Reachability properties
of discrete-time positive switched systems

Maria Elena Valcher

Dip. di Ingegneria dell’Informazione, Università di Padova, Padova, Italy

Joint work with E. Fornasini
Workshop “Open and Interconnected Systems Modeling and Control”
Brugge, September 16-17, 2009
Outline

- Motivations

- Preliminaries

- Single-input discrete-time positive switched systems and reachability properties

- Monomial reachability of a class of single-input positive switched systems

- Reachability of a class of single-input positive switched system
Motivations

Consider a continuous-time linear compartmental system:

\[
\dot{x}(t) = Ax(t) + Bu(t),
\]

with \(A \) a Metzler matrix and \(B \) a positive matrix. Multi-rate sampling of the above model, with sampling interval lengths \(\{T_1, T_2, \ldots, T_p\} \), brings to a discrete-time model of the following form

\[
x(t + 1) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t),
\]

where \(\sigma \) is a “switching sequence”, defined on \(\mathbb{Z}_+ \) and taking values in \(\{1, 2, \ldots, p\} \). At each time \(t \) the switching system takes the form

\[
x(t + 1) = A_i x(t) + B_i u(t),
\]

where \(i = \sigma(t) \in \{1, 2, \ldots, p\} \), while \(A_i = e^{AT_i} \) and \(B_i = \int_0^{T_i} e^{A\tau} Bd\tau \) are positive matrices.
Preliminaries

- $e_i = [0 \ldots 0 1 0 \ldots 0]^T$ is the ith vector of the canonical basis in \mathbb{R}^n;

- \mathbb{R}_+ is the semiring of nonnegative real numbers, and \mathbb{R}_+^n the positive orthant;

- a matrix A (a vector v) is nonnegative if all its entries are in \mathbb{R}_+ and positive if nonnegative and nonzero;

- a vector v is a monomial vector if $v = \alpha e_i$ for some index i and some positive α;

- a monomial matrix is a nonsingular square nonnegative matrix whose columns are monomial vectors. A monomial matrix whose nonzero entries are unitary is a permutation matrix.
Single-input discrete-time positive switched systems and reachability properties

A single-input discrete-time positive switched system is described as

\[x(t + 1) = A_{\sigma(t)}x(t) + b_{\sigma(t)}u(t), \] \((1) \)

where

- \(x \) is the \(n \)-dimensional \text{state variable};
- \(u \) the \text{scalar input};
- \(\sigma \) is a (piece-wise constant and right continuous) switching sequence, taking values in the finite set \(P = \{1, 2, \ldots, p\} \).

For each \(i \in P \), the pair \((A_i, b_i) \) represents a discrete-time positive system: \(A_i \) is an \(n \times n \) \text{nonnegative} matrix and \(b_i \) is an \(n \)-dimensional \text{nonnegative} vector.
Definition 1 A state $x_f \in \mathbb{R}^n_+$ is said to be reachable at time $k \in \mathbb{N}$
if there exist a switching sequence $\sigma : \mathbb{Z}_+ \rightarrow \mathcal{P}$
and an input sequence $u : \mathbb{Z}_+ \rightarrow \mathbb{R}_+$
that lead the state trajectory from $x(0) = 0$
to $x(k) = x_f$.

A positive switched system is monomially reachable if every monomial
vector $x_f \in \mathbb{R}^n_+$ is reachable at some time k.

A positive switched system is reachable if every state $x_f \in \mathbb{R}^n_+$
is reachable at some time k.

It follows immediately from Definition 1 that reachability implies
monomial reachability. However, the converse is not true, differently from
what happens with standard positive systems.
Monomial reachability of a class of single-input positive switched systems

In this talk, we focus on the class of single-input discrete-time positive switched systems (dPSS) described by the state equation

\[x(t + 1) = Ax(t) + b_{\sigma(t)}u(t). \]

This means that the \(p = |\mathcal{P}| \) subsystems among which the system switches share the same nonnegative system matrix \(A \), and differ only in the input-to-state matrices, \(b_i \in \mathbb{R}_+^n, i \in \mathcal{P} \).
To explore reachability properties for system (2), consider the expression of the state at any time instant \(k \in \mathbb{N} \), starting from the initial condition \(x(0) = 0 \), under the effect of the input sequence \(u(0), u(1), \ldots, u(k - 1) \) and of the switching sequence \(\sigma(0), \sigma(1), \ldots, \sigma(k - 1) \):

\[
x(k) = A^{k-1}b_{\sigma(0)}u(0) + A^{k-2}b_{\sigma(1)}u(1) + \ldots + Ab_{\sigma(k-2)}u(k - 2) + b_{\sigma(k-1)}u(k - 1),
\]

(3)

where \(\sigma(t) \in \mathcal{P} \) for every \(t \in \{0, 1, \ldots, k - 1\} \). If we introduce the reachability matrix associated with the switching sequence \(\sigma \) of length \(k \):

\[
\mathcal{R}_k(\sigma) = \begin{bmatrix}
A^{k-1}b_{\sigma(0)} & A^{k-2}b_{\sigma(1)} & \ldots & Ab_{\sigma(k-2)} & b_{\sigma(k-1)}
\end{bmatrix},
\]

(3) can be rewritten as

\[
x(k) = \mathcal{R}_k(\sigma) \begin{bmatrix}
u(0) \\
\vdots \\
u(k - 1)
\end{bmatrix}.
\]
As the input samples $u(0), \ldots, u(k - 1)$ are nonnegative, $x(k) \in \text{Cone}(\mathcal{R}_k(\sigma))$.

So, a positive state x_f is reachable if and only if there exists a switching sequence σ such that $x_f \in \text{Cone}(\mathcal{R}_{|\sigma|}(\sigma))$.
Proposition 1 Given a dPSS (2), the following are equivalent:

i) the switched system (2) is monomially reachable;

ii) the non-switched positive system \(x(t + 1) = Ax(t) + Bu(t), \) with

\[
B := \begin{bmatrix} b_1 & b_2 & \ldots & b_p \end{bmatrix},
\]

is reachable, namely its reachability matrix

\[
\mathcal{R}_n(A, B) := \begin{bmatrix} A^{n-1}B & \ldots & AB & B \end{bmatrix},
\]

contains an \(n \times n \) monomial submatrix.
Reachability of a class of single-input positive switched systems

We now address the broader problem of reachability for the dPSS (2) by assuming $\mathcal{P} = \langle 2 \rangle$ (switching between two subsystems sharing the same system matrix). The extension to the case when $|\mathcal{P}| \geq 2$ is more articulate, and has been derived in a recently submitted paper.

A preliminary technical result.

Lemma 1 If the dPSS (2), commuting between $p = 2$ subsystems, is reachable, then

1. the $n \times (n + 2)$ positive matrix $[A \ b_1 \ b_2]$ includes an $n \times n$ monomial matrix,

2. A is not zero, and

3. at least one of the vectors $b_i, i \in \mathcal{P} = \{1, 2\}$, is a monomial vector.
As a consequence, in the following we will assume w.l.o.g. that:

- b_1 is a monomial vector and, specifically, $b_1 = e_1$;
- A is not zero;
- b_1 and b_2 are linearly independent (if not, reachability of the dPSS (2) would reduce to the reachability of a single-input positive system).
• SYSTEM DIMENSION $n = 2$.

Proposition 2 Consider a dPSS (2), with $A \in \mathbb{R}^{2 \times 2}_+, A \neq 0, b_1 = e_1$, and $b_2 \in \mathbb{R}^2_+$ linearly independent of b_1.

The 2-dimensional system (2) is reachable if and only if either

i) $[b_1 \quad b_2]$ is a 2×2 monomial matrix, or

ii) $A = \begin{bmatrix} 0 & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, and $a_{21} = 0$ implies $a_{12} = 0$.
2 cases: (1) only b_1 is a monomial vector, addressed in Theorem 1,
(2) both b_1 and b_2 are monomial vectors, dealt with in Theorem 2.

Theorem 1 Consider a dPSS (2), with $\mathcal{P} = \langle 2 \rangle$, $A \in \mathbb{R}^{n \times n}_+$, $b_1, b_2 \in \mathbb{R}^n_+$, b_1 monomial and b_2 a nonzero non-monomial vector. Suppose (A, b_1) is not reachable. The dPSS (2) is reachable if and only if there exist $r \in \mathbb{N}$, and a permutation matrix P, such that

$$P^T A P = \begin{bmatrix}
0 & \ldots & 0 & 0 \\
a_{2,1} & \ldots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \ldots & a_{r,r-1} & 0 \\
0_{(n-r) \times r} & a_{r+2,r+1} & \ldots & 0_{r \times (n-r)} \\
\vdots & \ddots & \vdots & \vdots \\
0_{(n-r) \times r} & \vdots & \ddots & \vdots \\
0 & \ldots & a_{n,n-1} & 0
\end{bmatrix},$$

where $a_{i+1,i} > 0$, and (possibly after a rescaling) $P^T b_1 = e_1$, while $P^T b_2 = e_{r+1} + \sum_{i=1}^{r} \alpha_i e_i$, and at least one of the α_i’s is positive.
Theorem 2 Consider a dPSS (2), with $\mathcal{P} = \langle 2 \rangle$, $A \in \mathbb{R}^{n \times n}_+, b_1, b_2 \in \mathbb{R}^n_+$, b_1 and b_2 two linearly independent monomial vectors. Suppose that neither (A, b_1) nor (A, b_2) are reachable subsystems. The dPSS (2) is reachable if and only if there exist $r \in \mathbb{N}$, and a permutation matrix P, such that

$$P^TAP = \begin{bmatrix}
0 & \ldots & 0 & a_{1r} & 0 & \ldots & 0 & a_{1n} \\
0 & \ldots & 0 & a_{2r} & 0 & \ldots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \ldots & a_{r,r-1} & a_{rr} & 0 & \ldots & 0 & 0 \\
0 & \ldots & 0 & a_{r+1,r} & 0 & \ldots & 0 & a_{r+1,n} \\
0 & \ldots & 0 & a_{r+2,r} & a_{r+2,r+1} & \ldots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \ldots & 0 & a_{nr} & 0 & \ldots & a_{n,n-1} & 0
\end{bmatrix}$$

where $a_{i+1,i} > 0$ for $i \in \{1, 2, \ldots, r-1\} \cup \{r+1, r+2, \ldots, n-1\}$, $a_{r+1,n} > 0$, $a_{1n} \geq 0$, and (possibly after a rescaling) $P^Tb_1 = e_1$ and $P^Tb_2 = e_{r+1}$.

Open and Interconnected Systems Modeling and Control, 2009
Conclusions

- In this talk we addressed the reachability problem for a class of single-input discrete-time positive switched systems.

- Necessary and sufficient conditions for monomial reachability to hold, as well as necessary and sufficient conditions for reachability, assuming that the system switches just between two subsystems have been provided.

- For this class of positive switched systems, reachability is a structural property: it depends only on the nonzero patterns of the matrices A, b_1 and b_2 involved.