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Abstract— Representations of linear time-invariant discrete-
time systems are discussed. A system is defined as a behavior,
that is, as a family of trajectories mapping the time axis into
the signal space. The following characterizations are equivalent:
(i) the system is linear, time-invariant, and complete, (ii) the
behavior is linear, shift-invariant, and closed, (iii) the behavior is
kernel of a linear difference operator with a polynomial symbol,
(iv) the behavior is kernel of a linear difference operator with
a rational symbol, (v) the system allows a linear input/output
representation in terms of polynomial matrices, (vi) the system
allows a linear constant coefficient input/state/output represen-
tation. If the system is controllable, then the system also allows
(vii) an image representation with a polynomial symbol, and
(viii) an image representation with a rational symbol.

Index Terms— Linear systems, behaviors, kernel represen-
tation, controllability, image representation.

I. INTRODUCTION

The aim of this presentation is to discuss representations
of discrete-time linear time-invariant systems described by
difference equations. We discuss systems from the behavioral
point of view. Details of this approach may be found in [1],
(2], [3], [4], [5].

We view a model as a subset Z of a universum U of a
priori possibilities. This subset Z C U is called the behavior
of the model. Thus, before the phenomenon was captured
in a model, all outcomes from U were in principle possible.
But after we accept Z as the model, we declare that only
outcomes from A are possible.

In the case of dynamical systems, the phenomenon which
is modeled produces functions that map the set of time
instances relevant to the model to the signal space. This is
the space in which these functions take on their values. In
this article we assume that the set of relevant time instances
is N (the theory is analogous for Z,R, and R ). We assume
also that the signal space is a finite-dimensional real vector
space, typically R".

Following our idea of a model, the behavior for the dy-
namical systems which we consider is therefore a collection
A of functions mapping the time set N into the signal space
R¥. A dynamical model can therefore be identified with its
behavior 2 C (R*)N. The behavior is hence a family of maps
from N to R". Of course, also for dynamical systems the
behavior # is usually specified as the set of solutions of
equations, for the case at hand typically difference equations.
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As dynamical models, difference equations thus merely serve
as a representation of their solution set. Note that this
immediately leads to a notion of equivalence and to cano-
nical forms for difference equations. These are particularly
relevant in the context of dynamical systems, because of the
multitude of, usually over-parameterized, representations of
the behavior of a dynamical system.

II. LINEAR DYNAMICAL SYSTEMS

The most widely studied model class in systems theory,
control, and signal processing consists of dynamical systems
that are (i) linear, (ii) time-invariant, and (iii) that satisfy
a third property, related to the finite dimensionality of the
underlying state space, or to the rationality of a transfer
function. It is, however, clearer and advantageous to approach
this situation in a more intrinsic way, by imposing this third
property directly on the behavior, and not on a representation
of it. The purpose of this presentation is to discuss various
representations of this model class.

A behavior 2 C (R¥)Y is said to be linear if w e B,w €
A, and o € R imply w+w' € & and ow € A, and time-
invariant if 68 C A. The shift ¢ is defined by (o f) (t) :=
f(t+1). The third property that enters into the specification
of the model class is completeness. Z is called complete if
it has the following property:

[w:N— R¥ belongs to %]
& W1y € Blj1y forallteN].

In words, £ is complete if we can decide that w: N — R¥
is ‘legal’ (i.e. belongs to %) by verifying that each of its
‘prefixes” (w(1),w(2),...,w(t)) is ‘legal’ (i.e. belongs
to %1+ So, roughly speaking, % is complete iff the
laws of # do not involve what happens at oo. Requirements
as w € £, (N,R¥), w has compact support, or limg_.w(t)
exists, risk at obstructing completeness. However, often
crucial information about a complete % can be obtained by
considering its intersection with ¢, (N,R¥), or its compact
support elements, etc.

Recall the following standard notation. R [£] denotes the
polynomials with real coefficients in the indeterminate &,
R(£) the real rational functions, and R™ "™ [&] the poly-
nomial matrices with real n; X n, matrices as coefficients.
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When the number of rows is irrelevant and the number of
columns is n, the notation R***[&] is used. So, in effect,
R**®[E] = UpenR¥®[E]. A similar notation is used for
polynomial vectors, or when the number of rows and/or
columns is irrelevant. The degree of P € R*** [£] equals the
largest degree of its entries, and is denoted by degree (P).
Given a time-series w: N — RY and a polynomial matrix
ReR"™[&], say R(E) =Ro+R1&E+---+Ri.EX, we can form
the new v-dimensional time-series

R(0)w=Row+Riow+---+R.o"w.

Hence R(0) : (R\)Y — (RN, with R(o)w:t € N —
Row(t)+Rw(t+1)+--+Ruw(t+1L) €R".

The combination of linearity, time-invariance, and com-
pleteness can be expressed in many equivalent ways. In
particular, the following are equivalent:

1) BC (R"’)N is linear, time-invariant, and complete;

2) 4 is alinear, shift invariant (:< 04 C 4), closed sub-
set of (R"’)N, with ‘closed’ understood in the topology
of pointwise convergence;

3) 3 Re R**¥[&] such that Z consists of the solutions
w:N—RY of

R(6)w=0. (1

The set of behaviors 2 C (R¥)" that satisfy the equivalent
conditions 1. to 3. is denoted by .#¥, or, when the number
of variables is unspecified, by .Z*. Thus, in effect, Z* =
Uren-Z". Since # =ker(R(0)) in (1), we call (1) a kernel
representation of the behavior 4.

III. POLYNOMIAL ANNIHILATORS

We now introduce a characterization that is mathematically
more abstract. It identifies a behavior Z € .Z’* with an R [§]-
module.

Consider % € #". The polynomial vector n € R'* [£] is
called an annihilator (or a consequence) of A if n(c)# =
0, ie. if n(o)w =0 for all w € A. Denote by .45 the set
of annihilators of %. Observe that .47 is an R[E]-module.
Indeed, n € ANy,n' € Ny, and a € R[] imply n+n' € Ny
and an € #. Hence the map % — V5 associates with
each # € ¥ a submodule of R'**[E]. Tt turns out that
this map is actually a bijection, i.e. to each submodule of
R!**[£], there corresponds exactly one element of .Z7. It is
easy to see what the inverse map is. Let J#" be a submodule
of R™T[E]. Submodules of R'*T[£] have nice properties.
In particular, they are finitely generated, meaning that there
exist elements (‘generators’) g1,82,...,8¢ € such that
consists precisely of the linear combinations o g1 + 0g2 +
.-+ + 0ggs Where the og’s range over R[&]. Now consider
the system (1) with R = col(gy,82,...,8) and prove that

‘/%er(col(gl,g2»---78g)(0)) =X

(2 is obvious, C requires a bit of analysis). In terms of (1),
we obtain the characterization

[ker(R(0))=2] < [A4z= (R)]

where (R) denotes the R[E]-module generated by the rows
of R.

The observation that there is a bijective correspondence
between .£¥ and the R[€]-submodules of R'*T[£] is not
altogether trivial. For instance, the surjectivity of the map

B=ker(R(0)) € L" — Nz=(R)

onto the R[&]-submodules of R!**[&] depends on the solu-
tion concept used in (1). If we would have considered only
solutions with compact support, or that are square integrable,
this bijective correspondence is lost. Equations, in particular
difference or differential equations, all by themselves, wi-
thout a clear solution concept, i.e. without a definition of the
corresponding behavior, are an inadequate specification of a
mathematical model.

The characterization of £ in terms of its module of
annihilators shows precisely what we are looking for in
order to identify a system in the model class £°: (a set
of generators of) the submodule 4.

IV. INPUT/OUTPUT REPRESENTATIONS

Behaviors in .Z* admit many other representations. The
following two are exceedingly familiar to system theorists.
In fact,

4. [Be L] & [3 integers m,p € Z,, withm+p =r,
polynomial matrices P € RP*P[£],Q € RP*™[£], with
det(P) # 0, and a permutation matrix IT € R"*¥ such
that % consists of all w: N — R¥ for which there exist
u:N—R" and y: N — RP such that

P(o)y=0(0)u )
and w=1I [ﬂ ]- The matrix of rational functions G =

P10 € (R(&E))P*™ is called the transfer function of
(2). Actually, for a given & € £7, it is always possible
to choose IT such that G is proper. If we would allow a
basis change in R¥, i.e. allow any non-singular matrix
for IT (instead of only a permutation matrix), then we
could always take G to be strictly proper.

5. [Be %] & [3 integersm,p,n€Z, withm+p=r,
matrices A € R**® B € R™™ C € RP** D € RP*", and
a permutation matrix IT € R"*¥ such that # consists
of all w:N — R¥ for which there exist u: N — R™,
x:N—R" and y: N — RP such that

ox=Ax+Bu, y=Cx+Du 3)

and w =TI {ﬂ ]. If we would allow a basis change in

R¥, i.e. allow any non-singular matrix for I1, then we
could always take D = 0.
(2) is called an input/output (i/0) and (3) an input/state/output
(i/s/o) representation of the corresponding behavior & € £".
Why, if any element BB € £° indeed admits a represen-
tation (2) or (3), should one not use one of these familiar
representations ab initio? There are many good reasons
for not doing so. To begin with, and most importantly,
first principles models aim at describing a behavior, but
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are seldom in the form (2) or (3). Consequently, one must
have a theory that supersedes (2) or (3) in order to have
a clear idea what transformations are allowed in bringing
a first principles model into the form (2) or (3). Secondly,
as a rule, physical systems are simply not endowed with
a signal flow direction. Adding a signal flow direction is
often a figment of one’s imagination, and when something
is not real, it will turn out to be cumbersome sooner or
later. A third reason, very much related to the second, is
that the input/output framework is totally inappropriate for
dealing with all but the most special system interconnections.
We are surrounded by interconnected systems, but only very
sparingly can these be viewed as input-to-output connections.
Fourthly, the structure implied by (2) or (3) often needlessly
complicates matters, mathematically and conceptually. A
good theory of systems takes the behavior as the basic
notion and the reference point for concepts and definitions,
and switches back and forth between a wide variety of
convenient representations. (2) or (3) have useful properties,
but for many purposes other representations may be more
convenient. For example, a kernel representation (1) is very
relevant in system identification. It suggests that we should
look for (approximate) annihilators. On the other hand, when
it comes to constructing trajectories, (3) is very convenient.
It shows how trajectories are parameterized and generated :
by the initial state x(1) € R* and the input u : N — R™.

V. REPRESENTATIONS WITH RATIONAL SYMBOLS

Our next representation involves rational functions and is a
bit more ‘tricky’. Let G € (R(&))*** and consider the system
of ‘difference equations’

G(o)w=0. @)

What is meant by the behavior of (4) ? Since G is a matrix of
rational functions, it is not evident how to define solutions.
This may be done in terms of co-prime factorizations, as
follows. G can be factored G = P~'Q with P € R***[§]
square, det(P) # 0,0 € R***[£] and (P,Q) left co-prime
(meaning that F =[P Q] is left prime, i.e.

[(U,F" e R*C[E) A (F =UF)]

= [U is square and unimodular ],

equivalently 3 H € R***[&] such that FH = I). We define
the behavior of (4) as that of

i.e. as

ker (Q (o))

Hence (4) defines a behavior € £". It is easy to see that
this definition is independent of which co-prime factorization
is taken. There are other reasonable ways of approaching
the problem of defining the behavior of (4), but they all
turn out to be equivalent to the definition given. Rational
representations are studied in [6]. Note that, in a trivial way,
since (1) is a special case of (4), every element of .Z¥ admits
a representation (4).

VI. INTEGER INVARIANTS

Certain integer ‘invariants’ (meaning maps from .Z° to
Z,) associated with systems in .Z* are important. One is
the lag, denoted by L(Z), defined as the smallest L € Z
such that [w]j ¢41)€ Bl forall t € N] = [we 4.
Equivalently, the smallest degree over the polynomial matri-
ces R such that 8 =ker(R(0)). A second integer invariant
that is important is the input cardinality, denoted by m (4),
defined as m, the number of input variables in any (2)
representation of 4. It turns out that m is an invariant (while
the input/output partition, i.e. the permutation matrix IT in
(2), is not). The number of output variables, p, yields the
output cardinality p (). A third important integer invariant
is the state cardinality, n (), defined as the smallest number
n of state variables over all i/s/o representations (3) of .
The three integer invariants m (%), n (%), and L () can be
nicely captured in one single formula, involving the growth
as a function of t of the dimension of the subspace ,%’“17,;].
Indeed, there holds

dim(%]}; +) < m (%)t +n(2)
with equality iff t > L (%).
VII. LATENT VARIABLES

State models (3) are an example of the more general, but
very useful, class of latent variable models. Such models
involve, in addition to the manifest variables (denoted by w
in (5)), the variables which the model aims at, also auxiliary,
latent variables (denoted by ¢ in (5)). For the case at hand
this leads to behaviors Py € L7+ described by

R(o)w=M(0), Q)

with R € R**¥[€] and M € R**1[&].

Although the notion of observability applies more gene-
rally, we use it here for latent variable models only. We call
Branl € LT observable if

[[(W,é]) S @fuu and (W,éz) S :@fuu]] = [[é] = éz]].

(5) defines an observable latent variable system iff M(A)
has full row rank for all A € C. For state systems (with x the
latent variable), this corresponds to the usual observability
of the pair (A,C).

An important result, the elimination theorem, states that
Z* is closed under projection. Hence %y € £¥** implies
that the manifest behavior

% ={w:N—R"|3£:N— R such that (5) holds}

belongs to .£¥, and therefore admits a kernel representation
(1) of its own. So, in a trivial sense, (5) is yet another
representation of Z.

Latent variable representations (also unobservable ones)
are very useful in all kinds of applications. This, notwi-
thstanding the elimination theorem. They are the end result
of modeling interconnected systems by fearing and zooming,
with the interconnection variables viewed as latent variables.
Many physical models (for example, in mechanics) express
basic laws using latent variables.
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VIII. CONTROLLABILITY

In many areas of system theory, controllability enters
as a regularizing assumption. In the behavioral theory, an
appealing notion of controllability has been put forward.
It expresses what is needed intuitively, it applies to any
dynamical system, regardless of its representation, it has the
classical state transfer definition as a special case, and it is
readily generalized, for instance to distributed systems. It is
somewhat strange that this definition has not been generally
adopted. Adapted to the case at hand, it reads as follows. The
time-invariant behavior 2 C (R*)" is said to be controllable
if for any w| € &, wp, € £, and t| € N, there exists a t € N
and a w € & such that w(t) =w; (t) for 1 <t < ty, and
w(t)=wy(t—t; —tp) for t > t|+ty. For & € £*, one
can take without loss of generality w; = 0 in the above
definition. Denote the controllable elements of .Z° by £,
and of .Z¥ by £ ..

(1) defines a controllable system iff R(A) has the same
rank for each A € C. There is a very nice representation
result that characterizes controllability: it is equivalent to the
existence of an image representation. More precisely, # €
L2 o iff there exists M € R***[&] such that % equals the

con
manifest behavior of the latent variable system

w=M(c)L. 6)

In other words, iff Z =im(M(0o)). So, images, contrary to
kernels, are always controllable. This image representation of
a controllable system can always be taken to be observable.

For # € £, we define its controllable part, denoted by

Beontrollables S

Beontrollable :={wE€ B | V' €N, It" €Z,, and w € B
such that
w(t)=0for 1 <t<t'and
w(t)=w(t—1t —1") for t >t +t"}.

Equivalently, Beontrollable 18 the largest controllable subsys-
tem contained in 2. It turns out that two systems of the
form (2) (with the same input/output partition) have the same
transfer function iff they have the same controllable part.

IX. RATIONAL ANNIHILATORS

Consider # € £¥. The vector of rational functions n €
R** (E) is called a rational annihilator of % if n(c) % =
0 (note that, since we gave a meaning to (4), this is well
defined). Denote by J{gti"ﬂal the set of rational annihilators
of . Observe that .#ftonl js 3 R(&)-subspace of R T (&).
The map & — e/@““"*“ is not a bijection from ¥ to the
R()-subspaces of R** (&). Indeed,

rational __ rational ! o
[[‘/1{@/ - ‘/‘{@” ]] e [[*%controllable - ‘@controllable ]]

In fact, there exists a bijective correspondence between .27
and the R()-subspaces of R'** (&). Summarizing, R[E]-
submodules of R!'*T[£] stand in bijective correspondence
with £¥, with each submodule corresponding to the set of

polynomial annihilators, while R(&)-subspaces of R!**(&)

stand in bijective correspondence with £, with each
subspace corresponding to the set of rational annihilators.

Controllability enters in a subtle way whenever a system
is identified with its transfer function. Indeed, it is easy to
prove that the system described by

w2 = G(o)wi, w=mj, M

a special case of (4), is automatically controllable. This again
shows the limitation of identifying a system with its transfer
function. Two input/output systems (2) with the same transfer
function are the same iff they are both controllable. In the
end, transfer function thinking can deal with non-controllable
systems only in contorted ways.

X. STABILIZABILITY

A property related to controllability is stabilizability.
The behavior Z C (R*)" is said to be stabilizable if for
any w € Z and t € N, there exists a w' € & such that
w(t) =w(t) for 1 <t <+t, and w(t) — 0 for t — oo.
(1) defines a stabilizable system iff R(4) has the same rank
for each A € C with Real(A) > 0. An important system the-
oretic result (leading up to the parametrization of stabilizing
controllers) states that & € £" is stabilizable iff it allows
a representation (4) with G € (R(&))*”" left prime over the
ring RHL, (:={f € R(§) | f is proper and has no poles in
the closed right half of the complex plane }). # € £¥ is
controllable iff it allows a representation w = G(0)¢ with
G € (R(&))™ " right prime over the ring RHL..
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