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Least  Squares Stationary Optimal Control  and the 
Algebraic Riccati Equation 

Absfract-The optimal  control of linear  systems  with  respect  to 
quadratic performance  criteria  over an infinite time  interval  is 
treated. Both the  case  in which the  terminal  state is free  and  that 
in  which the  terminal  state is constrained  to  be zero are treated. 
The  integrand of the performance  criterion is  allowed to  be fully 
quadratic  in  the control and  the  state without  necessarily  satisfying 
the definiteness  conditions which are usually assumed  in  the 
standard regulator problem. Frequency-domain and time-domain 
conditions for  the existence of solutions are derived. The algebraic 
Riccati  equation is  then examined, and a  complete classification of 
all its  solutions is presented. I t   is  finally shown how the optimal 
control  problems introduced  in  the beginning of the paper  may be 
solved  analytically  via the algebraic  Riccati  equation. 

P 
I. IKTRODUCTION 

ROBABLY the most  important  result  in  modern 
syst.ems theory,  both  in  terms of potential  practical 

and t,heoretical  applications, is the solut.ion of the infinite 
time  least  squares problem for st,ationary  linear  dynamical 
systems. It. indeed gives one a systemat.ic procedure for 
computing  constant,  feedback  control  gains for multiple- 
input syst.ems based on a performance criterion which 
admits a  simple  (albeit not always physica.111. easily 
mot.ivated)  interpretation in t.erms of the control effort 
and  the error. 

It seems therefore  worthwhile t.o study this problem in 
depth. Alt.hough t,he basic regulator problem is very well 
understood and widely applied,  there are many  facets of 
the  quadrat,ic performance criterion problem which remain 
difficult and vague. Among t.hese a.re the ca.se in which the 
integrand  in the performance criterion need not. be 
positive or when this  integrand is linear in  the control 
(singular problems).  Kevertheless,  these  problems  have 
important,  applications, for example, t.0 control  problems 
n7it.h conflicting objectives, t,o problems in  netxork 
synthesis, in &ability  theory, second variat,ions,  etc. 

There  are two main  areas in control  theory where 
infinite time least, squares minimization problems have 
been developed. On the one hand  there is the  standard 
regula.tor problem of optimal cont.ro1 theory,  and on the 
other  hand  there  are t,he  Lyapunov  functions which lead, 
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via the so-called Kalman-Yacubovich-Popov lemma, to 
the circle criterion and  the Popov  criterion in stability 
theory for feedback  systems.  Whereas the stability 
criteria just mentioned  appear to be very well known, it is 
fair t.o state  that their  variational  interpret,ation is not 
appreciated  and  entirely ignored in  most of the recent 
texts  on  optimal  control  theory. This is  particularly 
disappointing since the optimal  control problems which 
lead t o  these  stabilit,y criteria. are much more intricate  and 
challenging than  the  standard regula.tor problem. 

This paper  started as an effort to unify the existing 
results. In  the course of doing this, it became apparent 
that some important extensions to  the present  theory 
could be successfully pursued. Among the new results 
presented  here  is  a  general t.rea.tment of the boundedness 
of the infima both  in  the case that  the final state is  free 
and  that  the final d a t e  is zero, a necessary and s d c i e n t  
condit.ion for the existence of  rea.1 symmetric solutions to  
the algebraic Riccati  equation, and a classification, in 
terms of certain projection operators, of all  the solutions 
to  the algebraic Riccati  equat,ion. 

Although the least  squares  optimization problem with 
1inea.r differential constraints  has  roots going back to the 
very beginnings of calculus of varia,tions, its revival and 
int.roduct$ion in cont,rol t.heory may safely be credited to 
Ka1ma.n [l]. We  should also ment.ion Newt,on et aE. [2], 
who put fors+ard lea.st squa.res t.echniques as a systematic 
basis for t.he design of stat,ionary feedback control systems. 
Many of the results of this  paper  are inspired  by some of 
t,he results  obtained by Brockett. His work has  ap- 
peared in various places in  the  literatme  and may be 
found in summarized form in  the recent text [3]. Other 
papers which make  ample  contact  with t.he results pre- 
sent,ed here  are some of t,he later  papers  by  Kalman 
[4], [5], the  important paper by Popov [6], and  the 
work of Anderson (see, for example, Anderson [7] and 
Anderson and Moore [SI). 

To those who doubt that such an intensive study of 
specialized optimization problems as  the one studied  here 
is worthwhile, we offer the opinion that these  problems 
remain challenging and  have an essentially unlimited 
range of applications. One will recognize applications in 
net,xork t,heory,  optimal  control, stabi1it.y theory,  detection 
theory, filtering and prediction  theory,  identification, 
numerical analysis, differentkl games, to name but a few! 
The theoretically inclined reader will realize that these 
questions essentially consist of studying  a  system  with an 
associated performance:  these  are  fundamental  system- 
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theoretic problems and  the subtleties involved in such a 
study should at least match  the subt.let.ies discovered 
recent,ly in  the  structure of multivariable  systems. 

We nill only be concerned with 1inea.r stationary finit.e- 
dimensional syst.ems and (consequently) infinite time 
least  squares  optimization problems. One may  suspect 
that ot.her t.han the linearit.y, none of t.hese assumptions is 
essent,ial. In  fact, some of the results ma.y be generalized, 
mutatis  mutandis, to time-varying and  distributed pa- 
rameter systems. We will poshlate controllability and 
observabi1it.y wherever convenient,. We assume all  quan- 
t.ities to be real. (This policy will on occasion have to 
be abandoned when considering eigenvalues, eigenvectors, 
and transfer  function  matrices.) 

The notation followed is that decreed by  the  Editor of 
this issue. Some special notation which occurs is X ( M )  
for an (n X n) matrix M. This denotes an  arbitrary 
eigenvalue of M. We  will sometimes use the not,ation 
(XI, XZ), for XI'XZ, and Iix(lp2, for x'Px. The  time dependence 
of funct,ions appearing in integrals is usua.lly deleted. 
The overbar  notation (-) denotes complex conjuga.tion. 
Finally, we will have the occasion to use the function 
spaces La,+ and Lze- xhich  are defined by 

L e +  = {f:[O, a) + RPI f ( t )  E L ( 0 ,   T ) ,  
for all T 2 0 )  

L e -  = if:(- a, 01 + R P [ f ( t )  E Lz(-T,O), 
for all T 2 0 ) .  

Thus a function in Lze+(Lze-) is a vector-valued function 
defined on the positive (negative) half-line whose norm is 
square int.egrable over bounded  sets. 

An outline of t.he paper  is given at   the  end of the next 
section. The main emphasis in the paper is on t.he  pre- 
eent.at,ion of results.  Proofs are deleted whenever the ma- 
terial is easily accessible in references. 

11. PRELIMINARIES 

We are primarily interested in opt.imization problems of 
t,he t.ype 

min 1, w(x,  u) dt 

with w(x, u) given by t,he general quadrat.ic form w(x,  U) = 
(u, Ru) + 2(u, Cx) + ( x ,   Q x )  and x and u subject t.0 the 
dynamical  constraint x = Ax + Bu and Dhe initial 
condition x ( 0 )  = xo. We will assume wit.hout loss of 
generality  tha.t, R = R' and Q = Q'. Yo a priori definite- 
ness conditions a.re made on t,he quadrat,ic form W ( X ,  u). 
The results  obtained  t,hus become applicable to much 
more general situat.ions than t.hose considered in  the 
regulat.or problem. As particular examples we have in 
mind  applications to control problems with conflicting 
objectives (C = 0 and Q = C1'C1 - C2'C2) to problems in 
which the dissipated energy (S(U, y) dt, xvith y = CX + 
Du) is to be minimized and t o  singular problems ( R  
singular). 

As far a.s the terminal  value of x(t ) ,  Jimt+, x( t )  = x ,  
is concerned, there  are two cases which are of particular 
importance, namely, when x ,  is free and when x ,  = 0. 
Most of the results  extend to the more general ca,se in 
which the  terminal st,a.te is required to belong to some 
linear manifold H x ,  = 0, but some of the details  remain 
to be worked out.. The case x ,  = 0 and x ,  free are fun&- 
mentally difTerent,-particularly where it concerns the 
boundedness of t,he infimum of the performance criterion. 

The analytical treatment of the class of optimization 
problems introduced in  the preceding leads to a series of 
matrix  relations and frequency  domain inequa.lities. 
Those that  are import,ant for our purposes are listed 
as follows. We  nil1  be  int.erested in  the case K = K'. 

1 )  Th.e Linear Matrix Inequality (LMI):  

F(K)  = 
A'K + KA + Q K B  + C' 2. o. [ B ' K + C  R 1 

2) The Quadratic Matrix Inequality (&MI):  

A'K + KA - ( K B  + C')R-'(B'K + C )  + Q 2 0. 

3) Th.e  Algebraic Riccuti Equation (ARE):  

A'K + KA - ( K B  + C')R-'(B'H + C )  + Q = 0. 

4) The Frequency-Domain Inequality (FDI): 

H(5, S) = R + C(ZS - A)-'B + B'(ZS - A')-'C' 

+ B'(ZZ - A')-'Q(ls - A)- lB >_ 0. 

It is very  xell known that  the ARE plays a crucial role 
in t.he solution of t.he optimal  control problem under 
consideration. (One often  gets the impression that this 
equation  in  fact  constitutes the bottleneck of  a.11  of linear 
system  theory.) Hon-ever, it is  much less appreciated 
how t,he  other  relations  enter  into  the  theory. We hope 
that t,heir role nill be clarified in this paper. 

The paper is organized as follows. In  Section I11 we give a 
prec.ise definition of the optimization  problems con- 
sidered here and of some related  optimizat,ion problems. 
This is followed by two theorem which provide equiv- 
alent conditions for the boundedness of the infima to 
t,hese problems. None of these conditions is explicit, 
however. This situat.ion is remedied in  Section IV where 
t,ime-domain conditions are given in t,erms of the LMI 
and QMI, and frequency-doma.in conditions in  terms of the 
FDI. We t,hen  t,urn our attention t,o the  actual  evaluation 
of the minima. This leads  us t.0 study  the existence of 
solut,ions to the ARE. This is the subject of Sect,ion V. 
In  Section VI me obt,ain  a complet,e classification of all 
the solutions to  the ARE. In  Sect,ion VI1 we return  to  the 
opt,imization problems int.roduced in Section I11 a,nd 
use t.he results on t.he ARE to derive solutions to these 
problems. The paper concludes nith some remarks that 
cont.rast the results  obt,ained  here ni th  t.he methods 
based on  spect,rum  factorization  ideas and  with  the 
structure of the Ha.miltonian  matrix. 
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111. SOME  RELATED R~ININIZATION PROBLEMS 
AND INEQUALITIES 

In t,his section we obt.ain some preliminary conditions 
for the boundedness of the infimum of the functional 
t] = s;w(x,  u)  dt. This depends in a crucial way on whether 
x ,  is free or x ,  = 0. The problem is  most ea.sily approa.ched 
by considering a  number of related minimization problems. 
These are defined as follows: 

V,+(xo) = inf w ( x ,  u)  at 
G L t e  + 1- 
uELle + 1, t+o 

V + ( x o )  = inf w(x, u) dt, subject to lim x ( t )  = 0 

V - ( x o )  = - inf w(x,  u)  dt, 
&L?e - Lrn 

subject to lim x( t )  = 0 
t + - a  

T 
~ , + ( x ~ )  = inf 1 w(x, u) dt. 

uEL2e + 

T X I  

In  all of the preceding minimization problems z and u 
are const,rained by the dynamical  equations x = Ax + 
Bu and  the initial condition x ( 0 )  = XO. It is clear that 
V,+ 5 0 a,nd V,+ 5 V j +  5 V+. Moreover, by control- 
lability V n + ,  VI+,  V +  <+ and B- > - 00. 

Consider also the class of functions V :  R" +. R which 
sat.isfies the dissipation inequality (DIE) 

lat' w(x, u)  dt + V(Xd 2 V(XO> 

for all tl 2 t o  and z and u satisfying f = Ax + Bu, x(t0) = 
xo, and x ( t l )  = XI .  Assume moreover that V is normalized 
to V(0) = 0. In  different,ial form this inequality becomes 

V,V(X) .x 2 -w(x, u) 

with x = A x  + Bu. It is a simple matter  to verify,  directly 
from the definitions, that if any of the functions VI+, 
IT+, V- ,  or V,+ a.re bounded,  t,hen they sa.tisfy the  DIE. 
The following  t,wo theorems st.at.e a  number of equivalent 
conditions for t.he boundedness of these  functions. 

Th.eorem 1 

-4ssume t,hat  the system x = A x  + Bu is controllable. 
Then t.he following conditions are  equivalent: 

1) ~ , ' w ( x ,  u)  dt 2 0, for every T 2. 0 and every pa.ir 
z, u constrained by the dynamical equa.t,ions and 
x(0) = 0; 

2) v- 5 0; 
3) Vj+ > - a; 
4) I/',+ > - ; 
5 )  There exists a funct,ion V 5 0 which sat,isfies t,he 

DIE. Moreover, whenever any of t,hese conditions 
is satisfied, t,hen 

--a < V -  5 v,+ 5 v,+ 5 v + <  +a. 
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Finally, any  function V satisfying the  DIE satisfies 
V - <  V <   V + a n d V - <  V 5  V,+ifV<O. 

Proof: The proof  follows the  pattern: 
- -  

1) -+ 2) + 5) + 1) 7' 1). The subcycle, 1) +- 

3) 
2) -+ 5) + 1) is obvious. Moreover since 1) implies 
- .f!!,w(x, u) dt 5 s,'w(x, u) dt whenever limt,-, x( t )  = 
0, we obtain 1) + 17- 5 V,+ 5 I/,+ which yields 3) and 4). 
The implication 4) + 3) follows t.rivially and 3) + 1) 
is  most easily established by cont,radiction. 

Assume therefore that 1) is not satisfied for some uo and 
To. It then follows by choosing u(t)  = 0 initially that for 
any T 2 To there exists a zc such that 1) is  not satisfied. 
By  linearity of the ma.p u -+ z when x ( 0 )  = 0; this implies 
that .fr w(x,  u) dt can be made  arbitrarily la.rge and neg- 
ative, for x(0) = 0, and  by controllabilit,y,  for any x ( 0 ) .  
This esta.blishes the cont.radiction. The inequalities a t   the  
end of the theorem statement  are immediate. 

Theorem 1 treats t,he case when x ,  is free. The case 
x ,  = 0 is treated  in  the following theorem. It may  be 
proven in  an entirely analogous manner. 

Theorem d 

Assume that  the system x = Ax + Bu is controllable. 
Then t.he following conditions are  equivalent: 

s i w ( x ,  u)  dt, for every T 2. 0 and every  pair x, u 
constrained  by the dynamical  equations and x ( 0 )  = 
x ( T )  = 0;  
v+> -a; 
v- < +a; 
there exists a  function  V which satisfies the DIE. 

Moreover, whenever any of these  conditions are satisfied, 
then 

--oo < V -  5 v 5 v+< + m .  

Remark 1: The first condition of Theorems 1 and 2 is 
trivially satisfied when w(x,  u)  2 0. Consequently, no 
questions  regarding boundedness of the infima occur 
in  the  standard regulator problem provided,  as assumed 
here, we have  controllability. 

Remark 2: If, for a.11 x ,  there exists a. u such tha.t 
W ( X ,  u)  5 0, then V,+ = VI+. Moreover, if there exists a 
feedback control law u(x) such tha.t. w(x, u(x))  5 0 
and such that x = Ax + Bu(x) is  asymptotically  stable, 
then V,+ = V I +  = V +  and  every V which satisfies the 
DIE yields V -  5 17 5 V +  = Vj+ = V n +  5 0. 

Remark 3: Theorem 1 may be interpreted  in the context 
of dissipative syst.ems with -w playing  t,he role of the 
delivered supply  ratme. The functions - V 2 0 which 
satisfy the DIE may  then  be int,erpreted as  the possible 
storage  functions  with - V,+ and - V -  playing t.he role 
of the available  storage and  the required supp ly ,  respec- 
tively. For a  formal  st.udy of t.hese concepts, see 191. In  
most of these problems the condit.ions of Remark 2 
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hold, i.e., we can  make the supply flow out of the syst,em 
by  suitable  termination, a.nd there  is some storage  left 
to be extracted unless x = 0. 

Remark 4: Theorem 2 may be interpret,ed  in t,erms of 
systems which appear to be dissipative when t.hey are 
t.aken in a cyclic motion.  Examples of such sysbems are 
elect,rical neb-orks with +R, f L, f C. 

Remark 5: The ideas exposed in  Remarks 3 and 4 
are basic tools in  stability t.heory. If w(x, 0)  2 0 ,  then - V 
is an obvious candidate for a Lya.punov funct,ion since the 
DIE states  that  it is nonincreasing along undriven motions. 
Thus dissipative  systems (Theorem 1) suggest &ability 
(- V -  2 0 and usually by  Remark 2 all the - V 2 0), 
and systems which appear t,o be dissipat,ive when they  are 
taken  in a cycle (Theorem 2) but which are  not  truly 
dissipative (- V -  2 0) suggest instability.  Essentially  all 
of the recent frequency domain stability  and inst,ability 
criteria [ 5 ] ,  [6 ] ,  [lo] may be interpret,ed in  the vein. 

Remark 6: There  may  be some confusion about how to 
int.erpret V I +  (and V+,  V-).  For purposes of infinlization 
one ma.y interpret t,he funct.ionals as  they  stand, i.e., as 
inf, limT-- sr or as limT+..  inf, .f:. It. is only when con- 
sidering minimizations that. some care has  to be exercised. 

IV. TIME-DOMAIK AND FREQUENCFDOXAIK CONDITIOKS 
FOR BOUNDEDNESS OF THE INFIMA 

Theorem 1 with the quadratic  matrix  equations of optimal 
control  theory. The basic importance of the  LMI seems 
to be largely unappreciated. It would be int,erest,ing to see 
whether or not it can be exploited in computa.tiona.1 
algorithms,  for example. 

Remark 7: It may be concluded from Theorem 3 t.hat the 
solutions of the UTI and  thus of the &MI always attain 
their  upper a.nd lower bounds even if  -*e only consider 
nonpositive definite (or, for that matt,er, nonnegat.ive 
definite) solutions. Mote finally t.hat> the  set of symmetric 
solutions of the  LnlI  is closed a,nd convex. It is also 
clear that if any solution K = K' 5 0 exists, then K- 4 
0. Interestingly, t,he boundedness of V,+ may  thus be 
verified by evaluating V -  and hence by solving an op- 
timization problem which has seemingly very  little 
relation to t,he original problem. 

Remark 8: When R = 0, then t,he LA11 reduces to A'K + 
KA + Q 2 0 and K B  = -C'. Hence B'C' = CB 2 0 
is  a necessary condition for the boundedness of inf 7 
when x ,  is free, and B'C' = CB is a necessary condit,ion 
when x ,  = 0. These conditions play an  important role in 
singu1a.r optimal  control problenls [26]. They  are necessary 
conditions but far from sufficient. 

We will  now establish t,he analogue to Theorem 3 in  the 
frequency domain. 

The results  obtained in  the previous section lead  readily 6 
to explicit conditions for boundedness of the infima. Assume that  the system x = Ax + Bu is controllable. 
These conditions are entirely in terms of the parameters Then  the condition VI+ > - 00 is satisfied if and only if 
of the system  and the criterion  function. the  FDI is sa.t,isfied throughout Re s 2 0. The condition 

For quadratic  functions V ( x )  = ( x ,  Kx) the  DIE is V +  > - 00 is satisfied if and only if the  FDI is satisfied 
equivalent t.o the LXI. This is easily seen by writing along Re s = 0. 
the DIE in  its differential form: 2(Kx, A x  + Bu) 2 Proof: If there exists a  solution K = K' to t.he LRII, then 
- (u, Ru) - 2 ( ~ ,  CX)  - ( X ,  Qx). 

Theorem 3 
- (Z3 - A')K - K(ZS - A )  K B  + C' 

B'K + C R 1 
Assume that the system x = A x  + Bu is controllable. 

Then  the condition V I +  > - 03 is satisfied if and only if 
there exists a real  symmetric solution K = K' 5 0 to 

if there exists any real  symmetric solution K = K' to  the tion 
the LATI. The V +  > - a, is satisfied if and only -4th S = + &'(c, 6~ Re)  and = - ju. POstmUhiplica- 

LMI. 
Proof: It is well knom-n that  the minimum of .f,'w(x, U )  

dt subject t o  i = Ax + Bu, x ( 0 )  = xo, and x(T)  free or 
x ( T )  = 0 is a quadratic  function of xo. Thus  the functions and premultiplication by [B'(Ij  - A')-l Z ]  yields 
V I + ,  V+, V-, and V , +  are, whenever t,hey  are  bounded, 
also quadmtic  functions of xo. This fact, toget,her with t.he H(S, S) 2 -2uB'(Zj - A')-'K(Zs - A)-'B. 
results of Theorems 1 and 2, immediately establishes the  This shows that  the frequency-dornain conditions 
theorem. 

. -  

indeed necessary conditions. 

If we use the notation V,+(x) = (x ,  K,x), V + ( x )  = 
( x ,  K+x),  V - ( x )  = ( x ,  K-x),  and V,+ = (x ,  K,+x), then 
we may conclude that a.ny solution K = K' of the  LMI 
satisfies K -  _< K 5 K +  and  any solution K = K' 5 0 
satisfies K- 5 K 5 K,+ 5 0. 

Note  that R 2 0 is an obvious necessary condition for 

To show sufEciency, consider first the case H(-ju,  
ju) 2 0. Let u be a  control which transfers x(0) = 0 
to x (T)  = 0, and  let us assume that u(t)  = 0 and x ( t )  = 0, 
for t < 0 and t > T.  Taking  Fourier  transforms, it follows 
that (whether or not  Re X(A) < O!) X(ju)  = (Iju - A)-l 
U(ju) .  Using Parseval's  equality this implies 

boundedness of the infima. In  t.he case R > 0 the  LMI is 
equivalent to  the  QMI.  This links the conditions of JTw(x,u) at 2 0, 
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which  shows that V f > - m by  Theorem 2. The sufficiency 
proof for the case H(S, s) 2 0 in Re s 2 0 is deleted  since 
it is rather involved. 

Remark 9: Theorem 4 brings out  the symmetric nature 
of the X ,  = 0 problem. The problem statement  then 
does not involve any  asymmetry  in  the  time direction 
and hence we obtain,  as expected,  a  frequency-domain 
condition  along the jco axis only.  When X ,  is  free  on the 
other  hand, the problem  favors  one  particular time 
direction and we obtain a frequency-domain  condition 
in a  half-plane. This situation  is  not unlike that en- 
countered  when  inverting  a  convolution  operat.or whose 
kernel has the one-sided Laplace  transform g(s). Invert- 
ibility  on (- a, + ..) simply  requires  t,he  frequencp- 
domain  condit,ion Ig(s)l 2 E > 0 along the j w  axis, whereas 
invertibility  on [0, m )  requires 1g(s)l 2 e > 0 in  all of 
Re s 2 0. Nyquist’s  criterion  exploits the fact that  the 
right half-plane  inequality  reduces to  the jw-axis in- 
equality coupled with  an encirclement  condition. 

V. THE ALGEBRAIC RICCATI EQUATION 
The results obtained  in  the  previous  section  settled the 

question of the boundedness of the infima of the func- 
tionals  which we are  attempting t.0 minimize. We  now 
proceed  t,oward the act,ual  minimization. It is  hardly 
surprising t,hat  this road  leads by way of the ARE.  Thus 
the existence of an optimum is most  easily  established 
via the &MI, u-hereas the  actual  optimum is  related to 
those  matrices  which  satisfy this inequality VFith equality. 

Remark 10: One may be lead to wonder in what sense 
the solut.ions to  the  ARE are  “special”  solutions of the 
LMI.  The solut,ions of the  ARE a.re boundary  solutions 
of the  LMI in the sense that they ma.ke the matrix F ( K )  
of minimal rank. It would be of int,erest to investigate if 
and how t.he solut,ions of the  LMI which make F ( K )  of 
minimal rank  are  related  to t.he  solution of the singular 
optima.1 cont.ro1 problems which arise when R is  singular. 

We fist establish a fundamental  lemma. 

Lemma 1 

Let K be  a  real  symmetric  solution t.o the  ARE. Then 
K satisfies the  identity 

R + C(Zs - A)- lB + B’(Zz - A’)-lC’ + B’ 
( Z Z -  A’)-’Q(Zs - A)-’B = ( Z  + T(2))’R 

( Z  + T(s ) )  - ( Z  + s)B‘(ZZ - A‘)-’K(ZZ - A)-lB 

where 

T(s)  = R-’(B‘K + C)(Zs - A)-’B. 

Thus  in part.icular H (  - j w ,  j w )  2 0, for  all  real w.  

nipulations and is  deleted. 
Proof: The proof involves  standa.rd  algebraic ma- 

The inequa1it.y st,at.ed  in  Lemma 1 and  Theorem 4 
show that t.he  condition H(- jw ,  j w )  2 0 is a necessaq 
condition for the exist,ence of a  real  symmetric  solution 

to t,he  ARE. This condition turns  out t,o be sufficient as 
well. The proof of this fact  is  ra,ther  involved  and  requires 
a number of intermediate  results which are of intrinsic 
importance. It is  thus most convenient to est,ablish  this 
result  with  t.he  aid of a. series of auxilia.ry  lemmas. 

We will assume  t.hroughout  Sections V a.nd VI  t.hat R 
2 0. As is well known, one may then reduce  t,he minimiza- 
tion problem  with the criterion  funct,ion j’w(x, u) dt to a 
simi1a.r one wit.h R = Z and C = 0. We  will therefore as- 
sume this t.0 be t,he case throughout  the prelimina.ry  a.nalysis 
a.nd show in the proof of the general  theorem how to ex- 
tend the results to  the case R # Z and/or C # 0. 

The algebraic  Riccati  equat,ion considered in  t,he follow- 
ing  lemmas  t,hus  reads 

A’K + KA - KBB’K + Q = 0, (ARE’). 

We begin with a result  on  uniqueness a.nd a. result Tvhich 
orders the solutions to t.he ARE. 

Lemma 2 

There  exists a t  most  one  real  symmetric  solution to 
ARE’  having  t,he  property that  Re X(A - BB’K) < 0 
(>O). 

P ~ o o f :  See [3, p. 1501. 

Lemma 3 

Let K1 be  a  real  symmetric  solution of the  ARE 

A’K1 + KIA - KlBB’Kl + Q1 = 0 

with Q1 = Q1’, and assume that  Re X(A - BB’K1) < 0 
(>O). Then  any real  symmet.ric  solution K2 of the  ARE 

A’Kz + KPA - KZBB‘K, + Q2 = 0 

u-ith Qz = Q?’ and Q1 2 Q2 sa.tisfies K1 2 Kz  (KI  5 K2). 
Proof: Let AQ = Q1 - Q2 and AK = K1 - K2. Sub- 

tracting t.he  two preceding ARE  and reordering  t.erms  yields 

( A  - BB’Kl)’AK + AK(A - BB’K1) 

- - -  AKBB’AK - AQ. 

Consequently, since Re X(A - BB’KI) < 0, 

AK = lm exp [ (A - BB’Kl)’t](AKBB’AK + AQ) 

-exp [ ( A  - BB’KJt]  dt. 

Thus AK 2 0 as claimed. The case Re X(A - BB‘K1) > 0 
is  proved in a simiIar way. 

This lemma  yields as  an immediate consequence the 
follou<ng ordering on the solutions  of  a  particular B E .  
Assume that1 K +  a,nd K -  are  real  symmetric  solutions of 
the  ARE’ having the property that  Re X(A - BB’K+) < 0 
and Re X(A - BB’K-) > 0, respectively, and  let K be 
any  other  symmetric  solution.  Then K -  5 K 5 K + .  

since we already introduced  a similar notation in  Section IV. This 
* The  notation K+ and K- is a t  this point somerrhat ambiguous 

ambiguity is actually deliberate since it ai l1  t.urn out. that  they  are 
the  same matrices as those  introduced in Sect.ion IP. 
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Note  t,hat Lemma 3 also establishes that (assuming they 
exist.) K +  is monot.one nondeweasing  with increasing Q, 
whereas K -  is monot,one nonincreasing with increasing Q. 
Consequently, R+ - R- is monotone nondecreasing with 
increasing Q. 

We now treat. the ca.se in which Q is  nonnegative 
definite. This is t.he classical case studied  in  the  st,andard 
regulator problem. 

Lemma 4 
Assume that  the system = Ax + Bu; y = CIX is 

controllable and observable. Then  there exists a real 
symmetric  solution to  the ARE’ svit.h Q = Cl’C1, which 
has  t,he  property t,hat  Re X(A - BB’K) < 0 (>O). >lore- 
over,  such a solution  is  unique and  has t.he a.ddit,ional 
property that R = K’ > 0 (<O). In  fact,, it. is also the 
only solut,ion in  the conez of symmetric positive (negative) 
semidefinite matrices. 

Proof: This lemma const.itut,es a fundament.al  result in 
modern  control and filtering theory.  For complete ex- 
positions, we refer the reader to  Iialman  [I], Kleinman 
[ l l ] ,  or  Brocket,t 13, p. 1511. 

Remark 11: There  have been a  number of recent  papers 
[12]-[14] treat,ing extensions of Lemma  4  to noncontrol- 
lable and/or nonobservable systems.  Particularly the 
results in [14]  are of interest as a comparison \vith the 
resu1t.s of SecFions VI  and  VII. 

The next lemma t,reat,s in a sense t.he other  extreme, 
namely when Q is  negative semidefinit,e. Although the 
t,reatment, of the result,ing optimal  control problem is not 
so well known in opt,imal cont.ro1 circles, it  is, however, a 
basic tool in stabi1it.y theory. As is well knov-n, a solution 
nil1 not. always exist in t,his case. The relevant.  condition is 
given in  Lemma 5. 

Lemma 5 

Assume t,hat the system X = Ax + Bu; y = CZX is 
controllable and observable and  that.  Re X(A) < 0 (>O). 
Then  there exists a  real  symmetric solution to  t.he ARE‘ 
Tvith Q = -C2‘C2 having the property R.e X(A - BB‘K) 
5 0 (2  0) if and only if 

4 and 5 we obta,in  many  solutions to  the  ARE,  but only 
one of t.hem has the additional  property Re X(A - BB‘K) 
< 0 ( 2 0 ) .  This solution turns out  to be the maximum 
(minimum)  solution. Hoxvever, in  Lemma 4 the maximum 
solution is posit,ive definite, the minimum  solution is 
negative definit,e, and  all remaining  solutions are in- 
definite, whereas in Lemma 5 the maximum solution is 
negative  definite, a.nd consequently  all solutions are 
negative definite. 

Remark 14: The importance of Lemma 5 in stability 
theory  may be explained in a fen- words as follom-s. Con- 
sider the nonlinear time-varying differential equation 
i = Ax - Bf(Cx, t )  and assume that A,  B, C satisfy the 
conditions of Lemma 5. Let R = K’ < 0 be a solution of 
the ARE‘, with Q = - C‘C, and consider the derivative 
of V ( x )  = - ( x ,  Kx) along solutions t.o the preceding 
differential equation.  Then 

- 

V ( X )  = - ( (B‘KX - ~ ( c x ,  t)ll’ - (Ilc~ll? - Ilf(c~, t ) I I z ) .  

This  then establishes t.he stability of the differential 
equation if Ilf(y, t ) ) )  i IIyII, for  all y and t. For  a con- 
ceptualization of  t;his procedure see [ G I .  

We are nom- ready t.0 sta.te the main  result of this section. 
It consists of a necessary and sufficient condition  for 
existence of solutions to t.he ARE. 

Th.eorem 5 
Assume t,hat  the system x = Ax + Bu is completely 

controllable. Then  the following are  true. 
1 )  Existence: The ARE has  a  real  symmetric  solution 

if and only if H (  -jw, jw) 2 0, for all  real w .  There is then 
always exactly one such  solution,  denoted by K+, which 
has the additional  property  t.hat Re X(A+) 4 0, with 
A+ = A - BR-’(B‘K+ + C)  and exact.ly one such 
solut.ion, denoted by K- ,  which ha.s the additional  property 
that  Re X(A-) 2 0, mit.h A -  = A - BR-’(B’K- + C) .  

2) Ordering: Any other  real  synlmetric  solution K is 
ordered with  respect to these special solutions by  the 
inequality K -  5 K _< K+.  

3) Strict Inequality: One of the  strict inequalities 

H(--jw, j ~ )  2 EB’(-I$J - A’>-’(Zjw - A)-’B, 
for some B > 0 

I - B’(--ljw - A’)-’CZ’Cz ( I j w  - A)-’B 2 0, Re X(A+) < 0 
for all  real w. Re X(A-) > 0 

Moreover such a solution is unique  and  has the ad- K+- K->O 
ditional  property that K = K‘ < 0. 

Proof: See [3, p. 167) and [6]. implies the others, in which case 

Remark 16: The frequency-domain conditionin  Lemma 5 K +  - K -  = (Im exp (A+t)BBf exp (A+’t)  dt 
is  actually  equivalent to H ( s ,  s) 2 0 in  Re s 2 0 since 
Re X(A) < 0. 

Remark 13: It is worthwhile to contrast t.he st.andaxd 
result, of Lemma 4 TFith that of Lemma 5. Both  in Lemmas 

.- - 

Proof: Assume first that C = 0 and R = I .  

The cone of symmetric  positive  (negative) semidefinite mat r im 1 ) ~  Existence: The frequency-domain condition  is 
simply refers to  the  set of all  such  matrices. necessary by Lemma 1. To show that  it  is also sufficient 
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let Q = Cl'C1 - C2'C2, with C1 a.nd C2 invertible.  Such To prove the converse, let A+K = K+ - K and A-K = 
a decomposition c.learly exists sinc.e Q = rZ - (rZ - Q),   K-  - K. The equat.ions sa.tisfied by A+K and A-K are 
with P s&cient.ly la.rge, defines one such possibi1it.y. Let 
Kl now be the posit.ive definite solution t,o the ARE 

A+'A+K f A+KA+ = - A+KBB'A+K 

A'K, + KIA - KlBB'K1 + Cl'C1 = 0. 
A-'A-K + A-KA- = - A-KBB'A-K. 

- .  - 

By Lemma 4, K1 indeed exists and is  such that, A1 = A - 
BB'Kl sat.isfies R.e X(Al) < 0. Let AK = K - K1. The 
equation  in AK then becomes 

Assuming now tha.t Re X(A+) < 0, we notice (since the 
equation in (AtK)-' is  linear) tha.t. the first of these 
equat$ions has  exactly one invertible solut,ion (in addition 
to many  noninvertible solutions). In fact, t.ha.t invertible 

A'' AK + AKA1 - AK BB' AK - Cz'CZ = 0. 

To show that this ha5 a  solution,  let us compute 

Z - B'(-Zju - Al')-'Cz1C2(Zju - AI)-'B. 

Notice first that 

CZ(Zs - A + BB'KI)-'B = Cz(Zs - A)-'[Z + BB'K1 

* ( Z S  - A)-']-'B 

= C2(Zs - A)-'B[Z + B'KI 

* ( Z S  - A)-'B]-'. 

From the definition of K1 and Lemma 1 we also have that 

Z + B'(-Zs - A')-'Cl'C1(Zs - A)-'B 
= [ Z  + B'K1 ( - Z S  - A)-'B]'[Z+ B'K 1 ( ZS - A)- 'B].  

solution equa.ls 

(la exp ( A f t )  BB' exp (A+'t) dt >' . 
This  solution  leads t.0 a solution of t.he Riccat,i equation, 
say, f .  A simple rearrangement of terms show;s that 

(K+ - @BB'(K+ - Q which, since K +  - > 0, 
shows that,  Re X(A - B B ' a  > 0 and  thus  that = K-. 
Hence Re X(A+) < 0 implies that K f  > K- as claimed. 
That  Re X(A-) > 0 implies K f  > K- follom aga.in by 
a.na.logy. 

( A  - BB'&'(K+ - z?) + (K+ - k) ( A  - B B'Q = 

To prove 
the ARE 

A'K, 

the frequencpdomain  condition, consider 

+ K,A - K,BB'K, + Q + t Z  = 0.  

Now, since by assumption It follows from  Lemma 3 that whenever they exist, Kc,+ < Kc?+ when €1 < €2. This implies by  continuity that K- 
Z + B'(-Zjw - A')-'CI'C1(Zju - A)-'B - < K+ is equivalent, to  the frequency-domain condition in 

B'(- zjW - ~ ) - ' ~ , ' c ~ ( z j ~  - A ) - I B  2 0 the theorem  statement,. 

it follows that 
Consider now the general ARE. This  equation ma37 be 

reduced to one of t,he tgpe ARE' if  we make the  substitu- 
1 - (C2<-Iju - A)- 'B[I  + B'IC1(-1ju - A)-'B]-'j '  

. {C2(Zju - A)-'B[Z + B'K1 (Zju - A)-'B]- ')  2 0. 

Consequently, 

Z - B'(-Zju - A1')-'CZ'C2(Zju - A1)-'B 2 0. 

We  may now apply Lemma 6 t o  the ARE in AK. Con- 
sequent,ly, there exists a  unique solution AK such t,hat 
Re X(AI - B E A K )  = R.e X(A - BB'K) _< 0. This 
shows the existmenee and uniqueness of K+. Exist,ence and 
uniqueness of K- follox-s by analogy. 

2) Ordering: The ordering relationships follow from 
Lemma 3 provided Re X(A+) < 0 and  Re X(A-) > 0. 
They ma.y be proven by a cont.inuity argument whenever 
these  inequalities  are  not strict.ly satisfied. 

3) Strict Inequalities: Since they satisfy the ARE', it 
follows that K+ and K- satisfy 

A+'(K+ - K-) + (K+ - K-)A+ = -(K+ - K-) 
. BB'(K+ - K-) 

A-'(K+ - K-) + (K+ - K-)A- = (K+ - K-) 
* BB' (K f  - K-). 

Thus from a sharpened version of Lyapunov's  theorem 
which exploits cont,rollability it, follows that, K f  - K -  > 0 
implies Re X(A+) < 0 and Re X(A-) > 0. 

tions A - BR-V + AI, BR-'12 + BI,  and -C'R-'k + 
Q + Q1. A series of straightformwd  manipulations shows 
that  the frequency-domain condition 

Z + Bl'(-Z& - AI')Ql(Zju - AI)-'B1 2 0 

is  equivalent to t.he condition H(-ju, ju) 2 0. The 
result then follows from t,he case R = Z, C = 0 t,reated in 
the preceding. 

Remark 15: The solutions K+ a.nd K-, which play :the 
special roles stated in  Theorem 5, have  a simple behavior 
versus changes in Q and R. Indeed K+ decreases as 
Q and R decrease: and K- increases as Q and R decrease. 
This rimy quite easily be shown (and incident,ally, fo1loa.s 
trivially from the opt.ima.1 cont>rol int,erpretation of 
Section 171). Consequently, t.he "gap" K+ - K- de- 
creases u-it.h decreasing Q and R. Fig. l illust,ra.t,es the 
behavior of K+ and K- under changes in Q. The solution 
K+ decreases as Q decreases, m-hereas K- increases as Q 
decreases. Consequent,ly, at. some value of Q,  K+ - K- 
ceases to  be positive definite and  is merely positive semi- 
definit,e. This  is also the point, where solutions cease to 
exist and where the FDI in t.he stat,ement of Theorem 5 
ceases t.0 be satisfied. Fig. 1 completes, as  far w the 
ext.reme solutions to the ARE are concerned, a similar 
picture  obtained  in [16] for t,he case \<-here Q is defide. 
It is, however, of no help in giving insight  or ways of 
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& in direction el 
A / -1- -1 /e‘ K+e corresponding (generalized) eigenvectors. The notation 

/ 
/ introduced in  the preceding will be used throughout,  and 

, the dependence on the matrix M will be deleted whenever 

We  will  now prove  a  lemma which is of crucial impor- 
/ I  tance  in  least  squares optimal  control. It shows one how to 

\ . e;Kq “complete the square”  with the aid of the ARE.  This 

/ , , 2 there is no possibility of confusion. 
,‘ I I 

1,‘ I \ 

:I K- j k LExistence R e a h _  lemma is consistently exploited, for example, in [3]. +- 

I ,  ; ,/-,/---- 
I I‘ &-e 
8 I’ -2- -2 elementary way of a.ttacking  least  squares problems. 
Y, 

It provides in our opinion the most direct. and most 

\ 
\ 
\ g‘K4 , 2- -2 

Lemma 6 
\ 
\ Let K be a real  symmetric  solution to the  ARE  and 

& in direction g2 let 7 = j cw(x ,   u )  dt, with R: and u related  t,hrough the 
Fig. 1. Behavior of K+ and K- as f~mction of Q .  differential e q u d o n  x = Ax + Bu a,nd with x(0) = x. 

and x ( T )  = xT. Then 7) = S;fllu + R-l(B’K + C)xIIR2 
conlput.ing the int.ermediate solutions. The next section +(X,, Kxo) - (xT, KxT). 
of this  paper is concerned with  such  a classificat.ion. Proof: Different.iation by parts yields 

Consider the scalar equat.ion k2 - 2ak - X = 0. By 
Theorem 5 this  equation  has  a  real  solution if a.nd only if = - ~ T [ x r ( A ’ K + K A ) x + 2 u ’ B ’ K x ] d t .  

X 
l + -  > 0, for all real w .  Using the ARE, the integrand becomes 

a2 + w2 - 
x’ [ (KB + C’)R-’(B’K + C )  - Q ] x  + ~ U ’ B ’ R X  

This happens when a2 + X 2 0, which is t,he familiar = I I u  + R-l(B’K + C ) x l l R 2  - l l ~ l l R ?  

discriminant condition for quadratic  equations. 
- ~ u ’ C X  - x’Qx. 

VI. A CLASSIFICATION OF ALL SOLUTIONS TO THE ARE 
It was shotn  in t,he previous section  t.hat, (given solu- 

tions exist,) the  set of real  symnletric solutions to  the 
ARE ah-ays  attains  its maximum K +  and  its minimum 
K- .  Theorem 5 provided a necessary and sufFicient 
frequency-domain condition for exist.ence and est,ablished 
moreover that K +  and K -  are  the unique solut,ions having 
the addit,ional property Re X(A - BR-l(B’K+ + C)) < 
0 and  Re X(A - BR-’(B’K- + C ) )  2 0, rcspect.ively. 
We now set out  to  study  the other solut.ions. It, \-,-ill 
turn  out  t,hat these are simply certain combinat,ions of 
K +  and K- .  

Recall the following notation: let. K +  and K -  be de- 
fined as shown in t.he preceding. Then A+ and A -  will 
den0t.c A - BR-’(B’K+ + C )  and A - BR-l(  B’K- + 
C ) ,  respect,ively. The matrix A = K+ - K -  d l  be 
called the gap associat.ed with the ARE. Notle that  Re 
X(A+) 5 0 and  Re X(A-) 2 0, and  that, A 2 0, with 
strict,  inequalities holding simultaneously. Let A+K = 
K +  - K and A - K  = K -  - K .  Then A+K 2 0 and 
A-K 5 0. 

Let. M be an ( n  X n) matrix,  and  let S be a  subspace of 
R“. Then S is said t.0 be invariant if Mx E X, for all 
x E S. In particular for any (n X n) matrix M with 
n+ eigenvalues with  negative  real  parts, no eigenvalues 
1rit.h  zero real  parts,  and n- eigenvalues with positive 
real  parts, one may define the  invariant, subspaces 
C + ( M ) ,  Co(M),  a,nd C-(IM), respect,ively, spanned  by the 

- 

Upon  substitution  in the preceding int.egra1, t.his yields 
the desired result.. 

The results which follow are  much easier to express 
when the  strict  inequality A > 0 is assumed to hold. We 
will therefore  concentrrate on this case since the results 
in t,he genera.1 case are  pretty much t,he sa.me. The modi- 
ficat,ions to t.reat the case in which the gap A = K +  - K- 
is merely positive semidefinit.e are outlined in Remark 
19. The folloning  lemma  indicates  in what. sense an 
arbitrary solution of t,he ARE is a combinat,ion of K +  
a.nd K-. 

Lemma 7 
Let. K be a real synlmet,ric solution t,o the ARE.  Then 

( K +  - K ) x  = 0, for x E c+(A - BR-’(B‘K + C ) )  
and ( K  - K-)x  = 0,  for x E $- (A  - BR-l(B’K + C)). 
Consequent,ly, ( A  - BR-’(B‘K + C ) ) x  = A+x,  for 
X E C + ( A  - BR-I( B’K + C ) )  and ( A  - BR-l(B’K + 
C ) ) X  = A-x ,  for x E $- (A  - BR-l(B’K + C ) ) .  

Proof: Let 

7] = Lrn w(x, u )  at 
subject t.0 t.he const,raints 

X = AX + BU 
~ ( 0 )  = xo E C + ( A  - BR-l(B‘K + C ) ) .  
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Using the feedback  control law u = - R-l(B’K + C)x, 
we see that  by L,emma. 6 

= x o ’ ~ x 0  = x o ‘ ~ + x o  + 1- I IR-~B’(K - ~ + ) x l l ~  at. 

Thus XO‘KXO 2 xo’K+xo. Since by Theorem 5,  xO’KXO 5 
XO’K+XO, it follows that xo’(K+ - a x o  = 0, for x. E 
S+(A - BR-’( B’K + C)) .  Since K+ - K 2 0, this 
indeed implies that ( K +  - K)x  = 0, for x E e + ( A  - 
BR-I(B‘K + C)).  The equality ( A  - BR-l(B’K + C))x  
= A+x is an immediate consequence of t,his, and  the 
analogous  relationship for x E 2-(A - BR-l(B‘K + C ) )  
may  be proven in a simi1a.r fashion. 

In the next  lemma we aasume that A > 0 and bring 
out some important geomet,rical relat.ionships between 
A +  and A-. 

Lemma 8 
Assume that t,he system f = Ax + Bu is controllable 

and  tha.t A = K+ - K -  > 0. Then A+ and -A-’ are 
similar matrices. In  fact, A+ = - A-~A-IA. Rloreover to 
every  invariant  subspace SI of A+, there corresponds 
a.n invariant subspa.ce Sz = A-’Sll of A-, and S1 @ Sz = 

R”. Let. P be the projection  operator which uniquely 
decomposes x into x = Px + ( I  - P)x, where Px E S1 
a.nd ( I  - P)x E Sp. Then P sa.t.isfies t,he  equations A+P = 
PA+P,  PA- = PA-P, and P = A-lP‘A. Conversely, if a 
projection P sa.t.isfies t.he equations A+P = PA+P (or 
PA- = PA-P) and P = A-~P’A, t,hen SI, the range of 
P, is invariant  with respect t,o A+, Sz, the range of I - P, 
is inva.ria.nt  with  respect t.0 A-, and SZ = A-lSll. 

Proof: Since A+’A + AA+ = -ABR-~B’A  and 
A- = A+ + BR-   ~B’A ,  it. follows t,ha,t A+’A + AA- = 0. 
The invariance of follows immediately  from this 
similarity relat,ion. Consider now 81 @ Sa a.nd assume 
that X E S1 fl Sz. Then (Ax ,   x}  = 0 which implies x = 0. 
Thus S1 @ Sz = R”. Consider now the equat>ions in P. 
The first, stat,es t.hat, X 1  is  invaria.nt,  with  respect to A+; 
the second states tha.t, Sz is  invariant  with  respect to 
A-; and  the t.hird one st,at,es that Sz = A - ~ S I ~ .  The 
second part of the lemma is thus simply  a rest.at.ement 
of tohe first part. 

. The t,heorem which follows is t.he main  result of this 
section and shows how to generat,e all the solutions to t.he 
ARE. 

Theorem 6 

Assume that t,he system x = Ax + Bu is complet.ely 
cont,rollable and  that, t.here exist real  symmetric solut,ions 
to  the ARE. Assume moreover that. A = K+ - K- > 0. 
Then every  real symmet.ric solution of the (ARE)  may be 
decomposed as 

K = K+P + K-(Z - P)  
= K+ - A(Z - P) = K- 4- AP 
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where P and Z - P a.re projections ont.0 t.he  invaria.nt 
subspaces SI  and Sz = of A+ and A-, respect,ively. 
Conversely to every  inva.riant subspa.ce SI, of A+ there 
corresponds a.n invariant subspa.ce Sz = A-lSll of A- 
and a solution 

K = K+P + K-(I  - P) 
= K+ - A(Z - P)  = K- + AP 

with P a.nd I - P project,ions ont,o SI and Sz, respect,ively. 
Moreover, 

C+(A - BR-’(B’K + C ) )  = X1 

&-(A - BR-’(B’K + C ) )  = Sz. 

Proof: Let K be a  real  symmetric  solution. By  Theorem 
5, Re X(A+) # 0. Consequently, Re X(A - BR-’(B’K + 
C)) # 0. By Lemma 7, Kx = K+x, for x E G+(A - 
BR-l(B‘K + C ) )  and KX = K-x, for x E 2-(A - BR-1 
(B’K + 0). Since G+ and 6- are  invariant  nit,h respect 
to A - BR-’( B’K + C ) ) ,  they  are also invariant  with 
respect! to A+ and A-, respect.ively. Thus if P is the 
projection which decomposes x as x = Px + ( I  - P)x, 
with PX E $+and ( I  - P)x E 2-, it follows tha,t A+K = 

K+ - K = A(Z - P). The projection P sat,isfies A+P = 

PA+P and, since K is symmetric, AP = PIA. Thus  by 
Lemma 8 every  solution may indeed be decomposed as 
claimed in  the theorem. 

Conversely, assume that P is a  projection which sa.tisfies 
A+P = PA+P and PA- = PA-P. The difference A+K = 
K +  - K is governed by t,he  equation A+’A+K + A +K 
A+ = -A+KBR-’B’A+K. Thus in  order for A+K = 
A(Z - P) to be a. solution we need that 

A+’A(Z - P )  + A(Z - P)A+ = 

- ( I  - P)  BR-’B’A(Z - P).  

Since A-~A+’A = -A-, this  requires -A-(Z - P )  + 
( I  - P ) A +  = ( I  - P)BR- lB’a( l  - P), or, since A -  
( I  - P)  = (Z - P)A-(I - P) ,  this requires ( I  - P)A+ = 
( I  - P)(A- - BR-’B‘A)(Z - P) .  ?SON-, A- - BR-l 
B’A = A+. Thus  the equat,ion becomes ( I  - P)A+ = 
( I  - P)A+(I - P). We conclude tha.t if A+P = PA+P 
and PA- = PA-P, then A+K = A(Z - P)  defines a 
solution. Since we are only interested  in  symmetric 
solution, we also require AP = P’A, and consequent,ly 
every decomposition given in  the theorem defines a 
solut.ion by Lemma 8. 

Re.nu;c.rk 16: If a mat,rix is diagonalizable, then a sub- 
space is  invariant if and only if it  is  spanned  by  a  set of 
eigenvectors. Thus  computation of all the solutions 
to the -4RE involves finding K + ,  A, and t.he eigenvectors 
of A+. This procedure may be genemlized to nondiagonal- 
izable matrices using t.he generalized eigenvectors. 

Renzark 17: There  are several ot,her properties which 
may be derived from Lemma 7 and Theorem 6. For 
instance, it. follows that if Kl is  a solution which yields 
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A - BR-I( B'K1 + C)), then  there exist.s a solut,ion K2, 
such that 

A(A - B R - ~ ( B ' K ~  + c)) = 

- ( A  - BR-'(  B'K, + C ) )  A. 

Every solution  is  such that  the spectrum of A - BR-I 
(B'K + C)) satisfies the invariance  relation 

{X(A - BR-'(B'K + C ) )  } 
U { -X(A - BR-' (B'K + C)) ] = constant. 

In particular, A+ and A- precisely pick out  the unique 
solutions  with Re X(A+) = -Re X(A-) 5 0. 

Remark 18: Note  that. when A > 0, then  the solutions 
K +  a.nd K- are  separat,ed from the others  in  the sense 
that. if K # K+, K-, t.hen IlK+ - KII, IIK- - KlI = 
1 1 6 1 1 .  The intermediate  solutions  may, horn-ever, be con- 
tinuous deformat.ions of one another.  Such  a cont.inuum 
of solut.ions occurs if a.nd only if A +  has its characteristic 
polynomial nonequal to  its minimal polynomial. Other- 
wise t,here  are at most 2" solutions  (there  may  actually  be 
less due  to complex or  repeated eigenvalues of A+). 
Note  that  there mill be a finite number of solutions if 
and only if A+ has a circulant  vector, i.e., if there exists a 
vector x such that { X ,  A+x, * , (A+)"-%} forms a 
linearly  independent, set,. This occurs, int.erestingly 
enough,  in a.ZZ controllable single-input systems since t.he 
controllabiliby of f = Ax + bu implies the cont,rolla.bility 
of x* = A+x* + bu. (This corresponds to  state feedback 
and hence preserves contzollability.) 

Remurk 19: When A is merely positive semidefinite, 
then Theorem 6 becomes somewhat more complicated. It 
may  be shon-n that 

So(A - BR-'(  B'K + C ) )  = X(A) 

(X denotes  null space) and is consequently independent 
of K. Thus  any solution R agrees with K +  and K -  on 
%(A). If one a.ssumes (without loss of generality) the 
matrix A +  brought in t.he form 

A = y: $+I 
svith Re A(&+) < 0 and Re X(A2+) = 0, t.hen one mag 
concentrate  on solving the equat,ion 

A l + ' ~ l + K  + Al+KAl+ = - A ~ + K B I R - ~ B ~ ' A ~ + K  

and this may  be done using the methods of Theorem 6. 
The solut,ions A +K may be written in terms of A1 +K as 

[Ab+" J. 

The genera.1 solutions A+K still  are of the form A ( I  - P )  
wit.h P t,he projection satisfying t.he equations P'A = 

- -  - 
.- . ~. . . - ,. . . . . . 

. .  
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Remark 20: Theorem 6 is of theoretical  interest in the 
sense that t,his identification of all  solutions  enhances 
the underst,anding of, for example, the behavior of nu- 
merical algorithms for solving the ARE: However, there 
are  certain  areas of application where knowledge of all 
solutions of the  ARE  is of intrinsic  importance. They 
lead, for instance, to net.m-ork synthesis  realizations which 
employ the minimum possible number of resistors a.nd, 
in the inverse problem of cova.riance generation, to 
coloring filters with the minimum possible number of 
inputs. 

Example 2 
Consider the ARE K 2  = I ,  K = K'. The solutions K +  

and K -  are I and - I ,  respectively. By  Theorem 6, the 
genera.1 solution  is of t.he form K = - I  + 2P, with P 
an  arbitrary ort.hogona1 projection. Considering now the 
case n = 2, we see (geometrically) t.hat an  arbitrary 
orthogonal  projection  (other than P = 0 and P = I xhich 
yields K +  a.nd K-)  ma.y be expressed as 

cos2 8 sin e cos e 
P = [cos e sin 0 sin2 e 1 

which yields the solutions 

K = & I ,  II cos 28 sin 20 
sin 2e -COS 2e 1 

with e an  arbitrary  parameter. This could of c o m e  have 
been obtained  directly from the  equation K2 = I .  

VII. LEAST  SQU-4RES  STATIONARY  OPTIMAL  CONTROL 

In  this section we return to the  optimal control problems 
discussed in Sections I11 and  IV.  With Theorem 5 and 
Lemma 6 a t  hand,  the solution of the zero termina.1 state 
problem becomes straightforward. 

Theorem 7 
Assume that  the system x = AX + BU is controllable 

and  that R = R' > 0. Let V +  and V -  be as defked in 
Section 111. Then V+ > - 00 and V -  < + a if and only 
if t.here exists a real  symmetric  solution to  the ARE. 
Moreover, V +  = (x, K+x) and V -  = ( X ,  K-x). The 
infimum in V+(xo)(V-(xo)) is att,ained if and only if 
x.  E s c f ( A + ) ( ~ - ( A - ) ) ,  and  thus a  minimum  exists for 
all x. if and only if K+ > K-. Finally, this minimum is 
uniquely attained  by  the feedback control law 

u* = -R- l   (B'Kf  + C)x(-R-'(B'K- + C ) X )  

and leads t,o the closed-loop response equations 

x* = A+x*(X* = A-x*) 

x* (O)  = xo. 

Proof: Assume first, t,hat K +  > K-. Then  Re X(A+) < 0. 
AP,  PA-P = PA-, and AA+P = APA+P. These  equations BY Lemma 6, 
are equivalent. to  the ARE, a.nd one mag work from these 
equations  in order to det.ermine P .  We remark  t.hat A = (xo,  K+x0) + 1- 1 1 ~ 1  + R-'(B'K + c)xllR2 dt 
still sa.t.isfies AA+ + A-'A = 0, but  that A+ and A-' 
may  or  may  not be simila.r. 2 (xo, K+xo> 



for all u E Lze+ such tha,t limt,, x(t )  = 0. Thus V+ = 
{xo, K+xo) and equa.lity is attained if a.nd only if u = 
--R-I(B'K + C ) x  almost everywhere. 

Assume now tha,t K +  2 K - .  Substituting Q + e l ,  
B > 0, for Q yields K,+ > KG- .  Letting B + 0 yields limelo 
Kt+ 4 K+ and lim,Lo K,-  t K- ,  and  the result in this 
case follows by  continuity of V ( E )  for fixed u. The t,heorem 
is proven in  an analogous way for V-. 

As is shorn  in t,he foregoing, the fixed endpoint ca.se 
causes no difficulties. The free endpoint problem is more 
subtle since, even if t,he infimum exists, it may  very well 
be  that  the closed-loop system  is unst,able. The following 
theorem shows that  this will only happen exceptionally. 

Theomn 8 
Assume t.hat  the  system x = Ax + Bu is controllable 

and  that R = R' > 0. Let Vf+ be as defined in Section 111. 
Then Vf+ > - if and only if there exists a  real sym- 
metric  nonpositive definit.e solution t,o the ARE.  Thus 
Vf+ > - m if and only if K -  5 0. Moreover, when 
K -  < 0, then Vf+ = V +  = ( x ,  K f x ) .  Finally,  thisinfimum 
is a minimum, and  the optimal closed-loop system i* = 
A+x* is  asymptotically  &able if t.he combined inequalit,ies 
K -  < 0 a.nd K +  > K -  hold. 

Proof: By Theorem 1, V I +  > - m if and only if V -  5 
0. The first part of the t,heorem thus follows from Theorem 
7. Assume now t.hat K -  < 0 and K +  > K- .  We then need 
to show that, limt,-, K(t )  = K+,  with K ( t )  the solution 
to the Riccati differential equat.ion 

K = -A'K - KA + ( K B  + C')R-'(  B'K + C )  - Q 

with  initial condition K(0)  = 0. Let A-K = K - K - .  
Then A-K satisfies 

d 
at 
- A-K = -A-'A-K - A-KA- + A - K B R - ~ B ' A - K  

and A-K(0)  = - K -  > 0. This differential equat-ion has 
an  obvious  variational  interpretation  in  terms of a finite 
time  optimal control problem with a penalty on the 
terminal  st,atc. This shows that A-H(t) exists and is 
positive definite on t 5 0. Thus Z = (A-K) - l  exists for 
t 5 0 and satisfies % = A - z  + zA-' - BR-'B'. Let 

and A Z  = Z - Z, satisfies (d /d t )AX = A-AZ + 
AZA-' .  Since Re X(A-) > 0, this shows t,hat.  limt+- 
Az( t )  = 0 and hence limt,- , K( t )  = K + .  Consequently 
ITf+ = V +  = ( x ,  K+x) when K -  < 0 and K +  > K-.  It 
remains to be shown that  this also holds \\*hen K+ >_ K -  
and K -  < 0. This  again follows from a  continuit,y argu- 
ment  by  letting E 4 0 after  substitut,ing Q + EZ for Q. 

8 ,  = ( K +  - K-)- ' .  Thus A-Xm + ZJ-' = BR-IB', 

Remark 21: Examination of t,he proof of Theorem 8 
shows t,hat, the  Riccati different.ia1 equation 

K = -A'K - KA + (KB + C')R-'(B'K + C )  - Q 

yields limt,-, K( t )  = K + ,  when K(0)  > K -  and limt+, 
K(t) = K -  when K(0)  < K+.  (In order to shorn the 

+ indicates direction 
of flow as t t I '  
Fig. 2. Behavior of Riccati differential equation. 

convergence required in Theorem 8 we needed to make 
sure that K(0)  = 0 > K- . )  A more detailed  analysis shows 
that  the R.iccat,i different.ia1 equation  behaves  qualitatively 
as is  schematically shown in Fig. 2. (This figure is t.0 be 
int,erpreted  with  imaginat,ion since two-dimensiona.1  pic- 
tures never represent. flows in the space of nonscalar 
symmetric  matrices.) Of particular int,erest are  the local 
st.ability conditions of the equilibria. It is easy tlo see tha.t 
if Re X(A+) < 0,  then K +  is locally asymptotically stable 
in  the negat,ive t.ime direction,  and K -  is locally asgmptot- 
ically stable  in  the forward  time direct,ion. Xone of the 
other solut.ions enjoy  these stabi1it)y properties. Thus if the 
Riccati differential equat,ion  approaches  a  limit  limt+ - , 
K(t)  Z K + ,  then t,he backward integrhon is unstable at 
t,his  limit. 

Remark 2.2: The Newton-Raphson algorit.hm provides a 
suit.able met.hod for solving t,he ARE [17], [18]. It ma.y 
thus be shomx that  an init.ia.1  choice KO = KO' such that 

Re X(A - BR-l(B'Ko + C ) )  < 0 

yields a well-defined series 

K1 = Kl' > Kz = Kz' > * . . > K, 
= K,' > . . * > K+,  with lim K ,  = K +  

il+ 0 

and  that  an initial choice wit.h 

Re X(A - BR-'(B'Ko + C ) )  > 0 

yields a. well-defined series 
Kl = KI' < K2 = K,' < * . * < K ,  = K,' < . ' . < K - ,  

with limn-, K ,  = K- .  

Remark 23: A good exa.mple of the pathological cases 
which Theorem 8 does not, deal with  is given by  the 
trivial  optimization problem which consist,s in minimizing 
&' !!u112 dt. The relevant, Riccat,i equation becomes 

-A'K - KA + KBB'K = 0. 

Thus K = 0 is  a  solution; it is in  fact t,he solution which 
lea.ds to  the free terminal t,ime opt,imal control. It is the 
maximum (minimum) solutrion if Re X(A) 4 0 (20). 
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Otherwise K = 0 will be an intermediate  solution  and  the 
Riccati differential equation fa.ils to converge t,o K+. 
When Re X(A) # 0 and one eigenvalue has positive real 
part,  then  the closed-loop response is not st.able even 
though  there exists a solution to the ARE which stabilizes 
the closed-loop system. 

Remark 24: Let 

v* = Em i d  lT w(x, u) dt 

subject to the constraints x = Ax + Bu, x ( 0 )  = xo, and 
x(T)  = X,. It may  be shown that q* > - 03 if the condi- 
tions of Theorem 7 are satisfied. In fact, 

T + m  &he+ 

v* = ( x O ,  K + x ~ )  - ( X - ,  K-X,). 

This shows that  the condition K- 5 0 is  a necessary 
condition for the free endpoint problem to have a solution. 
Assuming now that K -  5 0,  then we may be lead to 
think  that  by  ncmizing I)* over x,, one obtains the 
infimum of the free endpoint  control problem. This  is  the 
case if K- < 0 but not necessarily otherwise, as shown by 
the example in the previous remark. 

Remark 25: The condition K- < 0 as a condition for the 
solution of t,he free endpoint problem is a considerable 
improvement over [3, theorem 23.61. This reference gives 
the condit,ion K+ < 0 as a sufficient condit,ion for t.he 
existence of a  minimum. Since K -  1. K+,  this rendition 
is thus a special case of ours. 

Remark 26: The  ARE loses its significance in singular 
cont.ro1 problems, i.e., when R is a singular  nmtrix.  A 
very convenient way of treating  such problems is by 
replacing R by R + e l ,  e > 0, and lett,ing e J. 0. If the 
infimum is bounded at E = 0, then  it is  bounded for e 2 0 
and  thus Kc+ and K,- are well defined for e > 0 as the 
ma,ximum and minimum  solution to  the ARE, Kith R 
replaced by R + eZ. Since KG+ and K,- are monot,one 
functions of e ,  it follows that lim,l Kc+ and  limel , K,- 
exist. Of course these  limits  are not solutions of a  Riccati 
equa.tion but axe the maximum and t,he minimum solubion 
to  the LNI. Thus  by defining K +  and K- in t.his way, 
one may conclude that, V +  = {x ,  K f x )  and 

V -  = ( X ,  K-X)  

also in the singular ca.se. 

VIII. CONCLUSIOXS 
Let us briefly recapitulate  the major  results of this 

paper. We use the   no thon  inbroduced in Sections I1 a.nd 
111. 

Consider fist  the  infiniktime least. squa.res opt,imal 
cont,rol problem wit,h the stabi1it.y condit,ion 1imt+= 
~ ( t )  = 0 as an explicit constmint. Then t.he condit.ion 
V+ > - (i.e., boundedness of t,he infimum) is equiv- 
alent t.0 any of the following conditions: $ w(x, u)  dt 2 
0, i.e., this inequalit,y holds for all u such that x(0)  = 
x ( T ) ;  V -  < + a, ; t,here exists as V a fundon  which 
sat-isfies the  DIE; t,he FDI H(--jw, jw) 2 0 is  valid for all 
real w ;  there exists a. real symmet.ric solution to  the 

LMI;  there exists a rea,l symrnet,ric solut.ion tu  the  &MI; 
and t,here exist,s a  real  symmetric  solution to the ARE. 
(The  last two st,at,ements  make sense only if R > 0.) 

The value of V +  is given by the quadrat,ic form V+ = 
( x ,  Kcx), where Kf is the maximum real  symmetric 
solution of either the L M ,  the  QMI, or the  ARE.  This 
infimum may  not be a minimum because the optimal 
closed-loop system 

X* = ( A  - BR-'(B'K + C))X* 

may  not be asymptotically  stable. It is asymptotically 
&able if and only if K+ > K - ,  where K- is the minimum 
real  symmetric solution of eit.her the LMI, the  &MI, 
or the ARE. In frequency domain terms  this condition 
requires tha.t  there exist,s an e > 0 such that 

H(- jw ,  jw) 2 eB'(- Zjw - A')-'(Zjw - A)-'B 

for all  real w .  
Consider now the infinite time  least.  squares  optimal 

control problems without  restrictions  on t.he behavior of 
x( t )  at 03. Then  the condit,ion V,+ > - Q, (i.e., the boun- 
dedness of t.he infimum) is equivalent to any of the 
following conditions: ~ ~ w ( x ,  u) dt >_ 0, n-henever ~ ( 0 )  = 
0; 17- 5 0; V,+ > - 00 ; there exists a V function V 5 0 
which satisfies t<he DIE; H ( s ,  s) 2 0 t,hroughout Re 
s 2 0; there exist.s a  real symmet,ric nonpositive de f ide  
solut,ion to t.he LMI; or t,o the QMI; or t.0 the  ARE. A 
general characterizat,ion of t.he value of P f +  is not. known. 
When K -  < 0, then VI+ = Vf.  I n  frequency-domain 
terms  this requires  tha.t,  there exists an e > 0 such that 

E(?, S) 2 E ( S  + .T)B'(Z.T - A')-'(Zs - A)-'B 

for Re s 2 0. The infimum V,+ = V +  is  at,tained,  and  the 
optimal closed-loop system 

X* = ( A  - BR-l(B'K + C))X* 

is asymptotically st.able if the  strict inequalities K -  < 0 
and K+ > K- hold. 

We conclude Kith two remarks which contrast the 
results n3.h t,he ideas based on  spectrum  factorization 
and t.he methods based on tshe  Hamiltonian  matrix. 

Renmrk 27: Consider t.he following equa,tion in  the 
rationa,l  matrix W(s)  : 

H(-s ,  s) = W'(-s)W(s). 

This factorization  equation (FE) plays  a  very important 
role in applied mathemat>ics. Its relevance in filt.ering and 
prediction is \vel1 knonn through t.he n-ork of Wiener 
[19], and it has been developed as  a met,hod for solving 
infinite time  least squa,res optimal cont.rol problems by 
Brockett. [20]. The theoret>ical aspects of the FE have 
been studied  in  great generalit,g by Youla 1211. For a 
state-space in6erpretation of these  results, see t.he work of 
Anderson (e.g., [22]). 

It is usually assunled t:hat. the FE is, in some sense, t,he 
analog of t.he ARE.  This is t,rue up to  a. point. but., as x e  
shall see, the relationship wit.h t.he LRII goes a  lot  further. 

Consider first, 6he LMI and assume t,hat. K = K' is a. 
solut.ion. Let P ( R )  be factored  as 
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i.e., d ( x ,  u )  = ~ ( M x  + Null2 is the "dissipa,t.ion rate" 
since it sa.t.isfies 

d 
dt 
- ( X ,  K x )  + W ( X ,  U )  = d(x, U )  

along solutions of i = Ax + Bu. Premultiplying this 
equation  by [ B'( - Is - A')-' I ]  and postmultiplying  by 

- :'-'"I 
shows that 

W(S)  = N + M(ZS - A)-'B 

satisfies the  FE.  The converse is true as well, i.e., if N + 
M(Zs - A )  -I B satisfies t.he FE, t.hen 

To show t,he special role pla.yed by  the solutions of the 
ARE, assume that R > 0 and  let q be t.he number of rows 
of M and N. Then q 2 rank R. In  fact,, a simple calcula- 
tion shom t,hat we may  t,ake q = rank R if and only if 
K is a solution to  the ARE.  The mat,rix M is then given 
in  terms of K and N by M = NR-I (B'K + C).  Thus 

W(S)  = N(Z + R-'(B'K + C)(Zs - A)-'B) 

wit,h N a.n (m X m) matxix which satisfies N'N = R 
a.nd K a solution to  the ,4RE, defines the  set of solutions 
of the FE for which W(s)  is a square (m X m) matrix, 
i.e., W has the minimum number of rows. 

Consider now the roles of K +  and K-. Since 

[ I  + R-'(B'K + C)(Zs - A)-'B]-' = Z 
- R-' (B'K + C)(Zs - A + BR-'( B'K + C))-'B 

it follows t,hat W(s)  is  square a.nd that  its inverse  is 
analytic  in Re s > 0 ( < O )  if it is generat.ed by K + ( K - ) .  
By Youla's  result [21, theorem 21 it  follows tha.t  such a 
W(s) is unique. Thus 

W + ( S )  = N(Z + R-'(B'K+ + C)(ZS - A)-'B) 

with N an (nt X m) matrix satisfying N'N = R,  yields 
the so-called  "spectxal factorization" of H(-s ,  s), and 

W-(S)  = N(Z + R-'(B'K- + C)(ZS - A)-'B) 

yields t,he  "anti-spectral factorization." 
In conclusion, every solution to t,he LMI  generate 

a solution t.0 t.he FE, and  the solut.ions of t,he ARE a.re t.he 
minimum ra.nk solut.ions. Note, however, that,  this does 
not yet. exhaust, t.he set of solutions t.0 t>he FE since we 
are rest>ricting W(s)  to  have its singularities a.t t.he eigen- 
values of A. Finally,  let it, be mentioned t,hat. t,he nature of 
t,he solut,ion W+(s) may be given as a  very general operat,or 
theoretic  interpretation when Re X(A) < 0, but, that it 
is hard  to see nlathematic.ally x5-ha.t is going on when 
this is not  the case. 

Renzark 28: Other  t.han the LMI, the &MI, and  the  ARE, 
or the FE, t,here  is a third  avenue of approah to  the prob- 
lems under considerat,ion, namely, via t,he  state-costate 
two-point  boundary  value problem which results  from  the 
appIica.tion of Pontryagin's minimum principle. This 
approach  leads to  the matrix 

z =  [ A - BR-'C 
C'R-IC - Q -A' -BR-lB'  + C'R-IB' I .  

Let 

J = [ '1 .  -z 0 

Then JZ = (JZ) ', i.e., Z is a Hamiltonian  matrix. 
Note  that 

det ( I s  - 2') = (-1)" det (-Zs - A') 

edet, H(-s ,  s) det ( I s  - A ) .  

Thus (- 1)" det ( I s  - 2) may be spectral  factored as 
A(-s)A(s) .  A computationa.1 algorit,hm for solving the 
AR.E based on A(s) is out.lined in [18]. This algorit,hm 
leads to K+, when A(s) is taken  to be Hurwitz,  and to 
K - ,  when A( - s) is taken t.0 be Hurwitz. 

Another mebhod of solving t.he ARE which is based on 
the Ha.miltonian ma.trix 2 has been int,roduced in [23] 
and more generally by  Potter  in [24]. Potter's analysis 
was based on the restriction that Z has  distinct eigen- 
values. This assumption may be removed  as shown in 
[14].  This t.echnique is based on the observation that  the 
ARE  mag  be  written  as 

[ I  K ] J Z [ k ]  = 0. 

From  this it is easy to see that K is a solut-ion of the 
AR.E if and  only if t.here exists an (n X n) matrix L such 
that 

z [ 3  = C : ] L  

i.e., the vectors in  the mat,rix 

[;I 
span  an invaria.nt  subspace of 2. Thus if t,he  vectors in 

span  an  invariant subspace of Z and M-I exists, then 
NM-' is a solution.  Symmetry of K implies that, this 
subspace S sa.t,isfies the a.ddit.iona1 condition SI = JS. 
Based on these  properties one may  then construct,  all the 
solutions of the &E. In  terms of the eigenvectors 

ei = E] of z 

this yields 
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(assuming this inverse exists) as the general solution of 
the ARE. The corresponding eigenvalues of 2 are also t,he 
eigenvalues of the closed-loop system  matrix A - BR-’ 
(B’K + C), and  the vectors 91, 92, . . * , g n  are  the corre- 
sponding eigenvect,ors. The  matrix K is Hermitian if 
X i  + Xj # 0, and  real if X1 and Xi are  simultaneously 
included in  these eigenvalues. This method produces the 
matrix K+ if Re X i  < 0 and K- if Re XI > 0. For complete 
details, see [14]. 

The classificat.ion of  a.11 the solutions to  the ARE 
provided  by t.his method  is similar t,o that, discussed in 
Section VI. It is  in fact quite  easy to spell out, t,he parallel 
in both methods. Although the met.hod based on the 
Hami1tonia.n matrix provides an  important procedure for 
numerical  computation of K+, we feel that  as a means of 
classifying a.11 the solutions of the ARE, it. fails to provide 
the insight and lacks t.he explicit.ness which the results of 
Section VI offer. The computational  methods xhich have 
been proposed based on t,he preceding characterization of 
K+ require  computing the eigenvalues and eigenvectors 
of Z. Note, holTever, that this procedure generat.es a 
lot of unnecessary information since what, one is really 
interest.ed in  is det.ermining the invariant,  subspace of 2 
associat.ed with its left half-plane eigenvalues. Roberts 
[25] has  recently developed an elegant, technique which 
achieves precisely this. 
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