KU LEUVEN	Introduction - masking
COSIC	 Masking countermeasure against side channel attacks Process random shares instead of direct values Often boolean masking:
Threshold Implementations Benedikt Gierlichs	 Masking linear function: f(v) = f(mask⊕v⊕mask) = f(mask)⊕f(v⊕mask) Processing f() on either share cannot leak any information Processing f() on both shares in parallel is 1st order DPA secure
Reference: A more efficient Threshold Implementation of AES Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen Africacrypt 2014, available http://eprint.iacr.org/2013/697	 Masking non-linear function (S-box): g(v) ≠ g(mask)⊕g(v⊕mask) Need a 2nd function: g(v) = g(mask) ⊕ h(mask,v⊕mask) Processing g() on one share cannot leak any information Processing h() on both shares provable 1st order DPA secure?
Crypto IC, Beijing, 22/09/2014	September 2014 Threshold Implementation AES
Introduction - glitches	Introduction - glitches

- Processing h() on both shares may not be 1st order secure!

Threshold Implementation AES

- Function h() knows both shares
- Depends on implementation of function
- Glitches are temporary intermediate states of combinational logic
- Glitches can be a serious security problem

Introduction - glitches								
 ab = (a₀⊕a₁)(b₀⊕b₁) = a₀b₀⊕ a₀b₁⊕ a₁b₀⊕ a₁b₁ Share1 = a₀b₀ Share2 = (a₀b₁⊕ a₁b₀)⊕ a₁b₁ Suppose a₁ arrives late, a₀ not relevant 								
	a1	b0	b1	AND	XOR	#		
	0→1	0	0	0	0	0	$I \qquad Y \qquad Y \qquad Y$	
	1→0	0	0	0	0	0		
	0→1	1	1	2	2	4		
	1→0	1	1	2	2	4		
	0→1	1	0	1	2	3		
	1→0	1	0	1	2	3		
	0→1	0	1	1	1	2	$ $ \vee	
	1→0	0	1	1	1	2		
ember 201	4		Tł	nreshold Imp	lementation.	AES	4	

September 2014

Non-completeness						
Example						
S(x, y, z)	=	x + yz				
S_1	=	$x_2 + y_2 z_2 + y_2 z_3 + y_3 z_2$				
S_2	=	$x_3 + y_3 z_3 + y_3 z_1 + y_1 z_3$				
S_3	=	$x_1 + y_1 z_1 + y_1 z_2 + y_2 z_1$				
 To protect a function with degree d, at least d+1 shares are required 						
September 2014	Т	Threshold Implementation AES	12			

Benedikt Gierlichs, KU Leuven COSIC

Implementation results								
State Key Array [18] 2529 252 This paper 1698 189 This paper ³ 1698 189 ¹ including round const 1698 189	S-box Col 6 4244 1120 10 3708 770 10 3003 544	$\frac{\text{Contr.}^{1}}{166}$ $\frac{221}{221}$ or S-box	64 48 48	376 746 746	Other 89 21 21 mpile_	Total 11114/11031 ³ 9102 8171 ultra	cycles 266 246 246	$rand bits^2 \\ 48 \\ 44 \\ 44 \\ 44$
18% smaller, 7.5% faster8% less randomness for re-masking								
 Our TI of S-box uses 3.7k GE (3k GE) Based on plain Canright S-box 233 GE (Moradi et al.) Our TI of AES uses 9k GE (8k GE) Based on plain AES 2.4k GE (Moradi et al.) 								
September 2014 Threshold Implementation AES 27						27		

Benedikt Gierlichs, KU Leuven COSIC

