they just forward packets
 - No dummy traffic
- Users select a set of routers that constitute the anonymous channel (source routed)
- A commercial implementation called ‘Freedom Network’ was deployed between 1999 and 2001 (Zero Knowledge Systems)
- Second-generation Onion Routing: Tor (from 2003)
 - Volunteer nodes: currently several thousands
 - Hundreds of thousands of users from all over the world
 - Usability:
 - Easy to install and use (Tor button)
 - Bad QoS because the network is overloaded
Onion routing
Network topology

- Mixes are combined in networks in order to
 - Distribute trust
 - Improve availability
Cascades vs Free Route topologies

- Flexibility of routing
 - Surface of attack
 - Advantage free routes
 - Availability
 - Advantage free routes
 - Intersection attacks
 - Advantage cascades (anonymity set smaller but no partitioning possible)
- Trust
 - Advantage free routes (more choices available to user)

- Free routes: Tor, Mixmaster
- Cascades: Web Mixes (JAP)
Peer-to-peer vs client-server architectures

- Symmetric vs asymmetric systems
 - Surface of attack
 - Advantage peer-to-peer
 - Liability issues
 - Advantage client-server
 - Resources / incentives / quality of service
 - Advantage client-server
 - Availability
 - Advantage peer-to-peer
 - Sybil attacks
 - Advantage? Depending on admission controls (for peers/servers)
Concluding remarks
(Some) Attacks on anonymous communication systems

- Many adversary models are possible and realistic
- Passive attacks
 - Long-term intersection attacks
 - Traffic correlation / confirmation
 - Fingerprinting
 - Epistemic attacks (route selection)
 - Predecessor attacks
- Active attacks
 - N-1 attacks
 - Sybil
 - Traffic watermarking
 - Tagging
 - Replay
 - DoS
Conclusions

- Tradeoffs cost/anonymity
 - Cost: delay, overhead
 - Economics of privacy:
 - Crypto: little overhead \rightarrow lots of security
 - Anonymity: lots of overhead \rightarrow a little bit of security

- High-latency applications (email):
 - Well established primitive
 - Problems with persistent user behavior

- Low-latency applications
 - Insecure towards strong adversaries
 - Large scale systems: is P2P the solution?

- New scenarios with increased possibilities to obtain traffic data
 - Pervasive computing scenarios
 - Social networks

- Anonymous communications are fragile
 - If you want to propose a new system:
 - Check the literature
 - Check known attacks
Thank you!

Recommended bibliography on the subject:
http://www.freehaven.net/anonbib/

- Website slides:

- Location next talk (22/06/2009): different building!
 - Landbouwinstituut (Kasteelpark Arenberg 20)
 - Room 00.215