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Abstract—This paper deals with properties of canonical
controllers. We first specify the behavior that they implement.
It follows that a canonical controller implements the desired
controlled behavior if and only if the desired behavior is
implementable. We subsequently investigate the regularity of
the controlled behavior. We prove that a canonical controller
is regular if and only if every controller is regular. In other
words, canonical controllers are maximally irregular.

Keywords: Behaviors, behavioral control, regular interconnec-
tion, regular controller, canonical controller, implementability.

I. CONTROL IN A BEHAVIORAL SETTING

It is common in control theory to view a controller as
feedback processor that accepts the plant sensor outpu
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control variables, and restricts their behavior. This restric-
tion is transmitted through the plant to the to-be-controlled
variables. The resulting system (i.e. the behavior of the to-be-
controlled variables with the controller attached) is called the
controlled systemit is the behavior of this system that should
meet the control specifications. This control architecture is
shown in figure 1.

The main advantages of the behavioral over the classi-
cal feedback point of view, are (i) its practical generality:
many control devices do not act as sensor/actuator devices
(dampers, heat fins, acoustic noise insulators, appendages
to enhance aerodynamic properties, etc., etc.), and (ii) its

Aheoretical simplicity. Control in a behavioral setting has been

'Sifffoduced in [10] and further developed in [4], [8], [12]. We

Its |n.puts and ;)‘_rodupes the actuator inputs as its outpu%Ter to these references and to [13] for further motivation
We like to call intelligent control: the controller acts as ?nd details

an artificially intelligent device that reasons how to reac
to sensory observations. In behavioral control, on the other
hand, the idea is to view a controller as a subsystem that is
designed with the purpose of achieving good performance of
the overall system in which it is embedded.

to—be—controlled
variables

CONTROLLER

PLANT

control
variables

\[\ CONTROLLED
SYSTEM

Control as interconnection

Fig. 2. The controlled behavior

The formal definitions of the plant, controller, and con-
trolled behavior are as follows. L&V and C denote the set
of all signalsw and ¢ that are a priori possible, before we
even modelled the plant. In dynamical systerg, and C
are typically the set of (smooth) signals from the time axis

More concretely, we start with a (to-be-controllggant, to the signal space® of the to-be-controlled variables, and
having two kinds of variablego-be-controlled variableand C of the control variables. In DESW and C are typically
control variables.A controller is a device that acts on the all words with letters from alphabet® and C.

Fig. 1.
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The full plant behavioris a subsetP;,;; of W x C: it

consists of those signal@v,c¢) compatible with the plant

dynamics. Acontroller C is a subset ofC: it consists of o PLANT —s |\ vg
those signals: which the controller allows. Theontrolled I

behavioris then defined by

CANONICAL CONTROLLER

K={weW]| JceC
such that(w, ¢) € Pry andce € C}.

Fig. 4. The canonically controlled systems
This definition of £ is illustrated in figure 2. If, for a given
full plant behaviorPy,;, there exists a controllet such that . .
the resulting controlled system equals then we callc  HHOWever, there is a second canonical controleanonicat,

implementableor implemented by. that has better properties. It is defined by
The controller synthesis problerns to find, for a given 1
. - ’ a1 := {c € C |3 v such that(v, ¢) € Pra,
plant with behavior Py, a controller C such that the canonical = {¢ 3w (v, ) full
resulting controlled behaviokk meets certain performance and (v, ¢) € Pran = v € D}.

specifications. In this paper, we will take this to mean thathe action of the second canonical controller is shown in

there is adesired controlled behavioP C W and that the figure 5, where we have replaced the connectors by symbols
control synthesis requirement s = D. suggesting ‘implies’.

R - DESIRED
| | - INVId CONTROLLED
BEHAVIOR
I control
variabies

Given a plant and a desired behavipr,
. i CANONICAL CONTROLLER
choose a controller that achieves this.

Il. THE CANONICAL CONTROLLER

The basic goal of the controller is to achieve a certain
desired behavior of the to-be-controlled variables. The
problem thus arises:

LHHH
|IHEENEN]
o]
=
>
Z
=

In a recent paper [5], [6], van der Schaft proposed an Fig. 5. The second canonical controller
eminent, universal candidate controller. It is constructed by
taking the plant and attaching (on the side of the to-be- The canonical controllers have all the features of a con-
controlled variables!) the desired controlled system to it, asoller that is based on anternal model Indeed, in deciding
shown in figure 3. Note that since in the canonical controllehow to constrain the control variables, the canonical con-
trollers achieve this by transmitting the imposed specification
on the to-be-controlled variables through the plant to the

control variables. The canonical controllers are a marvellous
—a— U idea. The action of th ical controllers is illustrated i
contrl INVId B CONTROLLED idea. The action of these canonical controllers is illustrated in
variables i B figure 6. It is easy to see that these canonical controllers both
I E—
to-be—controlled W
variables
CANONICAL
CONTROLLER

Fig. 3. The canonical controller

the terminals of the plant are reversed, we marked PLANT
upside-down (the mirror image, unavailable, would have been P |
better). Connecting this controller to the plant leads to the I 3 ¢
controlled system shown in figure 4. . .

The definition of this canonical controll€¥ .nonical iS

canonical canonical

Fig. 6. The action of the canonical controllers
C/canonical = {C eC | JveD such that

implementD if and only if it is implementable. Moreover,
(v,¢) € Prn @andov € D}.

the controlled behavior implemented by the second canonical
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controller is actually the largest implementable controlledHence thecontroller behaviorC constrains the control vari-
behavior contained iD. ablesc by a system of linear constant coefficient differential
In [5], [6] a number of the properties of the first canonicakequations. The controlled system is
controller have already been discussed. In the present article, o -
’ . . . Zcontrolled - (Ra R 7K)7
we go more deeply into these properties for linear time-
invariant systems. with the controlled behaviorK defined by

[Il. | MPLEMENTABILITY K={we e (R,R)| 3 ceC such thal(w,c) € Prun}.

We will henceforth restrict attention to linear time- AS @& consequence of the elimination theorem,
invariant differential systems. We refer to [9], [4], [13] for Zcontrollea € £*. Hencek is also governed by a system
an extensive introduction to this class of systems. We wiff linear constant coefficient differential equations. If, for a
freely use the following notation that has become standa@iVen Xpiants Xcontroller 1€2dS 10¥controliea, then we say the
in this area.£" denotes the class of linear time-invariant=controlied IS implemented bYcontrolier, @Nd thallcontrolied
differential systems withs variables. Thus by definition of is implementableThe question arises
£ ¥ = (R,R",B) belongs tog" if and only if there exists . . . .
a polynomial matrixR € R**¥[¢] such thathe behaviors Which behaviordC € £% can be implemented by attaching
is the solution set of the system of differential equations | & Suitable controllerC € £° to a givenPp € £77°7

R( d Yw =0 This question has a very concrete and intuitive answer.

] ] dt Theorem 1: Let Py € £°7¢ be given. The behavior
Concretely,B is defined by K € £¥ is implementable if and only if

B = {w e € (R,RY) | R(L)w = 0).

dt
h ¥ is the hidden behaviodefined b
We often write this asi € £¥ instead ofs € ¥, Often, VNere/V € £7 is thehidden behaviodefined by
a behavior is defined in terms of auxiliary variables. In this N = {w € €°(R,R") | (w,0) € Pran},

case, we use the termanifestfor the variables of interest
andlatentfor the auxiliary variables. I3 ¢ £"+/ is a system
involving the manifest variabless € ¢>(R,R¥) and the P :={w € €*(R,R") | 3 c such that(w, ¢) € Prun}.

latent variables/ € €>(R,R), then it turns out that the Note that it follows from the elimination theorem that

manifest behavio. defined by N, P € £¥. This theorem reduces (linear) control questions

B, = {w e €(R,RY) |3 £ € e(R,R) : (w,{) € B} to finding a sut_)spgce that is Wedged.in between two given
subspaces. This simple characterization was obtained after

is an element of”. This result, that the projection of a [10], first announced in [11], has since been pursued in

differential behavior is also a differential behavior, is calleda number of publications [3], [7], but the most extensive

the elimination theoremand of one of the central results exposition is given in [12].

in the theory of differential systems (see [9], or [4, section We repeat the idea of the proof of the ‘if’ part (the other

6.2]). The@>-assumption is made mainly for conveniencedirection is trivial), since it is of some relevance to the

and the results do not depend on this assumption (see pgnonical controller. Let

chapter 2] for a discussion of this issue). The differential d d

equationR(%)w = 0 is called akernel representatioffior R(@)w - M(ﬁ)c

. . d
B. Sometimes, we use the notatianr(R(Z;)) for B. A pe 5 kernel representation f@%.. Then R(4yw =0 is

kernel representation is calledinimal if and only if R has obviously a kernel representation df. Since ' C K

full row rank (meaning that its rank is equal to its numbe; fo|iows that K has a kernel representation of the form
of rows). F(L)R(L)yw = 0 for a suitableF’ € R***[¢]. It turns out

We now turn to the control problem. Consider the plant tha('ft at
F d M d =
St = (R, RY x RE, Pry) € £+, ()M (5 )e=0
Hence theplant behaviorPy,,, constrains the to-be-controlled 1S actually a controller that implemenis (the proof of this

variablesw and the control variablesby a system of linear US€SK € P). _
constant coefficient differential equations. The controller is 't IS important to observe that the controller that imple-

' and P is the manifest plant behaviodefined by

now assumed to be a system mentsiKC may not be unique, for example, becadsenay not
be unique. So, controllers that implement the same controlled
Seontroller = (R, R, C) € £°. behavior may have very different properties.
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IV. THE CONTROLLED BEHAVIOR IMPLEMENTED BY THE Hencec € and(C’ anonical-

canomcal ! canonical

CANONICAL CONTROLLER The converse&! . 1 CCl ronical IS ODViOUS.
Consider, for a given plar®g,;; € £9¢, and for a given This ends the proof of the lemma.
desired controlled behavioP € £¥ the associatedanonical Motivated by this lemma, we need henceforth only con-
controllers The first canonical controller is defined by sider the first canonical controllet/, . .. Note that the
, . canonical controller is well-defined even whén is not
canonical = (R RS, Canonical) implementable. The question what controlled behavior is
with €/, . given by actually imp!emented by the canonical controller is settled
in the following theorem.
Céanonical ‘= 1€ € €°(R,R°) | Jv e D Theorem 2: Consider Py, € £97°¢ and D € £. The
such that(v, ¢) € P }- controlled behavior implemented by the associated canonical

, , . controller C.,, . ica1 € £° I8
In terms of kernel representation,, .., IS the manifest canonical

behavior (with ¢ viewed as the manifest variable!) of ]IC =N+DnNnP
R(i)v _ M(i)c D(i)v —0 with A/ the hidden andP the manifest plant behavior.
dt dt’”’ dt ’ Proof: The implemented controlled behavior is the mani-
with D(4)v = 0 a kernel representation @?. fest w-behavior of
The second canonical controller is defined by Prun : R(4 . )w = (gi)
" (R Rc ) Céanomcal ( )1} = M( ) D(%)’U =0
canonical canonica This has the same manifest behavior as
with C2 el € £° given by R(C}it)v = M(4)e, d
R —v)=0 D(£)v=0
e = € € €2(R,R) | Jv such that(v, ¢) € Pran, () (w—v) =0, ()
and (v, ¢) € Pray = v € D). Now definew’ = w — v, and obtain
. L . . . . N R(L)w' =0
For linear time-invariant differential systems there is little . 4 dy, _ d
. ) DNP: D(5)v=0 R(5)v=M(F)e,
difference between these two canonical controllers. In fact, NiDAP w— w, 1o t

Lemma: C., onical € £ Conicar 1S NON-empty if and . '
only if N CD. If N C D, thenCl, ..o = Clhromical- This shows that indeeff = N +DnNP.

Proof: We first prove thate,co € C/. . = ¢ + The above theorem leads to the following corollary. It
e € C" . Assume(c1,¢z) € C”. " Then there is Shows that the canonical controller always implements a
» camoniea that(ws, ¢1) € Pru. T desired controlled behavior, provided it is implementable.
(w, 1 + ¢2) € Pral Corollary: The canonical controller implemen®® € £¥

= (w — w1, c3) € Pray (SiNCEPgyy is linear) if and only if D is implementable, i.e. if and only i C
= (w—wq) € D (sincecg € C nical DcP.
= w € D (sinceD is linear). V. REGULAR CONTROLLERS
1 "
He,\rl‘cet(%b@) € Cgﬁg;nicalc? (e1+e2) € coggicel’ _ Consider® € £*. Then it is well-known (see [9], [4) that
ext, observe € Ceanonical = ~€ € Ceanonicalr |MS  the variablegw,, wo, . .., wy) in B allow a component-wise

follows from
(—w, —c) € Pan < (w,¢) € Prn = w € D<= —w € D.
This immediately implies that i€/ ..., 1S non-empty,

partition into free inputs and bound outputs. This input/output
partition is put into evidence by the kernel representation

" i d d
then0 € C/  .icar @ndN C D. The latter is a Cf)nsequence P(=)y = Q(—)u, w = (u,y)
of we N & (w,0) € P = w € D. HenceCl, .., is dt dt
non-empty if and onlyV C D. with P,Q € R***[¢], P square andlet(P) # 0. In fact,

We now clinch the proof by showing that. " C D, then the partition can even be chosen so that the transfer function

Clononical = Cl v onical- TO Se€ this, assumee C/, . . G = P~'Q is proper. In this input/output partition of the-
Then 3 w € D such that(w,c) € Pry. Assume now variablesy andy are not unique, but the number of input and
(w', ¢) € Pgaui- Then output variables is invariant, i.e., this number is independent
(w" — w,0) € P (SiNCEPyy is linear) of the input/output partition, while the variables themselves
= (w —w) € N (by the definition of\) are not.

= (w' —w) € D (sinceN C D) This leads to two maps,p : £° — {0,1,...,w} with

= w’ € D (sinceD is linear). m(B) the number of inputs, anp(B) the number of output
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variables in%B, andm + p = w. In terms of a kernel controlled behavior can be irregularly implemented (for ex-
representation?(4)w = 0 of B, p(B) = w —m(B) = ample by the canonical controller). The condition is on the
rank(R). control variable plant behavioP, € £¢ defined as follows.
Recall that for a given plarfy,; € £°t¢ and a given con- —
troller C € £¢ we defined the manifest controlled behavior ’PC = {e |3 w such that(w,c) € Pf“”}"
K. In this section, we also need thdl controlled behavior |n other words,P. is obtained fromPg,;; by eliminatinguw,
Ktant € Pran defined by and viewing the control variablesas the manifest variables.
o Theorem 4: Let Py € £°1¢ be given,N € £ and
Ko := {(w, ¢) € Pran [ ¢ € C}- P € £ be the hidden and the manifest plant behaviors
The controllerC € £¢ is said to beregular if the following ~respectively, andP. € £° be the control variable plant

relation holds behavior. Then every controllef € £¢ is regular if and
only if P, = €*°(R,R°).
’P(Kfull) = p(Prun) +p(C)~‘ Proof: Let R(4)w + M(<)c = 0 be a minimal kernel

. . representation oPg,;;. Note thatP, = €°(R, R¢) is equiv-
Note that in a sense this means that the plant and ths P ful c ( ) is ed

troll i bined ind dent of h oth fent to R having full row rank. Supposé € £¢ is given
controfier equations combined are Independent of ach ot 9a minimal kernel representatiafi( -4 )c = 0. Combining
It can be shown that a controller is regular if and only if it

) . minimal kernel representations f@t;,; andC leads to
can actually be realized as a (possibly non-proper) transfer pd p full

function from an output variable to an input variable in R(gz) M(g) ] [ w ] —0
Pran for an input/output partition of. In a very real sense, 0 C(%) ¢ ’
therefore, a controller is regular if and only if it can beg kernel representation dfg,;.

viewed as an ‘intelligent controller’ that processes sensgff). sSupposeP, = ¢>(R,R¢), equivalently, thatR has

inputs outputs into actuator inputs ([10] for details). full row rank. It follows thatrank([ % #]) = rank(R) +
The question arises when a controlled behavior can q%nk(c) = rank([R M]) + rank([0 C]). Hence, the

implemented by a regular controller. We shall call such gontroller is regular.

controlled behavioregularly implementablelt turns out that  (only if): We need to show that if every controller is regular

regular implementability involves controllability [4, Chapterthenp, = ¢>(R,R¢). Assume, to the contrary, th@®. #

5]. In fact, if P is controllable thereveryimplementablell  goo(R Re<). This implies thatR does not have full row rank.

(,e. N C K C P) is regularly implementable [10], [2]. This Then there exists an equivalent minimal kernel representation
result has recently been generalized to uncontrollable systeg¥sp;, ,, of the form

in [1]. Given a behaviofP € £¥, we defineP.ontrollable, the d d

controllable part of? as the largest controllable sub-behavior Ra(g) Ml(g) ] [ w ] =0

contained irnP. The main results on regular implementability 0 My () ¢

obtained in these references are summarized in the followingth R, and 0 # M, having full row rank. We see that

theorem. the controllerC € £° with minimal kernel representation
Theorem 3: Let Py € £V, PN € £¥ be the Mﬂ%)c = 0 is a controller that is obviously not regular.
corresponding manifest plant behavior and hidden behaviorhis contradiction establishes that = €>°(RR, R¢). O

respectively, andP.onironable D€ the controllable part of

P. K e £7 is regularly implementable if and only if the v/| REGULARITY OF THE CANONICAL CONTROLLER

following conditions are satisfied: We now come to the issue of regularity of the canon-

)N C K CP, ical controller. The following theorem shows th@. =
2) K+ Peontrollable = P. ¢*(R,R°) is a necessary and sufficient condition for
In particular, if P is controllable, then every implementableC!, . = to be a regular controller. In other words, the

K is regularly implementable. Furthe)V" is regularly im- canonical controller is maximally irregular: it is regular if and
plementable if and only if every implementalilec £¥ is only if everycontroller is regular, and this does not depend
regularly implementable. on the desired controlled behavior that is being implemented
Note that by definition, iflC € £¥ is regularly imple- by the canonical controller.
mentable, then there exists a regular controller that imple- Theorem 5: Consider the plantP;,; € £°*¢, a desired
mentsk. This, however, does not mean that every controllecontrolled behaviorkC € £¥, assumed implementabld/(C
that implementsK is a regular controller. We shall now I C P), and the associated canonical control&f, . .... €
establish below a condition under which every controller i€£¢. The canonical controller implements regularly if and
regular. As we shall see, this is an issue that depends solelgly if P, = € (R, R¢).
on the plant, and not on the desired controlled behavior. lAroof : (if): If P. = €>°(R,RR¢), then, by the previous
fact, unless every controller is regular, every implementabkeorem, every controller is regular.
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(only if): Without loss of generality, assume thag,;; has
a minimal kernel representation of the form
d d d

Rl(—)w—i—Ml(—)c:O, Mg(*)CZO,
dt dt dt

with Ry and M, of full row rank. SinceA C K, K has a
minimal kernel representation of the form

d d
F(%)Rl(a)w =0.

Prun

[1]

(2]

Then, the following is a latent variable representation of the[3]

canonical behavior (with latent variablg.

d d d
4 . — J— =
canonical * Rl(dt)v + Ml(dt)c OvMQ(dt)C 07
d d
F(OR (L) =0.
(dt)Rl(dt)v 0

Eliminatingv from the equations of’

canonica

| (and using the

full row rank condition onR;) yields a kernel representation

of the canonical controlle€.,,, of the form:
d d d
= —)M;(—
) Mg )e
We see that.,, always repeats some laws Bf,;;, namely
the rows inM,. ThusCe.,, is a regular controller only if the

equationMQ(%)c = 0 is absent from the equations B%,;;.
This is equivalent taP, = € (R, R®). O

=0.

Recapitulating, we have shown that the following are

equivalent for a plant behavid?;,; € £97¢:

1) P. = €>*(R,R°): the plant control variables are free;

2) Every controller is regular;
3) The canonical controller is regular.

The conditionP, = €>° (R, R¢) is not particularly restric-

tive. It is satisfied in the standard LQG-like setting, with

additive ‘noise’ surjectively entering the observed output.
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