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Least Squares Stationary Optimal Control and the
Algebraic Riccati Equation

JAN C. WILLEMS, MEMBER, IEEE

Abstract—The optimal control of linear systems with respect to
quadratic performance criteria over an infinite time interval is
treated. Both the case in which the terminal state is free and that
in which the terminal state is constrained to be zero are treated.
The integrand of the performance criterion is allowed to be fully
quadratic in the control and the state without necessarily satisfying
the definiteness conditions which are usually assumed in the
standard regulator problem. Frequency-domain and time-domain
conditions for the existence of solutions are derived. The algebraic
Riccati equation is then examined, and a complete classification of
all its solutions is presented. It is finally shown how the optimal
control problems introduced in the beginning of the paper may be
solved analytically via the algebraic Riccati equation.

I. INTRODUCTION

ROBABLY the most important result in modern

systems theory, both in terms of potential practical
and theoretical applications, is the solution of the infinite
time least squares problem for stationary linear dynamical
systems. It indeed gives one a systematic procedure for
computing constant feedback control gains for multiple-
input systems based on a performance criterion which
admits a simple (albeit not always physically easily
motivated) interpretation in terms of the control effort
and the error.

It seems therefore worthwhile to study this problem in
depth. Although the basic regulator problem is very well
understood and widely applied, there are many facets of
the quadratic performance criterion problem which remain
difficult and vague. Among these are the case in which the
integrand in the performance criterion need not be
positive or when this integrand is linear in the control
(singular problems). Nevertheless, these problems bave
important applications, for example, to control problems
with conflicting objectives, to problems in network
synthesis, in stability theory, second variations, ete.

There are two main areas in control theory where
infinite time least squares minimization problems have
been developed. On the one hand there is the standard
regulator problem of optimal control theory, and on the
other hand there are the Lyapunov functions which lead,
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via the so-called Kalman~Yacubovich~Popov lemma, to
the circle criterion and the Popov criterion in stability
theory for feedback systems. Whereas the stability
criteria just mentioned appear to be very well known, it is
fair to state that their variational interpretatioh is not
appreciated and entirely ignored in most of the recent
texts on optimal control theory. This is particularly
disappointing since the optimal control problems which
lead to these stability criteria are much more intricate and
challenging than the standard regulator problem.

This paper started as an effort to unify the existing
results. In the course of doing this, it became apparent
that some important extensions to the present theory
could be successfully pursued. Among the new results
presented here is a general treatment of the boundedness
of the infima both in the case that the final state is free
and that the final state is zero, a necessary and sufficient
condition for the existence of real symmetric solutions to
the algebraic Riceati equation, and a classification, in
terms of certain projection operators, of all the solutions
to the algebraic Riecati equation.

Although the least squares optimization problem with
linear differential constraints has roots going back to the
very beginnings of calculus of variations, its revival and
introduction in control theory may safely be credited to
Kalman [1]. We should also mention Newton et al. [2],
who put forward least squares techniques as a systematic
basis for the desigh of stationary feedback control systems.
Many of the results of this paper are inspired by some of
the results obtained by Brockett. His work has ap-
peared in various places in the literature and may be
found in summarized form in the recent text [3]. Other
papers which make ample contact with the results pre-
sented here are some of the later papers by Kalman
[4], [6], the important paper by Popov [6], and the
work of Anderson (see, for example, Anderson [7] and
Anderson and Moore [8]).

To those who doubt that such an intensive study of
specialized optimization problems as the one studied here
is worthwhile, we offer the opinion that these problems
remain challenging and have an essentially unlimited
range of applications. One will recognize applications in
network theory, optimal control, stability theory, detection
theory, filtering and prediction theory, identification,
numerical analysis, differential games, to name but a few!
The theoretically inclined reader will realize that these
questions essentially consist of studying a system with an
associated performance: these are fundamental system-
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theoretic problems and the subtleties involved in such a
study should at least match the subtleties discovered
recently in the structure of multivariable systems.

We will only be concerned with linear stationary finite-
dimensional systems and (consequently) infinite time
least squares optimization problems. One may suspect
that other than the linearity, none of these assumptions is
essential. In fact some of the results may be generalized,
mutatts mutandis, to time-varying and distributed pa-
rameter systems. We will postulate controllability and
observability wherever convenient. We assume all quan-
tities to be real. (This policy will on occasion have to
be abandoned when considering eigenvalues, eigenvectors,
and transfer function matrices.)

The notation followed is that decreed by the Editor of
this issue. Some special notation which oeccurs is A(M)
for an (n X =) matrix M. This denotes an arbitrary
eigenvalue of M. We will sometimes use the notation
(%1, %2), for x1"xs, and ||x||s2, for x'Px. The time dependence
of functions appearing in integrals is usually deleted.
The overbar notation (—) denotes complex conjugation.
Finally, we will have the occasion to use the function
spaces Lot and L.~ which are defined by

Lot = {f:[0, ») = R?|f(t) € Ly(0, T),

for all T > 0}

{f:(— =, 0] = R?|f(t) € L(—T,0),
for all T > 0}.

Thus a function in Ly +(Lz,~) is a vector-valued function
defined on the positive (negative) half-line whose norm is
square integrable over bounded sets.

An outline of the paper is given at the end of the next
section. The main emphasis in the paper is on the pre-
sentation of results. Proofs are deleted whenever the ma-
terial is easily accessible in references.

Ly~

II. PRELIMINARIES

We are primarily interested in optimization problems of
the type

min f w(x, u) dt
0

with w(x, u) given by the gencral quadratic form w(x, u) =
{u, Ru) + 2(u, Cx) + {x, Ox) and z and u subject to the
dynamical constraint ¥ = Ax 4 Bu and the initial
condition x(0) = x,. We will assume without loss of
generality that R = R’ and Q = Q’. No a prior¢ definite-
ness conditions are made on the quadratic form w(x, u).
The results obtained thus become applicable to much
more general situations than those considered in the
regulator problem. As particular examples we have in
mind applications to control problems with conflicting
objectives (C = 0and Q = C\/'C; — C.'Cy) to problems in
which the dissipated energy (S, y) dt, with y = Cx +
Du) is to be minimized and to singular problems (R
singular).
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As far as the terminal value of x(f), im,_. x(f) = x.,
is concerned, there are two cases which are of particular
importance, namely, when x, is free and when x, = 0.
Most of the results extend to the more general case in
which the terminal state is required to belong to some
linear manifold Hx,, = 0, but some of the details remain
to be worked out. The case x,, = 0 and x,, free are funda-
mentally different—particularly where it concerns the
boundedness of the infimum of the performance criterion.

The analytical treatment of the class of optimization
problems introduced in the preceding leads to a series of
matrix relations and frequency domain inequalities.
Those that are important for our purposes are listed
as follows. We will be interested in the case X = K'.

1) The Linear Matriz Inequality (LMI):

A’'K + KA KB+ ¢’
i <[40 R

2) The Quadratic Matriz Inequality (QMI):
A'K+ KA — (KB+ CY)RY(B'K+ C) + Q> 0.
3) The Algebraic Riccati Equation (ARE):
AK+KA— KB+ CHRY(BFK+C +0Q=0.
4) The Frequency-Domain Inequality (FDI):
H(G,8) =R+ CIs — 4A)™'B + B'(Is — A 1C
+ B'(Is — A")'Q(Is — A)~'B > 0.

It is very well known that the ARE plays a crucial role
in the solution of the optimal control problem under
consideration. (One often gets the impression that this
equation in fact constitutes the bottleneck of all of linear
system theory.) However, it is much less appreciated
how the other relations enter into the theory. We hope
that their role will be clarified in this paper.

The paper is organized as follows. In Section III we give a
precise definition of the optimization problems con-
sidered here and of some related optimization problems.
This is followed by two theorems which provide equiv-
alent conditions for the boundedness of the infima to
these problems. None of these conditions is explieit,
however. This situation is remedied in Section IV where
time-domain conditions are given in terms of the LMI
and QM], and frequency-domain conditions in terms of the
FDI. We then turn our attention to the actual evaluation
of the minima. This leads us to study the existence of
solutions to the ARE. This is the subject of Section V.
In Section VI we obtain a complete classification of all
the solutions to the ARE. In Section VII we return to the
optimization problems introduced in Section ITI and
use the results on the ARE to derive solutions to these
problems. The paper concludes with some remarks that
contrast the results obtained here with the methods
based on spectrum factorization ideas and with the
structure of the Hamiltonian matrix.
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IT1. SomE RELATED MINIMIZATION PROBLEMS
AND INEQUALITIES

In this section we obtain some preliminary conditions
for the boundedness of the infimum of the functional
n = Jow(x, u) dt. This dependsin a crucial way on whether
X 18 free or x., = 0. The problem is most easily approached
by considering a number of related minimization problems.
These are defined as follows:

©

Vit(x) = inf w(x, u) di
uCLoet

V+(x) = inf w(x, u) di, subjeet to lim x(¢) = 0
uCLe* /0 t— e

V) =~ ot [t w

subjeet to lim x(f) = 0O

t——o

T
inf w(x, u) di.
uCloet 0
7>0

Vat(xo) =

In all of the preceding minimization problems z and =
are constrained by the dynamical equations x = Ax +
Bu and the initial condition x(0) = x,. It is clear that
V., <0and V,* < V,* < V*. Moreover, by control-
lability V, 5, V, 5/, V <+ o and V- > — .

Consider also the class of functions V: R* — R which
satisfies the dissipation inequality (DIE)

th
f w(x, w) dt + V(x) = V(x)
tg

for all #; > £, and = and u satisfying x = 4x + Bu, x(t)) =
xo, and x(f;) = x1. Assume moreover that V is normalized
to V(0) = 0. In differential form this inequality becomes

V.V(x)-x > —w(x, u)

with # = Ax 4 Bu. It is a simple matter to verify, directly
from the definitions, that if any of the functions V,*,
V+, V-, or V,* are bounded, then they satisfy the DIE.
The following two theorems state a number of equivalent
conditions for the boundedness of these functions.

Theorem 1

Assume that the system # = 4x 4+ Bu is controllable.
Then the following conditions are equivalent:

1) STw(x, u) dt > 0, for every T > 0 and every pair
%, u constrained by the dynamical equations and
x(0) = 0;

2) V-<0;

3) Vf+ > — @ ;

4) V,*> —o;

5) There exists a function ¥V < 0 which satisfies the
DIE. Moreover, whenever any of these conditions
is satisfied, then

o < V- <V, < VASVH< +oo.
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Finally, any function V satisfying the DIE satisfies
V-<V<L<V+tand V- <V <V, *if ¥ <0.
Proof: The proof follows the pattern:

4)
1) —>2) —5 -1 4y D The subeyle, 1) ~

2) — 5) — 1) is obvious. Moreover since 1) implies
— S w(x, w) dt < STw(x, u) df whenever lim,_, _,, x(£) =
0, we obtain 1) = V- < V,* < V,* which yields 3) and 4).
The implication 4) — 3) follows trivially and 3) — 1)
is most easily established by contradiction.

Assume therefore that 1) is not satisfied for some up and
To. It then follows by choosing u(f) = 0 initially that for
any T > T, there exists a % such that 1) is not satisfied.
By linearity of the map u — z when x(0) = 0; this implies
that J§ w(x, u) df can be made arbitrarily large and neg-
ative, for x(0) = 0, and by controllability, for any x(0).
This establishes the contradiction. The inequalities at the
end of the theorem statement are immediate.

Theorem 1 treats the case when x. is free. The case
X, = O is treated in the following theorem. It may be
proven in an entirely analogous manner.

Theorem 2
Assume that the system £ = Ax -+ Bu is controllable.
Then the following conditions are equivalent:

1) fFw(x, u) dt, for every T > 0 and every pair z, u
constrained by the dynamical equations and x(0) =

x(T) = 0;
2) V> —o;
) V- < +o;

4) there exists a function V which satisfies the DIE.

Moreover, whenever any of these conditions are satisfied,
then

—o L V- X VS VHF< 4o,

Remark 1: The first condition of Theorems 1 and 2 is
trivially satisfied when w(x, u) > 0. Consequently, no
questions regarding boundedness of the infima occur
in the standard regulator problem provided, as assumed
here, we have controllability.

Remark 2: If, for all x, there exists a u such that
w(x, u) < 0, then V,+ = V,*. Moreover, if there exists a
feedback control law u(x) such that w(x, u(x)) < 0
and such that x = Ax 4+ Bu(x) is asymptotically stable,
then V,* = V,+* = V+ and every V which satisfies the
DIEyields V- <V < V+=V,+#=V,*<0.

Remark 3: Theorem 1 may be interpreted in the context
of dissipative systems with —w playing the role of the
delivered supply rate. The functions —V > 0 which
satisfy the DIE may then be interpreted as the possible
storage functions with —V,* and — V'~ playing the role
of the available storage and the required supply, respec-
tively. For a formal study of these concepts, see [9]. In
most of these problems the conditions of Remark 2
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hold, i.e., we can make the supply flow out of the system
by suitable termination, and there is some storage left
to be extracted unless x = 0.

Remark 4: Theorem 2 may be interpreted in terms of
systems which appear to be dissipative when they are
taken in a cyclic motion. Examples of such systems are
electrical networks with +R, =L, =C.

Remark 6: The ideas exposed in Remarks 3 and 4
are basie tools in stability theory. If w(x, 0) > 0, then —V
is an obvious candidate for a Lyapunov function since the
DIE states that it is nonincreasing along undriven motions.
Thus dissipative systems (Theorem 1) suggest stability
(=V~- > 0 and usually by Remark 2 all the —V > 0),
and systems which appear to be dissipative when they are
taken in a eycle (Theorem 2) but which are not truly
dissipative (— V— > 0) suggest instability. Essentially all
of the recent frequency domain stability and instability
criteria [5], [6], [10] may be interpreted in the vein.

Remark 6: There may be some confusion about how to
interpret V,* (and V+, V). For purposes of infimization
one may interpret the functionals as they stand, i.e., as
inf, imp_. S8 or aslimp_,., inf, SZ. It is only when con-
sidering minimizations that some care has to be exercised.

TV. Time-Domain aND FrEQUENCY-DoMaIN CONDITIONS
FOR BOUNDEDNESS OF THE INFIMA

The results obtained in the previous section lead readily
to explicit conditions for boundedness of the infima.
These conditions are entirely in terms of the parameters
of the system and the criterion function.

For quadratic functions V(x) = {x, Kx) the DIE is
equivalent to the LMI. This is easily seen by writing
the DIE in its differential form: 2(Kx, Ax + Bu) >
- (u, Ru> - 2(”; Cx) - (x: Qx>

Theorem 8

Assume that the system ¥ = Ax + Bu is controllable.
Then the condition V,;+ > — « is satisfied if and only if
there exists a real symmetrie solution K = K’ < 0 to
the LMI. The condition ¥+ > — « is satisfied if and only
if there exists any real symmetric solution K = K’ to the
LML

Proof: Tt is well known that the minimum of  Jw(x, u)
dt subject to x = Ax + Bu, x(0) = x, and x{T) free or
x(T) = 0is a quadratic function of x,. Thus the functions
V,+, V+ V-, and V,* are, whenever they are bounded,
also quadratic funections of x;. This fact, together with the
results of Theorems 1 and 2, immediately establishes the
theorem.

If we use the notation V (x) = {(x, Kyx), V+(x) =
(x, K*x), V=(x) = {x, K~x), and V,* = {x, K, *x), then
we may conclude that any solution K = X’ of the LMI
satisfies K— < K < K+ and any solution K = K’ <€ 0
satisfles K- < K< K,+<0.

Note that R > 0 is an obvious necessary condition for
boundedness of the infima. In the case R > 0 the LMI is
equivalent to the QMI. This links the conditions of
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Theorem 1 with the quadratic matrix equations of optimal
control theory. The basic importance of the LMI seems
to be largely unappreciated. It would be interesting to see
whether or not it can be exploited in computational
algorithms, for example.

Remark 7: It may be concluded from Theorem 3 that the
solutions of the LMT and thus of the QMI always attain
their upper and lower bounds even if we only consider
nonpositive definite (or, for that matter, nonnegative
definite) solutions. Note finally that the set of symmetrie
solutions of the LMI is closed and convex. It is also
clear that if any solution K = K’ < 0 exists, then K~ <
0. Interestingly, the boundedness of V ;¥ may thus be
verified by evaluating V- and hence by solving an op-
timization problem which has seemingly very little
relation to the original problem.

Remark 8: When R = 0, then the LMI reduces to 4'K +
KA+ Q>0and KB = —C'. Hence B'C' = CB > 0
is a necessary condition for the boundedness of inf %
when x, is free, and B’C’ = CB is a necessary condition
when x., = 0. These conditions play an important role in
singular optimal control problems [26]. They are necessary
conditions but far from sufficient.

We will now establish the analogue to Theorem 3 in the
frequency domain.

Theorem 4

Assume that the system * = Ax + Bu is controllable.
Then the condition V,+ > — o« is satisfied if and only if
the FDI is satisfied throughout Re s > 0. The condition
V+ > — «» is satisfied if and only if the FDI is satisfied
along Re s = 0.

Proof: If there exists a solution K = K’ to the LMI, then

—(Is — ADK — K(Is— 4) KB+ C
B'K+4+C R
—206K 0
2[ 5% 4]
with s = ¢ 4+ jw(s, © Re) and § = ¢ — jw. Postmultiplica-

tion by
(Is — A)*‘B]
I

and premultiplication by [B'(Js — 4')!
H(5, s) > —20B'(Is — A")"'K(Is — A)~'B.

I1 yields

This shows that the frequency-domain conditions are
indeed necessary conditions.

To show sufficiency, consider first the case H(—jow,
Jjw) = 0. Let u be a control which transfers x(0) = 0
to x(T) = 0, and let us assume that u() = 0 and x(¢) = 0,
for t < 0 and ¢ > T. Taking Fourier transforms, it follows
that (whether or not Re AM(4) < 0!) X(juw) = ([jo — A)~!
U(jw). Using Parseval’s equality this implies

T
f w(x,u) dt > 0,
0
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which shows that V+ > — « by Theorem 2. The sufficiency
proof for the case H(5, s) > 0in Re s > 0 is deleted since
it is rather involved.

Remark 9: Theorem 4 brings out the symmetric nature
of the x. = 0 problem. The problem statement then
does not involve any asymmetry in the time direction
and hence we obtain, as expected, a frequency-domain
condition along the jw axis only. When x.. is free on the
other hand, the problem favors one particular time
direction and we obtain a frequeney-doma'n condition
in a half-plane. This situation is not unlike that en-
countered when inverting a convolution operator whose
kernel has the one-sided Laplace transform g(s). Invert~
ibility on (— », 4 «) simply requires the frequency-
domain condition |g(s)| > ¢ > 0 along the jw axis, whereas
invertibility on [0, =) requires |g(s)] > ¢ > 0 in all of
Re 8 > 0. Nyquist’s criterion exploits the fact that the
right half-plane inequality reduces to the jw-axis in-
equality coupled with an encirclement condition.

V. TrE ArcEBRAIC RIiccaTt EquaTion

The results obtained in the previous section settled the
question of the boundedness of the infima of the func-
tionals which we are attempting to minimize. We now
proceed toward the actual minimization. It is hardly
surprising that this road leads by way of the ARE. Thus
the existence of an optimum is most easily established
via the QMI, whereas the actual optimum is related to
those matrices which satisfy this inequality with equality.

Remark 10: One may be lead to wonder in what sense
the solutions to the ARE are “‘special” solutions of the
LMI. The solutions of the ARE are boundary solutions
of the LMT in the sense that they make the matrix F(K)
of minimal rank. It would be of interest to investigate if
and how the solutions of the LMI which make F(K) of
minimal rank are related to the solution of the singular
optimal control problems which arise when R is singular.

We first establish a fundamental lemma.

Lemma 1

Let X be a real symmetric solution to the ARE. Then
K satisfies the identity

R+ C(Is — A)—'B + B'(Iz — A)~C' + B’
(I=— A)—1Q(Is — A)~'B = (I + T())'R
(I+ T(s)) — (z + §)B'(Ie — A)—'K(Iz — A)—*B
where
T(s) = R—(B'K + C)(Is — A)~'B.

Thus in particular H(—jo, jw) > 0, for all real w.
Proof: The proof involves standard algebraic ma-
nipulations and is deleted.

The inequality stated in Lemma 1 and Theorem 4
show that the condition H(—jw, jw) = 0 is a necessary
condition for the existence of a real symmetric solution
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to the ARE. This condition turns out to be sufficient as
well. The proof of this fact is rather involved and requires
a number of intermediate results which are of intrinsie
importance. It is thus most convenient to establish this
result with the aid of a series of auxiliary lemmas.

We will assume throughout Sections V and VI that R
> 0. Asis well known, one may then reduce the minimiza-
tion problem with the criterion function fw(x, u) dt to a
similar one with R = Iand C = 0. We will therefore as-
sume this to be the case throughout the preliminary analysis
and show in the proof of the general theorem how to ex-
tend the results to the case R = I and/or C # 0.

The algebraic Riceati equation considered in the follow-
ing lemmas thus reads

A'K+ KA—KBBK+Q=0, (ARE).

We begin with a result on uniqueness and a result which
orders the solutions to the ARE.

Lemma 2

There exists at most one real symmetric solution to
ARE’ having the property that Re A(A — BB'K) < 0
(>0).

Proof: See [3, p. 150].

Lemma 3
Let K be a real symmetric solution of the ARE
AK, + KA —~ K,BB'K, + Q, =
with O, = @)/, and assume that Re A(4 — BB'K;) < 0
(>0). Then any real symmetric solution K; of the ARE
A'K; + K,A — KG,BB'K, +Q, =0

with Q. = Q' and Q1 > Q, satisfles K; > K, (K; € Ko).
Proof: Let AQ = Q1 — Q. and AK = K; — K. Sub-
tracting the two preceding ARE and reordering terms yvields

(A — BB'K))’AK + AK(4A — BB'K;)
= — AKBB'AK — AQ.
Consequently, since Re A\(4 — BB’K;) < 0,

AK = fm exp [(4 — BB'K,))'t1(AKBB'AK + AQ)
0
-exp [(4 — BB’Ky)t] dt.

Thus AK > 0 as claimed. The case Re \(4 — BB'K;) >0
is proved in a similar way.

This lemma yields as an immediate consequence the
following ordering on the solutions of a particular ARE.
Assume that! K+ and K~ are real symmetric solutions of
the ARE’ having the property that ReA(4A — BB’K") <0
and Re M(4 — BB'K~) > 0, respectively, and let K be
any other symmetric solution. Then K- < K < K+,

! The notation K+ and K~ is at this point somewhat ambiguous
since we already introduced a similar notation in Section IV. This
ambiguity is actually deliberate since it will turn out that they are
the same matrices as those introduced in Section IV.
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Note that Lemma 3 also establishes that (assuming they
exist) K+t is monotone nondecreasing with increasing Q,
whereas K~ is monotone nonincreasing with increasing Q.
Consequently, K+ — K~ is monotone nondecreasing with
increasing Q.

We now treat the case in which Q is nonnegative
definite. This is the classical case studied in the standard
regulator problem.

Lemma 4

Assume that the system ¥ = Ax 4+ Bw; y = Cuix is
controllable and observable. Then there exists a real
symmetric solution to the ARE’ with Q¢ = C,'C, which
has the property that Re A(4 — BB'K) < 0 (>0). More-
over, such a solution is unique and has the additional
property that K = K’ > 0 (<0). In fact, it is also the
only solution in the cone? of symmetric positive (negative)
semidefinite matrices.

Proof: This lemma constitutes a fundamental result in
modern control and filtering theory. For complete ex-
positions, we refer the reader to Kalman [1], Kleinman
[11], or Brockett [3, p. 151].

Remark 11: There have been a number of recent papers
[12]-[14] treating extensions of Lemma 4 to noncontrol-
lable and/or nonobservable systems. Particularly the
results in [14] are of interest as a comparison with the
results of Sections VI and VIL

The next lemma treats in a sense the other extreme,
namely when Q is negative semidefinite. Although the
treatment of the resulting optimal control problem is not
so well known in optimal control cireles, it is, however, a
basic tool in stability theory. As is well known, a solution
will not always exist in this case. The relevant condition is
given in Lemma 5.

Lemma &

Assume that the system £ = Ax + Bu; y = Cx is
controllable and observable and that Re A(4) < 0 (>0).
Then there exists a real symmetric solution to the ARE’
with Q@ = —Cy’'C; having the property Re M(4A — BB'K)
< 0 (=0) if and only if

I — B'(—Ijw — A)™1C'C, (Ijw — A)~'B > 0,

for all real w.

Moreover such a solution is unique and has the ad-
ditional property that K = KX’ < 0.
Proof: See [3, p. 167) and [6].

Remark 12: The frequency-domain condition in Lemma 5
is actually equivalent to H(5, s) > 0 in Re s > 0 since
Re A(4) < 0.

Remark 13: It is worthwhile to contrast the standard
result of Lemma 4 with that of Lemma 5. Both in Lemmas

_ 2 The cone of symmetric positive (negative) semidefinite matrices
simply refers to the set of all such matrices.
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4 and 5 we obtain many solutions to the ARE, but only
one of them has the additional property Re A(4A — BB'K)
< 0 (20). This solution turns out to be the maximum
(minimum) solution. However, in Lemma 4 the maximum
solution is positive definite, the minimum solution is
negative - definite, and all remaining solutions are in-
definite, whereas in Lemma 5 the maximum solution is
negative definite, and consequently all solutions are
negative definite.

Remark 14: The importance of Lemma 5 in stability
theory may be explained in a few words as follows. Con-
sider the nonlinear time-varying differential equation
x = Ax — Bf(Cx, t) and assume that 4, B, C satisfy the
conditions of Lemma, 5. Let K = K’ < 0 be a solution of
the ARE’, with Q@ = —C’C, and consider the derivative
of ¥(x) = —{x, Kx) along solutions to the preceding
differential equation. Then

V(x) = —||B'Kx — f(Cx, D> — (||Cx|]* = [|f(Cx, H)|}2.

This then establishes the stability of the differential
equation if ||f(y, #)|| < |y||, for all y and ¢ For a con-
ceptualization of this procedure see [15].

We are now ready to state the main result of this section.
Tt consists of a necessary and sufficient condition -for
existence of solutions to the ARE.

Theorem &

Assume that the system * = Ax + Bu is completely
controllable. Then the following are true.

1) Eaxzistence: The ARE has a real symmetric solution
if and only if H(—jw, jw) = 0, for all real w. There is then
always exactly one such solution, denoted by K+, which
has the additional property that Re M4+) < 0, with
A+ = A — BRY(B'K* -+ () and exactly one such
solution, denoted by K-, which has the additional property
that Re AM(4-) > 0, withA— = 4 — BR™Y(B'K— - C).

2) Ordering: Any other real symmetric solution K is
ordered with respect to these special solutions by the
inequality K- < K < K+,

3) Sirict Inequolity: One of the strict inequalities

H(—jw, jw) 2 eB'(~Ijw — A")"(ljw — A)7'B,
for some ¢ > 0
Ren(4dH) <0
Rer(d) >0
K+— K->0

implies the others, in which case

@ -1
K+ — K- = (f exp (A+t) BB’ exp (41'1) dt>
0

~1

= (fo exp (A~t) BB’ exp (4~") dt)

Proof: Assume first that C = 0and R = I.
1) Ezxistence: The frequency-domain condition is
necessary by Lemma 1. To show that it is also sufficient
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let 0 = C/C, — C/C,, with C; and C; invertible. Such
a decomposition clearly exists since Q = I — (rI — Q),
with r sufficiently large, defines one such possibility. Let
K, now be the positive definite solution to the ARE

AIKI + K]_A —_ KlBBlK]_ + CllC1 = 0

By Lemma 4, K; indeed exists and is such that 4, = 4 —
BB’'K, satisfies Re A(4)) < 0. Let AK = K — K;. The
equation in AKX then becomes

A'AK + AKA, — AK BB'AK — GG, =0
To show that this has a solution, let us compute
— B'(—Ijw — A/)71CyY' Co(ljw — Ay)'B.
Notiee first that
C)(Is — A + BB'K;)"'B = Cy(Is — A)"'[I + BB'K,

-(Is — A)“‘]—IB
= C2(IS —_ lB[I -+ B'Kl
+(Is — A)"'B]-L.

From the definition of K; and Lemma, 1 we also have that
I+ B'(—Is— A)1C/Ci(Is — A)"'B
= [I+ B'K; (—Is — A)"'B)'[I 4+ B'K, (Is — A)"'B].
Now, since by assumption
1+ B'(—ljw — A")C/Ci{ljo — 4)"'B —
B'(—Iljw — 4)7'C/'Co(Ijor — A)~'B > 0
it, follows that
— {Cy(~Ijw — A)7'B[I + B'K:(~Ijw — A)~'B]-}

{Cy(ljw — A)—'B[I + B'Ky (Ijw — A)~'B]~!} > 0.
Consequently,

I— B'(—ILjw — 4,/)7'Cy/Co(Ijw — 4;)'B > 0.

We may now apply Lemma 6 to the ARE in AK. Con-
sequently, there exists a unique solution AK such that
Re A4, — BB’AK) = Re M4 — BBR'K) < 0. This
shows the existence and uniqueness of K+. Existence and
uniqueness of K~ follows by analogy.

2) Ordering: The ordering relationships follow from
Lemma 3 provided Re AMA+) < 0 and Re x(4—) > 0.
They may be proven by a continuity argument whenever
these inequalities are not strictly satisfied.

8) Strict Inequalities: Since they satisfy the ARE’, it
follows that K+ and K~ satisfy

AY(E+ — K-) + (K+ — KA+ = —(K+ — K-)
-BB'(K+ — K~)

A~"(K+ — K-) + (K+ — K)4- = (K+ — K-)
.BB'(K+ — K-).

Thus from a sharpened version of Lyapunov’s theorem
which exploits controllability it follows that K+ — K- >0
implies Re A(4%) < 0 and Re A(4~) > 0. :
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To prove the converse, let ATK = K+ — Kand A~K =
K- — K. The equations satisfied by A*K and A=K are

AY'A+K + ATKA+Y = — ATKBB'ATK
A~’AK+ A-KA- = —AKBB’'AK.

Assuming now that Re A(4*) < 0, we notice (since the
equation in (A+K)~! is linear) that the first of these
equations has exactly one invertible solution (in addition
to many noninvertible solutions). In fact, that invertible
solution equals

<f°'> exp (A*) BB’ exp (A1) dt)_1

This solution leads to a solution of the Riceati equation,
say, K. A simple rearrangement of terms shows that
(4 — BB'R)y'(K+ — K) + (K+ — K)(4 - BB’I&') =
(K+ — K)BB'(K+ — K) which, since K+ — K > 0,
shows that Re A\(4 — BB’K) > 0 and thus that £ = K-,
Hence Re M47T) < 0 implies that KX+ > K~ as claimed.
That Re A(4~) > 0 implies X+ > K~ follows again by
analogy.

To prove the frequency-domain condition, consider
the ARE

AK, + KA —KBBK, 4+ Q+ eI =0.

It follows from Lemma 3 that whenever they exist, Kt
< K, T when & < e. This implies by continuity that K-
< K% is equivalent to the frequency-domain condition in
the theorem statement.

Consider now the general ARE. This equation may be
reduced to one of the type ARE’ if we make the substitu-
tions 4 — BR™1C — 4;, BR™Y? — By, and —C'R-\(C +
Q — Qy. A series of straightforward manipulations shows
that the frequency-domain condition

I+ B/(—Ijo — A)Oi(Jjw — A)7'B; 2 0

is equivalent to the condition H(—jw, jo) > 0. The
result then follows from the case R = I, C = 0 treated in
the preceding.

Remark 15: The solutions X+ and X—, which play ‘the
special roles stated in Theorem 5, have a simple behavior
versus changes in Q and R. Indeed Kt decreases as
Q and R decrease, and K~ increases as Q and R decrease.
This may quite easily be shown (and incidentally, follows
trivially from the optimal control interpretation of
Section VII). Consequently, the “‘gap” K+ — K~ de-
creases with decreasing Q and R. Fig. 1 illustrates the
behavior of K+ and K~ under changes in Q. The solution
K+ decreases as Q decreases, whereas K— increases as Q
decreases. Consequently, at some value of Q, K+ — K~
ceases to be positive definite and is merely positive semi-
definite. This is also the point where solutions cease to
exist and where the FDI in the statement of Theorem 5
ceases to be satisfied. Fig. 1 completes, as far as the
extreme solutions to the ARE are concerned, a similar
picture obtained in [16] for the case where Q is definite.
It is, however, of no help in giving insight or ways of
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Fig. 1. Behavior of K+ and K~ as function of Q.
computing the intermediate solutions. The next section
of this paper is concerned with such a classification.

Ezample 1

Counsider the scalar equation &> — 2ok — X = 0. By
Theorem 5 this equation has a real solution if and only if

A
>0
o+ w7

1+

for all real w.

This happens when o + A > 0, which is the familiar
discriminant condition for quadratic equations.

VI. A CLASSIFICATION OF ALL Sorvurioxs 1o THE ARE

It was shown in the previous section that (given solu-
tions exist) the set of real symmetric solutions to the
ARE always attains its maximum K+ and its minimum
K-. Theorem 5 provided a necessary and sufficient
frequency-domain condition for existence and established
moreover that X+ and K~ are the unique solutions having
the additional property Re A(4 — BR-Y{(B'K+ + C)) <
0 and Re AM(4 — BR-(B’K— + ()) > 0, respectively.
We now set out to study the other solutions. It will
turn out that these are simply certain combinations of
K+ and K-,

Recall the following notation: let X+ and K~ be de-
fined as shown in the preceding. Then A+ and A~ will
denote A — BR-Y(B'K+ 4+ C) and A — BRY(B'K— +
C), respectively. The matrix A = K+ — K- will be
called the gap associated with the ARE. Note that Re
AMAT) < 0 and Re AM(A7) > 0, and that A > 0, with
strict inequalities holding simultaneously. Let A*K =
K+ — Kand A K = K~ — K. Then AtK > 0 and
A-K <o.

Let M be an (n X n) matrix, and let S be a subspace of
R?. Then § is said to be snvariant if Mx & S, for all
x &€ 8. In particular for any (n X n) matrix M with
nt eigenvalues with negative real parts, n® eigenvalues
with zero real parts, and n~ eigenvalues with positive
real parts, one may define the invariant subspaces
L£+(M), £2(M), and £~(M), respectively, spanned by the
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corresponding (generalized) eigenvectors. The notation
introduced in the preceding will be used throughout, and
the dependence on the matrix M will be deleted whenever
there is no possibility of confusion.

We will now prove a lemma which is of crucial impor-
tance in least squares optimal control. It shows one how to
“complete the square’” with the aid of the ARE. This
lemma is consistently exploited, for example, in [3].
It provides in our opinion the most direct and most
elementary way of attacking least squares problems.

Lemma 6

Let K be a real symmetric solution to the ARE and
let n = Siw(x, u) dt, with  and u related through the
differential equation ¥ = Ax -+ Bu and with x(0) = x,
and x(T) = xr. Then » = fgllu + R-Y(B'K + C)x|[z?
+{(x0, Kxo) — {xr, Kxp).

Proof: Differentiation by parts vields

T d
x'Kxy — x7'Kxyp = — f 7 (x'Kx) dt
0

T
— f [x'(A’K+ KA)x + 2u’ B'Kx] di.
0

Using the ARE, the integrand becomes
x'[(KB + C)R-(B'K + C) — Qlx + 2u’B'Kx
= ke + R7(B'K + Oxl? — [lulx*
— 2u’'Cx — x'Qx.

Upon substitution in the preceding integral, this yields
the desired result.

The results which follow are much easier to express
when the strict inequality A > 0 is assumed to hold. We
will therefore concentrate on this case since the results
in the general case are pretty much the same. The modi-
fications to treat the case in which the gap A = K+ — K—
1s merely positive semidefinite are outlined in Remark
19. The following lemma indicates in what sense an
arbitrary solution of the ARE is a combination of K+
and K-,

Lemwma 7

Let K be a real symmetric solution to the ARE. Then
(K+ — K)x =0, for x € £*(4 — BR™(B'K + C))
and (K — K-)x =0,forx €& £-(4 — BR-(B'K + O)).
Consequently, (4 — BR-Y(B'K + C))x = Atx, for
x€E &4 — BRY(B'K+ C))and (A — BRY(B'K +
Cx = A~x,forx & £-(4 — BR(B'K + ().

Proof: Let

7 = f w(x, u) di
0

subject to the constraints
x = Ax + Bu
x(0) = x € £+(4 — BR-Y(B'K + C)).
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Using the feedback control law u = — R B'K + O)x,
we see that by Lemma 6 '

n = x'Kxo = x/K+x, + f IR1B'(K — K*)x||g dt.
0

Thus x'Kxy, > x'K*x,. Since by Theorem 5, xy/’Kx, <
x'K+xy, it follows that x/(K+ — K)x, = 0, for x C
£+ — BRYB'K + C)). Since K+ — K > 0, this
indeed implies that (K* — K)x = 0, for x € £+(4 —
BR(B'K 4+ (). The equality (A — BR-}(B'K + C))x
= A*x is an immediate consequence of this, and the
analogous relationship for x € £~(4 — BR-(B'K + C))
may be proven in g similar fashion.

In the next lemma we assume that A > 0 and bring

out some important geometrical relationships between
At and A-.

Lemma 8

Assume that the system ¥ = 4x 4+ Bu is controllable
and that A = K+ — K= > 0. Then A+ and — A4~ are
similar matrices. In fact, AT = — A~14~'A. Moreover to
every invariant subspace 8; of A+, there corresponds
an invariant subspace S = A~1S;  of A, and S; P 8, =
R" Tlet P be the projection operator which uniquely
decomposes x into x = Px 4+ (I — P)x, where Px & §;
and (I — P)x € 8,. Then P satisfies the equations AtP =
PA+P, PA— = PA~P,and P = A—'P’A. Conversely, if a
projection P satisfies the equations A*P = PA+P (or
PA— = PA-P) and P = A—'P’A, then §;, the range of
P, is invariant with respect to At, S, the range of I — P,
is invariant with respect to A=, and S, = A~1S;t.

Proof: Since At'A + AA+* = —ABR'B’A and
A- = A+ 4+ BR-'B’A, it follows that AtT'A 4+ A4—- =0,
The invariance of A~1S;* follows immediately from this
similarity relation. Consider now S; € S and assume
that x € S; N S, Then (Ax, x) = 0 which implies x = 0.
Thus 81 @ S: = R™ Consider now the equations in P.
The first states that S; is invariant with respect to 4+;
the second states that S, is invariant with respect to
A—; and the third one states that S = A~1S;'. The
second part of the lemma is thus simply a restatement
of the first part.

The theorem which follows is the main result of this
section and shows how to generate all the solutions to the

ARE.

Theorem 6

Assume that the system x = Ax + Bu is completely
controllable and that there exist real symmetric solutions
to the ARE. Assume moreover that A = K+ — K~ > 0.
Then every real symmetric solution of the (ARE) may be
decomposed as

K=K+*P+K(I—P)
= K+ — A(I— P) = K-+ AP
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where P and I — P are projections onto the invariant
subspaces S; and S; = A~1S;! of A+ and A~, respectively.
Conversely to every invariant subspace Si, of A+ there
corresponds an invariant subspace S; = A~1S;t of A-
and a solution

K = K*P + K—~(I — P)
= K+ — A(I — P) = K- + AP

with P and I — P projections onto S; and S,, respectively.
Moreover,

S
Sa.

[

£*¥(4 — BR-Y(B'K + C))
£7(A — BR(B'K + ©))

If

Proof: Let K be a real symmetric solution. By Theorem
5, Re M4+) # 0. Consequently, Re A\(4 — BR-(B'K +
0)) # 0. By Lemma 7, Kx = K*x, for x € £+(4 —
BRYB'K 4 C))and Kx = K~x,forx & £(4 — BR!
(B’K + C)). Bince £+ and £~ are invariant with respect
to A — BRY(B'K 4+ ()), they are also invariant with
respect to A+ and A—, respectively. Thus if P is the
projection which decomposes x as x = Px + (I — P)x,
with Px €& £+ and (I — P)x & £, it follows that A+K =
K+ — K = A(I — P). The projection P satisfies 4TP =
PA+P and, since K is symmetric, AP = P’A. Thus by
Lemma 8 every solution may indeed be decomposed as
claimed in the theorem.

Conversely, assume that P is a projection which satisfies
ATP = PATP and PA— = PA—P. The difference ATK =
K+ — K is governed by the equation 4+'A+K + A+K
A+ = —A+tKBR-'B’A+K. Thus in order for AtK =
A(I — P) to be a solution we need that

AY'A(I — P) + A(I — P)A* =
—(I — P)BR-'B'A(I — P).

Since A—'A+'A = —A~, this requires —A-(I — P) +
(I — P)A+ = (I — P)BR'B’A(I — P), or, since A~
(I—P)=({I— P)A—(I — P), thisrequires (I — P)4+ =
(I — PY(A- — BR'B’A)(I — P). Now, A— — BR™!
B'A = A*. Thus the equation becomes (I — P)A+ =
(I — P)A+(I — P). We conclude that if ATP = PA+P
and PA— = PA—P, then A+tK = A(I — P) defines a
solution. Since we are only interested in symmetric
solution, we also require AP = P’A, and consequently
every decomposition given in the theorem defines a
solution by Lemma 8.

Remark 16: If a matrix is diagonalizable, then a sub-
space is invariant if and only if it is spanned by a set of
eigenvectors. Thus computation of all the solutions
to the ARE involves finding K+, A, and the eigenvectors
of A+, This procedure may be generalized to nondiagonal-
izable matrices using the generalized eigenvectors.

Remark 17: There are several other properties which
may be derived from Lemma 7 and Theorem 6. For
instance, it follows that if K; is a solution which yields
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A — BRY(B'K; 4+ (), then there exists a solution Ko,
such that

A(A — BR-(B'K, + C)) =
—(4 — BR-Y(B'K, + O))A.

Every solution is such that the spectrum of 4 — BR™!
(B'K + ()) satisfies the invariance relation

f\(4 — BR-Y(B'K + 0))}

U {~X\A4 — BR! (B'K + (C))} = constant.

In particular, A* and A~ precisely pick out the unique
solutions with Re A(4+) = —ReA4-) < 0.

Remark 18: Note that when A > 0, then the solutions
K+ and K~ are separated from the others in the sense
that if K = K+, K-, then |[K+ — K|, |[K- — K|| =
lall. The intermediate solutions may, however, be con-
tinuous deformations of one another. Such a continuum
of solutions occurs if and only if A+ has its characteristic
polynomial nonequal to its minimal polynomial. Other-
wise there are at most 2 solutions (there may actually be
less due to complex or repeated eigenvalues of A+).
Note that there will be a finite number of solutions if
and only if 4+ has a circulant vector, i.e., if there exists a
vector x such that {x, A+tx, -, (A+)"‘1x} forms a
linearly independent set. This occurs, interestingly
enough, in all controllable single-input systems since the
controllability of ¥ = Ax + bu implies the controllability
of X* = A+x* 4 bu. (This corresponds to state feedback
and hence preserves controllability.)

Remark 19: When A is merely positive semidefinite,
then Theorem 6 becomes somewhat more complicated. It
may be shown that

£%4 — BR-Y(B'K 4+ C)) = 3(A)

(9 denotes null space) and is consequently independent
of K. Thus any solution K agrees with X+ and K~ on
N(A). If one assumes (without loss of generality) the
matrix A+ brought in the form

4t o ]

4= [ 0 At

with Re AMd:*) < 0 and Re A(4:7) = 0, then one may
concentrate on solving the equation

A1+’A1+K + A1+KA1+ = '—A1+KBlR—1B1,A1+K

and this may be done using the methods of Theorem 6.
The solutions A*K may be written in terms of A; 7K as

AYK O
[ 0 0:|'
The general solutions A*K still are of the form A(J — P)
with P the projection satisfying the equations P'A =
AP, PA~P = PA—,and AA+P = APA*P. These equations
are equivalent to the ARE, and one may work from these
equations in order to determine P. We remark that A
still satisfies A4+ + A—'A = 0, but that 4+ and 4~/
may or may not be similar.
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Remark 20: Theorem 6 is of theoretical interest in the
sense that this identification of all solutions enhances
the understanding of, for example, the behavior of nu-
merical algorithms for solving the ARE. However, there
are certain areas of application where knowledge of all
solutions of the ARE is of intrinsic importance. They
lead, for instance, to network synthesis realizations which
employ the minimum possible number of resistors and,
in the inverse problem of covariance generation, to
coloring filters with the minimum possible number of
inputs.

Ezample 2

Consider the ARE K2 = I, K = K’. The solutions K+
and K~ are I and —1, respectively. By Theorem 6, the
general solution is of the form X = —1I + 2P, with P
an arbitrary orthogonal projection. Considering now the
case n = 2, we see (geometrically) that an arbitrary
orthogonal projection (other than P = 0 and P = I which
yields K+ and K—) may be expressed as

_ cos? 8 sin 0 cos 8
cos # sin @ sin? @
which yields the solutions
cos 20 sin 26
K== [sm 29 —cos 20]

with 0 an arbitrary parameter. This could of course have
been obtained directly from the equation K? = I.

VII. LeasT SQUARES STATIONARY OPTIiMAL CONTROL

In this section we return to the optimal control problems
discussed in Sections IIT and IV. With Theorem 5 and
Lemma 6 at hand, the solution of the zero terminal state
problem becomes straightforward.

Theorem 7

Assume that the system ¥ = Ax 4+ Bu is controllable
and that R = R” > 0. Let V* and V— be as defined in
Section III. Then V+ > — o and ¥V~ < + « if and only
if there exists a real symmetric solution to the ARE.
Moreover, V+ = {(x, K+x) and V- = {x, K—x). The
infimum in V*+(x)(V—(x)) is attained if and only if
X & £HAD(£~(47)), and thus a minimum exists for
all %, if and only if K+ > K—. Finally, this minimum is
uniquely attained by the feedback control law

u* = —R-YB'K* 4+ C)z(—R"Y(B'K- + C)x)
and leads to the closed-loop response equations
i* = A+x*(x* = A—x%)
x*0) = x.

Proof: Assume first that K+ > K—. Then Re AM(47%) < 0.
By Lemma 6,

n = {xo, K*xo) + f e + R—(B'K + C)x||g? dt
0

2 <xO, K+x0)
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for all 4 € L,,* such that lim, ., x(f) = 0. Thus V+ =
{x0, K*x0) and equality is attained if and only if v =
—R-(B’'K 4+ C)x almost everywhere.

Assume now that K+t > K—. Substituting Q 4+ eI,
¢ > 0, for Q yields K,* > K,~. Letting ¢ — 0 yields lim,
K+ | K* and lim.; o K.~ 4 K-, and the result in this
case follows by continuity of n(e) for fixed u. The theorem
is proven in an analogous way for V.

As is shown in the foregoing, the fixed endpoint case
causes no difficulties. The free endpoint problem is more
subtle sinee, even if the infimum exists, it may very well
be that the closed-loop system is unstable. The following
theorem shows that this will only happen exceptionally.

Theorem 8

Assume that the system x = Ax + Bu is controllable
and that R = R’ > 0. Let V,* be as defined in Section ITI.
Then V,+ > — » if and only if there exists a real sym-
metric nonpositive definite solution to the ARE. Thus
V¥ > — o if and only if K— < 0. Moreover, when
K- <0, then V,+ = V+ = {x, K*x). Finally, this infimum
is a minimum, and the optimal closed-loop system x* =
A*x* is asymptotically stable if the combined inequalities
K~ < 0and K+ > K~ hold.

Proof: By Theorem 1, V,+ > — o if and only if V— <
0. The first, part of the theorem thus follows from Theorem
7. Assume now that K— < 0 and K+ > K—. We then need
to show that lim,_, _ . K(f) = K+, with K(¢) the solution
to the Riceati differential equation

K=—-AK—-—KA+ (KB+ C)RY(BK+C —Q

with initial condition K(0) = 0. Let A K = K — K—.
Then A-K satisfies

% AK = —A-'AK— A KA~ + AKBR'B'AK
and A—K(0) = —X— > 0. This differential equation has

an obvious variational interpretation in terms of a finite
time optimal control problem with a penalty on the
terminal state. This shows that A—K(f) exists and is
positive definite on § < 0. Thus £ = (A—K) ™! exists for
t < 0 and satisfies £ = A-X + =4~ — BR-'B’. Let
2, = (Kt — K~)~.. Thus A-%, + .4~ = BR™'B/,
and A = X — X, satisfies (d/df)AE = A—AX -+
AX A, Since Re A(4~) > 0, this shows that lim,_,_.
AX(t) = 0 and hence lim, ,_, K(f) = K+. Consequently
V4 = V+ = (x, K*x) when K~ < 0 and K+ > K. It
remains to be shown that this also holds when K+ > K—
and K— < 0. This again follows from a continuity argu-
ment by letting ¢ | 0 after substituting Q@ + €I for Q.

Remark 21: Examination of the proof of Theorem 8
shows that the Riceati differential equation

E=—A'K — KA+ (KB+ C)R(B'K+C) — Q

yields lim, ,_., K(f) = K+, when K(0) > K~ and lim,_,,
K(t) = K~ when K(0) < K+, (In order to show the
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Fig. 2. Behavior of Riccati differential equation.

convergence required in Theorem 8 we needed to make
sure that X(0) = 0 > K—.) A more detailed analysis shows
that the Riceati differential equation behaves qualitatively
as is schematically shown in Fig. 2. (This figure is to be
interpreted with imagination since two-dimensional pic-
tures never represent flows in the space of nonscalar
symmetric matrices.) Of particular interest are the local
stability conditions of the equilibria. It is casy to see that
if Re AM(4+) < 0, then K+ is locally asymptotically stable
in the negative time direction, and K~ is locally asymptot-
ically stable in the forward time direction. None of the
other solutions enjoy these stability properties. Thus if the
Riccati differential equation approaches a limit lim,_, _.,
K(t) = K+, then the backward integration is unstable at
this limit.

Remark 22: The Newton-Raphson algorithm provides a
suitable method for solving the ARE [17], [18]. It may
thus be shown that an initial choice Ky = K’ such that

ReAA4 — BRY(B'K, + 0)) <0
vields a well-defined series
KE=K'>K=K'>--->K,

=K, >--+> KT, with lim K, = K+

and that an initial choice with
Re A4 — BRY(B'K;,+ C) >0
vields a well-defined series
K.=K/<K =K< <K, =K,/ < - <K,
with lim,_,, K, = K—.
Remark 23: A good example of the pathological cases
which Theorem 8 does not deal with is given by the
trivial optimization problem which consists in minimizing
I Hu“2 dt. The relevant Ricecati equation becomes
—A'K — KA 4+ KBR'K = 0.

Thus K = 0 is a solution; it is in fact the solution which
leads to the free terminal time optimal control. It is the
maximum (minimum) solution if Re A(4) < 0 (=0).
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Otherwise K = 0 will be an intermediate solution and the
Riccati differential equation fails to converge to K.
When Re A(4) # 0 and one eigenvalue has positive real
part, then the closed-loop response is not stable even
though there exists a solution to the ARE which stabilizes
the closed-loop system.
Remark 24: Let
T
2% = lim inf w(x, u) dt
T utleg*) 0

subject to the constraints x = Ax + Bu, x(0) = xq, and
x(T) = x.. It may be shown that 4* > — » if the condi-
tions of Theorem 7 are satisfied. In fact,

7¥ = (x, K¥x0) — (¥, K7X).

This shows that the condition K- < 0 is a necessary
condition for the free endpoint problem to have a solution.
Agsuming now that X~ < 0, then we may be lead to
think that by minimizing n* over x., one obtains the
infimum of the free endpoint control problem. This is the
case if K~ < 0 but nof necessarily otherwise, as shown by
the example in the previous remark.

Remark 25: The condition K— < 0 as a condition for the
solution of the free endpoint problem is a considerable
improvement, over {3, theorem 23.6]. This reference gives
the condition K+ < 0 as a sufficient condition for the
existence of a minimum. Since K— < K, this condition
is thus a special case of ours.

Remark 26: The ARE loses its significance in singular
control problems, i.e., when R is a singular matrix. A
very convenient way of treating such problems is by
replacing R by R 4 el, e > 0, and letting ¢ | 0. If the
infimum is bounded at ¢ = 0, then it is bounded for e > 0
and thus K.+ and K,~ are well defined for ¢ > 0 as the
maximum and minimum solution to the ARE, with R
replaced by R + el. Since K, * and K.~ are monotone
functions of ¢, it follows that im.; ., K.* and lim,| . K.~
exist. Of course these limits are not solutions of a Riccati
equation but are the maximum and the minimum solution
to the LMI. Thus by defining K+ and K~ in this way,
one may conclude that V+ = {x, K+x) and

V- = {x, K—x)
also in the singular case.

VIII. CoNncLUSIONS

Let us briefly recapitulate the major results of this
paper. We use the notation introduced in Sections II and
II1.

Consider first the infinite-time least squares optimal
control problemn with the stability condition lim,,,
x(t) = 0 as an explicit constraint. Then the condition
V+ > — o (i.e.,, boundedness of the infimum) is equiv-
alent to any of the following conditions: & w(x, u) dt >
0, i.e., this inequality holds for all % such that x(0) =
x(T); V- < +«; there exists as ¥V a function which
satisfies the DIE; the FDI H(—jw, jw) > 01is valid for all
real w; there exists a real symmetric solution to the
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LMT; there exists a real symmetrie solution to the QMI;
and there exists a real symmetric solution to the ARE.
(The last two statements make sense only if R > 0.)

The value of ¥+ is given by the quadratic form V+ =
(x, K*x), where K+ is the maximum real symmetric
solution of either the LMI, the QMI, or the ARE. This
infimum may not be a minimum because the optimal
closed-loop system

i* = (4 — BR-Y(B'K + O)x*

may not be asymptotically stable. It is asymptotically
stable if and only if K+ > K~, where K~ is the minimum
real symmetric solution of either the LMI, the QMI,
or the ARE. In frequency domain terms this condition
requires that there exists an ¢ > 0 such that

H(—jw, jo) 2> eB'(—Ijwo — A")'(Ijo — A)~'B

for all real w.

Consider now the infinite time least squares optimal
control problems without restrictions on the behavior of
x(t) at «. Then the condition V,* > — « (i.e., the boun-~
dedness of the infimum) is equivalent to any of the
following conditions: f7 w(x, u) dt > 0, whenever x(0) =
0; V-<0;V,"> — w; there exists a V function ¥V < 0
which satisfies the DIE; H(5, s) > 0 throughout Re
s > 0; there exists a real symmetric nonpositive definite
solution to the LMTI; or to the QMI; or to the ARE. A
general characterization of the value of V¥ is not known.
When K~ < 0, then V,© = V+ In frequency-domain
terms this requires that there exists an e > 0 such that

H(, 8) 2 e(s+ 5)B'(I5 — A)~\(Is — A)~'B

for Re s > 0. The infimum V,+ = V+ is attained, and the
optimal closed-loop system

i* = (A — BR-\(B'K + O)x*

is asymptotieally stable if the strict inequalities K— < 0
and K+ > K~ hold.

We conclude with two remarks which contrast the
results with the ideas based on spectrum factorization
and the methods based on the Hamiltonian matrix.

Remark 27: Consider the following equation in the
rational matrix W(s):

H(—s,8) = W(—s)W(s).

This factorization equation (FE) plays a very important
role in applied mathematics. Its relevance in filtering and
prediction is well known through the work of Wiener
[19], and it has been developed as a method for solving
infinite time least squares optimal control problems by
Brockett [20]. The theoretical aspects of the FE have
been studied in great gemerality by Youla [21]. For a
state-space interpretation of these results, see the work of
Anderson (e.g., [22]).

It is usually assumed that the FE is, in some sense, the
analog of the ARE. This is true up to a point but, as we
shall see, the relationship with the LMI goes a lot further.

Consider first the LAIT and assume that K = K’ is a
solution. Let F(K) be factored as
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[ BK + C S Rl 7
ie., d(x, u) = “Mx 4 Nu“2 is the “dissipation rate”
since it satisfies

Z—t (x, Kx) + w(x, u) = d(x, u)

along solutions of ¥ = Ax 4 Bu. Premultiplying this
equation by [B/(—Is — A’)~t I]and postmultiplying by

[(Is — IA)—IB]

W(s) = N+ M(Is — A)~'B

satisfies the FE. The converse is true as well, i.e., if N 4
M(Is — A)~! B satisfies the FE, then

shows that

FR) = [%] [MN].

To show the special role played by the solutions of the
ARE, assume that R > 0 and let ¢ be the number of rows
of M and N. Then ¢ > rank R. In fact, a simple calcula-
tion shows that we may take ¢ = rank R if and only if
K is a solution to the ARE. The matrix M is then given
in terms of K and Nby M = NR~' (B’K 4+ C). Thus

W(s) = NI+ R-Y(B'K + C)(Is — A)~'B)

with N an (m X m) matrix which satisfies NN = R
and K a solution to the ARE, defines the set of solutions
of the FE for which W(s) is a square (m X m) matrix,
i.e., W has the minimum number of rows.

Consider now the roles of X+ and K—. Since

[I + R-(B'K + C)(Is — A)~'B]~' = I
— R-1(B'K + C)(Is — A 4+ BR™Y(B'K + C))-'B

it follows that W(s) is square and that its inverse is
analytic in Re s > 0 (<0) if it is generated by K+(K-).
By Youla’s result [21, theorem 2] it follows that such a
W(s) is unique. Thus

W+(s) = N(I + R-Y(B'K+ + C)(Is — A)~'B)

with N an (m X m) matrix satisfying N'N = R, yields
the so-called “spectral factorization’ of H(—s, s), and

W—(s) = NI+ R~Y(B'K— 4+ C)(Is — A)™'B)

yields the “anti-spectral factorization.”

In conclusion, every solution to the LMI generates
a solution to the FE, and the solutions of the ARE are the
minimum rank solutions. Note, however, that this does
not yet exhaust the set of solutions to the FE since we
are restricting W(s) to have its singularities at the eigen-
values of 4. Finally, let it be mentioned that the nature of
the solution W+(s) may be given as a very general operator
theoretic interpretation when Re A(4) < 0, but that it
is hard to see mathematically what is going on when
this is not the case.
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Remark 28: Other than the LMI, the QMI, and the ARE,
or the FE, there is a third avenue of approah to the prob-
lems under consideration, namely, via the state-costate
two-point boundary value problem which results from the
application of Pontryagin’s minimum principle. This
approach leads to the matrix

,_[4- BRC
~|CrR1c -0

124
Then JZ = (JZ)/, i.e., Zis a Hamiltonian matrix.
Note that
det (Is — Z) = (—1)*det (—1Is — A")
-det H(—s, s) det (Is — A).

—~BR-'B'
—A'+ C'RT'B’

Let

Thus (—1)" det (Is — Z) may be spectral factored as
A(—8)A(s). A computational algorithm for solving the
ARE based on A(s) is outlined in [18]. This algorithm
leads to K+, when A(s) is taken to be Hurwitz, and to
K-, when A(—s) is taken to be Hurwitz.

Another method of solving the ARE which is based on
the Hamiltonian matrix Z has been introduced in [23]
and more generally by Potter in [24]. Potter’s analysis
was based on the restriction that Z has distinct eigen-
values. This assumption may be removed as shown in
[14]. This technique is based on the observation that the
ARE may be written as

7 K]JZ[;:I = 0.

From this it is easy to see that K is a solution of the
ARE if and only if there exists an (n X n) matrix L such

I AR

i.e., the vectors in the matrix

H

span an invariant subspace of Z. Thus if the vectors in

M

N
span an invariant subspace of Z and M~ exists, then
NM-' is a solution. Symmetry of K implies that this
subspace S satisfies the additional condition St = JS.

Based on these properties one may then construct all the
solutions of the ARE., In terms of the eigenvectors

e = [f"]on
g

gn] [fl fZ

this yields

K=l g fal™
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(assuming this inverse exists) as the general solution of
the ARE. The corresponding eigenvalues of Z are also the
eigenvalues of the closed-loop system matrix 4 — BR™!
(B’K 4+ C), and the vectors g1, o, - - * , g are the corre-
sponding eigenvectors. The matrix K is Hermitian if
A + X; # 0, and real if A; and X; are simultaneously
included in these eigenvalues. This method produces the
matrix K+ if Re A; < 0 and K~ if Re A; > 0. For complete
details, see [14].

The classification of all the solutions to the ARE
provided by this method is similar to that discussed in
Section VI. It is in fact quite easy to spell out the parallel
in both methods. Although the method based on the
Hamiltonian matrix provides an important procedure for
numerical computation of K+, we feel that as a means of
classifying all the solutions of the ARE, it fails to provide
the insight and lacks the explicitness which the results of
Section VI offer. The computational methods which have
been proposed based on the preceding characterization of
K+ require computing the eigenvalues and eigenvectors
of Z. Note, however, that this procedure generates a
lot of unnecessary information since what one is really
interested in is determining the invariant subspace of Z
associated with its left half-plane eigenvalues. Roberts
[25] has recently developed an elegant technique which
achieves precisely this.

REFERENCES

[1] R. E. Kalman, “Contributions to the theory of optimal con-
trol,” Bol. Sec. "Mat. Uel: vol. 5, pp. 102-199, 1960.

[2] G. C. Newton, Jr., Gould and J. F. Kaiser, dnalytic
Design of Linear Feedback Controls. New York: W1ley 1957,

[3] R. W. Brockett, Finite Dimensional Linear Systems. New
York: Wiley, 1970.

4] R. E. Kalman “When is a linear system optimal?”’ Trans.
ASME,J. Basic Eng., ser. D., vol. 86, pp. 51-60, 1964.

“Lyapunov functions for the problem of lurie in automatic
contro ” in Proc. Nat. Acad. Sci. U.S.A., vol. 49, pp. 201205,
1963.

[6] V. M. Popov, “Hyperstability and optlmahty of automatic
systems with several control functions,” Rev. Roum. Sci.
Tech., Ser. Electrotech. Energ vol. 9, pp. 629—690 1964.

71 B. D. 0. Anderson, “A system theoxy criterion for positive

[3]

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, DECEMBER 1971

real matrices,” SIAM J. Contr., vol. 5, pp-, 171-182, 1967.

[8] B. D. O. Anderson and J. B. Moore, Algebra,lc structure
of generalized positive real matrices,” SIAM J. Contr., vol. 6,
pp. 615-623, 1968.

[9] .II 2 dWlllems “Dissipative dynamical systems,” to be pub-
ishe

{10] R. W. Brockett, and H. B. Lee, “Frequency-domain instability
criteria for tune-varymg and nonlinear systems,” Proc. IEEE,
vol. 55, pp. 604-619, May 1967.

[11] D. L. Klemman “On the linear regulator problem and the
matrix Ricecati equation,” Electron. Syst. Lab., M.I.T,
Cambridge, Rep. ESL-R-271, 1966.

[12] R. 8. Bucy, “Global theory of the Riceati equation,” J. Comput.
Syst. Sct., vol. 1, pp. 349-361, 1967.

[13] W. M. Wonham “On a matrix Riccati equation of stochastic
control,” STAM J. Contr., vol. 14, pp. 681698, 1968.

[14] K. Mértensson, “On the matrix Riccati equation,”
Set., vol. 3, pp. 1749, 1971.

{15] J. C. W111ems, “The generation of Lyapunov functions for
input-output stable systems,” SIAM J. Conir., vol. 9, pp.
105-134, 1971.

[16] R. W. Brockett “Structural propertles of the equilibrium

solutions of R1ecat1 equations,” Springer-Verlag Lecture

Notes on Math., vol. 132, pp. 61-69, 1970.

D. L. Klemman, ‘ On an iterative techmque for Riceati equa-

tion computations,” IEEE Trans. Automat. Conir. (Corresp.),

vol. AC-13, pp. 114-115, Feb. 1968.

[18] R. S. Bucy and P. D. Joseph Filtering for Stochasiic Processes
with Applications to Guidance. New York: Interscience, 1968.
[19] N. Wiener, Exirapolation, Interpolation and Smoothz'ng of
Stationary Time Series with Engineering Applications. New

York: Wiley, 1949.

[20] R. W. Brockett, “Path integrals, Lyapunov functions, and
quadratic minimization,” in Proc. 4th Annu. Allerton Conf.
Circuit and System Theory, pp. 685-698, 1966.

[21] D. C. Youla, “On the factorization of rational matrices,”
IRE Trans. Inform Theory, vol. IT-7, pp. 172-189, July 1961

{22] B. D. O. Andereon “The inverse problem of statlonary covari-

[23]

Inform.

[17]

ance generation,” J. Statist. Phys., vol. 1, pp. 133-147, 1969.

A. G.J. MacFarlane, “An elgenvector Solution of the optimal

linear regulator problem,” J. Eleciron. Contr., vol. 14, pp.

496-501, 1963.

[24] J. E. Potter, “Matrix quadratic solutions,” SIAM J. Appl.
Math., vol. 14 pp. 496-501, 1966.

{25] J. D. Robelts “Linear model reduction and solution of the
algebralc Riceati equation by use of the sign funection,” Dep.
Eng., Univ. Cambridge, Cambridge, England, Rep. CUED/B-
Control/TR 13, 1971.

[26] D. H. Ja.cobson “A new necessary condition of optimality for
singular control problems,”” STAM J. Conir., vol. 7, pp. 578
595, 1969.

Jan C. Willems (8’66-11’68), for a photograph and biography please
see this issue, page 595.




