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Abstract— This paper deals with properties of canonical
controllers. We first specify the behavior that they implement.
It follows that a canonical controller implements the desired
controlled behavior if and only if the desired behavior is
implementable. We subsequently investigate the regularity of
the controlled behavior. We prove that a canonical controller
is regular if and only if every controller is regular. In other
words, canonical controllers are maximally irregular.

Keywords:Behaviors, behavioral control, regular interconnec-
tion, regular controller, canonical controller, implementability.

I. CONTROL IN A BEHAVIORAL SETTING

It is common in control theory to view a controller as a
feedback processor that accepts the plant sensor outputs as
its inputs and produces the actuator inputs as its outputs.
We like to call ‘intelligent control’: the controller acts as
an artificially intelligent device that reasons how to react
to sensory observations. In behavioral control, on the other
hand, the idea is to view a controller as a subsystem that is
designed with the purpose of achieving good performance of
the overall system in which it is embedded.
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Fig. 1. Control as interconnection

More concretely, we start with a (to-be-controlled)plant,
having two kinds of variables:to-be-controlled variablesand
control variables.A controller is a device that acts on the

control variables, and restricts their behavior. This restric-
tion is transmitted through the plant to the to-be-controlled
variables. The resulting system (i.e. the behavior of the to-be-
controlled variables with the controller attached) is called the
controlled system. It is the behavior of this system that should
meet the control specifications. This control architecture is
shown in figure 1.

The main advantages of the behavioral over the classi-
cal feedback point of view, are (i) its practical generality:
many control devices do not act as sensor/actuator devices
(dampers, heat fins, acoustic noise insulators, appendages
to enhance aerodynamic properties, etc., etc.), and (ii) its
theoretical simplicity. Control in a behavioral setting has been
introduced in [10] and further developed in [4], [8], [12]. We
refer to these references and to [13] for further motivation
and details.
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Fig. 2. The controlled behavior

The formal definitions of the plant, controller, and con-
trolled behavior are as follows. LetW andC denote the set
of all signalsw and c that are a priori possible, before we
even modelled the plant. In dynamical systems,W and C
are typically the set of (smooth) signals from the time axis
to the signal spacesW of the to-be-controlled variables, and
C of the control variables. In DES,W andC are typically
all words with letters from alphabetsW andC.



The full plant behavior is a subsetPfull of W × C: it
consists of those signals(w, c) compatible with the plant
dynamics. Acontroller C is a subset ofC: it consists of
those signalsc which the controller allows. Thecontrolled
behavior is then defined by

K := {w ∈ W | ∃ c ∈ C

such that(w, c) ∈ Pfull andc ∈ C}.

This definition ofK is illustrated in figure 2. If, for a given
full plant behaviorPfull, there exists a controllerC such that
the resulting controlled system equalsK, then we callK
implementable, or implemented byC.

The controller synthesis problemis to find, for a given
plant with behaviorPfull, a controller C such that the
resulting controlled behaviorK meets certain performance
specifications. In this paper, we will take this to mean that
there is adesired controlled behaviorD ⊆ W and that the
control synthesis requirement isK = D.

II. T HE CANONICAL CONTROLLER

The basic goal of the controller is to achieve a certain
desired behavior of the to-be-controlled variables. The
problem thus arises:

Given a plant and a desired behavior,
choose a controller that achieves this.

In a recent paper [5], [6], van der Schaft proposed an
eminent, universal candidate controller. It is constructed by
taking the plant and attaching (on the side of the to-be-
controlled variables!) the desired controlled system to it, as
shown in figure 3. Note that since in the canonical controller,
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Fig. 3. The canonical controller

the terminals of the plant are reversed, we marked PLANT
upside-down (the mirror image, unavailable, would have been
better). Connecting this controller to the plant leads to the
controlled system shown in figure 4.

The definition of this canonical controllerC′canonical is

C′canonical := {c ∈ C | ∃ v ∈ D such that

(v, c) ∈ Pfull andv ∈ D}.
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Fig. 4. The canonically controlled systems

However, there is a second canonical controller,C′′canonical,
that has better properties. It is defined by

C′′canonical := {c ∈ C | ∃ v such that(v, c) ∈ Pfull,

and (v, c) ∈ Pfull ⇒ v ∈ D}.

The action of the second canonical controller is shown in
figure 5, where we have replaced the connectors by symbols
suggesting ‘implies’.
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Fig. 5. The second canonical controller

The canonical controllers have all the features of a con-
troller that is based on aninternal model. Indeed, in deciding
how to constrain the control variables, the canonical con-
trollers achieve this by transmitting the imposed specification
on the to-be-controlled variables through the plant to the
control variables. The canonical controllers are a marvellous
idea. The action of these canonical controllers is illustrated in
figure 6. It is easy to see that these canonical controllers both

P

W

C

D
K’

K"

canonical canonicalC" C’

full

Fig. 6. The action of the canonical controllers

implementD if and only if it is implementable. Moreover,
the controlled behavior implemented by the second canonical



controller is actually the largest implementable controlled
behavior contained inD.

In [5], [6] a number of the properties of the first canonical
controller have already been discussed. In the present article,
we go more deeply into these properties for linear time-
invariant systems.

III. I MPLEMENTABILITY

We will henceforth restrict attention to linear time-
invariant differential systems. We refer to [9], [4], [13] for
an extensive introduction to this class of systems. We will
freely use the following notation that has become standard
in this area.Lw denotes the class of linear time-invariant
differential systems withw variables. Thus by definition of
Lw, Σ = (R, Rw,B) belongs toLw if and only if there exists
a polynomial matrixR ∈ R•×w[ξ] such thatthe behaviorB
is the solution set of the system of differential equations

R(
d

dt
)w = 0.

Concretely,B is defined by

B = {w ∈ C∞(R, Rw) | R(
d

dt
)w = 0}.

We often write this asB ∈ Lw instead ofΣ ∈ Lw. Often,
a behavior is defined in terms of auxiliary variables. In this
case, we use the termmanifestfor the variables of interest,
andlatentfor the auxiliary variables. IfB ∈ Lw+` is a system
involving the manifest variablesw ∈ C∞(R, Rw) and the
latent variables̀ ∈ C∞(R, R`), then it turns out that the
manifest behaviorBw defined by

Bw := {w ∈ C∞(R, Rw) | ∃ ` ∈ C∞(R, R`) : (w, `) ∈ B}

is an element ofLw. This result, that the projection of a
differential behavior is also a differential behavior, is called
the elimination theorem, and of one of the central results
in the theory of differential systems (see [9], or [4, section
6.2]). TheC∞-assumption is made mainly for convenience,
and the results do not depend on this assumption (see [4,
chapter 2] for a discussion of this issue). The differential
equationR( d

dt )w = 0 is called akernel representationfor
B. Sometimes, we use the notationker(R( d

dt )) for B. A
kernel representation is calledminimal if and only if R has
full row rank (meaning that its rank is equal to its number
of rows).

We now turn to the control problem. Consider the plant

Σplant = (R, Rw × Rc,Pfull) ∈ Lw+c.

Hence theplant behaviorPfull constrains the to-be-controlled
variablesw and the control variablesc by a system of linear
constant coefficient differential equations. The controller is
now assumed to be a system

Σcontroller = (R, Rc, C) ∈ Lc.

Hence thecontroller behaviorC constrains the control vari-
ablesc by a system of linear constant coefficient differential
equations. The controlled system is

Σcontrolled = (R, Rw,K),

with the controlled behaviorK defined by

K = {w ∈ C∞(R, Rw) | ∃ c ∈ C such that(w, c) ∈ Pfull}.

As a consequence of the elimination theorem,
Σcontrolled ∈ Lw. HenceK is also governed by a system
of linear constant coefficient differential equations. If, for a
givenΣplant, Σcontroller leads toΣcontrolled, then we say the
Σcontrolled is implemented byΣcontroller, and thatΣcontrolled

is implementable. The question arises

Which behaviorsK ∈ Lw can be implemented by attaching
a suitable controllerC ∈ Lc to a givenPfull ∈ Lw+c?

This question has a very concrete and intuitive answer.

Theorem 1: Let Pfull ∈ Lw+c be given. The behavior
K ∈ Lw is implementable if and only if

N ⊆ K ⊆ P

whereN ∈ Lw is thehidden behaviordefined by

N := {w ∈ C∞(R, Rw) | (w, 0) ∈ Pfull},

andP is themanifest plant behaviordefined by

P := {w ∈ C∞(R, Rw) | ∃ c such that(w, c) ∈ Pfull}.

Note that it follows from the elimination theorem that
N ,P ∈ Lw. This theorem reduces (linear) control questions
to finding a subspace that is wedged in between two given
subspaces. This simple characterization was obtained after
[10], first announced in [11], has since been pursued in
a number of publications [3], [7], but the most extensive
exposition is given in [12].

We repeat the idea of the proof of the ‘if’ part (the other
direction is trivial), since it is of some relevance to the
canonical controller. Let

R(
d

dt
)w = M(

d

dt
)c

be a kernel representation forPfull. Then R( d
dt )w = 0 is

obviously a kernel representation ofN . SinceN ⊆ K,
it follows that K has a kernel representation of the form
F ( d

dt )R( d
dt )w = 0 for a suitableF ∈ R•×•[ξ]. It turns out

that
F (

d

dt
)M(

d

dt
)c = 0

is actually a controller that implementsK (the proof of this
usesK ⊆ P).

It is important to observe that the controller that imple-
mentsK may not be unique, for example, becauseF may not
be unique. So, controllers that implement the same controlled
behavior may have very different properties.



IV. T HE CONTROLLED BEHAVIOR IMPLEMENTED BY THE

CANONICAL CONTROLLER

Consider, for a given plantPfull ∈ Lw+c, and for a given
desired controlled behavior,D ∈ Lw the associatedcanonical
controllers. The first canonical controller is defined by

Σ′canonical := (R, Rc, C′canonical)

with C′canonical given by

C′canonical := {c ∈ C∞(R, Rc) | ∃ v ∈ D
such that(v, c) ∈ Pfull}.

In terms of kernel representations,C′canonical is themanifest
behavior(with c viewed as the manifest variable!) of

R(
d

dt
)v = M(

d

dt
)c, D(

d

dt
)v = 0,

with D( d
dt )v = 0 a kernel representation ofD.

The second canonical controller is defined by

Σ′′canonical := (R, Rc, C′′canonical)

with C′′canonical ∈ Lc given by

C′′canonical := {c ∈ C∞(R, Rc) | ∃ v such that(v, c) ∈ Pfull,

and (v, c) ∈ Pfull ⇒ v ∈ D}.

For linear time-invariant differential systems there is little
difference between these two canonical controllers. In fact,

Lemma: C′canonical ∈ Lc. C′′canonical is non-empty if and
only if N ⊆ D. If N ⊆ D, thenC′canonical = C′′canonical.

Proof: We first prove thatc1, c2 ∈ C′′canonical ⇒ c1 +
c2 ∈ C′′canonical. Assume(c1, c2) ∈ C′′canonical. Then there is
w1 ∈ D such that(w1, c1) ∈ Pfull. Therefore
(w, c1 + c2) ∈ Pfull

⇒ (w − w1, c2) ∈ Pfull (sincePfull is linear)
⇒ (w − w1) ∈ D (sincec2 ∈ C′′canonical)
⇒ w ∈ D (sinceD is linear).
Hence(c1, c2) ∈ C′′canonical ⇒ (c1 + c2) ∈ C′′canonical.

Next, observe thatc ∈ C′′canonical ⇒ −c ∈ C′′canonical. This
follows from
(−w,−c) ∈ Pfull ⇔ (w, c) ∈ Pfull ⇒ w ∈ D ⇔ −w ∈ D.

This immediately implies that ifC′′canonical is non-empty,
then0 ∈ C′′canonical, andN ⊆ D. The latter is a consequence
of w ∈ N ⇔ (w, 0) ∈ Pfull ⇒ w ∈ D. HenceC′′canonical is
non-empty if and onlyN ⊆ D.

We now clinch the proof by showing that ifN ⊆ D, then
C′canonical = C′′canonical. To see this, assumec ∈ C′canonical.
Then ∃ w ∈ D such that(w, c) ∈ Pfull. Assume now
(w′, c) ∈ Pfull. Then
(w′ − w, 0) ∈ Pfull (sincePfull is linear)
⇒ (w′ − w) ∈ N (by the definition ofN )
⇒ (w′ − w) ∈ D (sinceN ⊆ D)
⇒ w′ ∈ D (sinceD is linear).

Hencec ∈ C′′canonical, andC′canonical ⊆ C′′canonical.
The converseC′′canonical ⊆ C′canonical is obvious.

This ends the proof of the lemma.

Motivated by this lemma, we need henceforth only con-
sider the first canonical controllerC′canonical. Note that the
canonical controller is well-defined even whenD is not
implementable. The question what controlled behavior is
actually implemented by the canonical controller is settled
in the following theorem.

Theorem 2: ConsiderPfull ∈ Lw+c and D ∈ Lw. The
controlled behavior implemented by the associated canonical
controller C′canonical ∈ Lc is

K = N +D ∩ P

with N the hidden andP the manifest plant behavior.
Proof: The implemented controlled behavior is the mani-

fest w-behavior of

Pfull : R( d
dt )w = M( d

dt )c
C′canonical : R( d

dt )v = M( d
dt )c, D( d

dt )v = 0

This has the same manifestw behavior as

R( d
dt )v = M( d

dt )c,
R( d

dt )(w − v) = 0, D( d
dt )v = 0

Now definew′ = w − v, and obtain

N : R( d
dt )w

′ = 0
D ∩ P : D( d

dt )v = 0, R( d
dt )v = M( d

dt )c,
N +D ∩ P w = w′ + v.

This shows that indeedK = N +D ∩ P.

The above theorem leads to the following corollary. It
shows that the canonical controller always implements a
desired controlled behavior, provided it is implementable.

Corollary: The canonical controller implementsD ∈ Lw

if and only if D is implementable, i.e. if and only ifN ⊆
D ⊆ P.

V. REGULAR CONTROLLERS

ConsiderB ∈ Lw. Then it is well-known (see [9], [4]) that
the variables(w1, w2, . . . , ww) in B allow a component-wise
partition into free inputs and bound outputs. This input/output
partition is put into evidence by the kernel representation

P (
d

dt
)y = Q(

d

dt
)u, w = (u, y)

with P,Q ∈ R•×•[ξ], P square anddet(P ) 6= 0. In fact,
the partition can even be chosen so that the transfer function
G = P−1Q is proper. In this input/output partition of thew-
variables,u andy are not unique, but the number of input and
output variables is invariant, i.e., this number is independent
of the input/output partition, while the variables themselves
are not.

This leads to two mapsm, p : Lw → {0, 1, . . . , w} with
m(B) the number of inputs, andp(B) the number of output



variables in B, and m + p = w. In terms of a kernel
representationR( d

dt )w = 0 of B, p(B) = w − m(B) =
rank(R).

Recall that for a given plantPfull ∈ Lw+c and a given con-
troller C ∈ Lc we defined the manifest controlled behavior
K. In this section, we also need thefull controlled behavior
Kfull ⊆ Pfull defined by

Kfull := {(w, c) ∈ Pfull | c ∈ C}.

The controllerC ∈ Lc is said to beregular if the following
relation holds

p(Kfull) = p(Pfull) + p(C).

Note that in a sense this means that the plant and the
controller equations combined are independent of each other.
It can be shown that a controller is regular if and only if it
can actually be realized as a (possibly non-proper) transfer
function from an output variable to an input variable in
Pfull for an input/output partition ofc. In a very real sense,
therefore, a controller is regular if and only if it can be
viewed as an ‘intelligent controller’ that processes sensor
inputs outputs into actuator inputs ([10] for details).

The question arises when a controlled behavior can be
implemented by a regular controller. We shall call such a
controlled behaviorregularly implementable. It turns out that
regular implementability involves controllability [4, Chapter
5]. In fact, if P is controllable thenevery implementableK
(i.e.N ⊆ K ⊆ P) is regularly implementable [10], [2]. This
result has recently been generalized to uncontrollable systems
in [1]. Given a behaviorP ∈ Lw, we definePcontrollable, the
controllable part ofP as the largest controllable sub-behavior
contained inP. The main results on regular implementability
obtained in these references are summarized in the following
theorem.

Theorem 3: Let Pfull ∈ Lw+c, P,N ∈ Lw be the
corresponding manifest plant behavior and hidden behavior
respectively, andPcontrollable be the controllable part of
P. K ∈ Lw is regularly implementable if and only if the
following conditions are satisfied:

1) N ⊆ K ⊆ P,
2) K + Pcontrollable = P.

In particular, if P is controllable, then every implementable
K is regularly implementable. Further,N is regularly im-
plementable if and only if every implementableK ∈ Lw is
regularly implementable.

Note that by definition, ifK ∈ Lw is regularly imple-
mentable, then there exists a regular controller that imple-
mentsK. This, however, does not mean that every controller
that implementsK is a regular controller. We shall now
establish below a condition under which every controller is
regular. As we shall see, this is an issue that depends solely
on the plant, and not on the desired controlled behavior. In
fact, unless every controller is regular, every implementable

controlled behavior can be irregularly implemented (for ex-
ample by the canonical controller). The condition is on the
control variable plant behaviorPc ∈ Lc defined as follows.

Pc := {c | ∃ w such that(w, c) ∈ Pfull}.

In other words,Pc is obtained fromPfull by eliminatingw,
and viewing the control variablesc as the manifest variables.

Theorem 4: Let Pfull ∈ Lw+c be given,N ∈ Lw and
P ∈ Lw be the hidden and the manifest plant behaviors
respectively, andPc ∈ Lc be the control variable plant
behavior. Then every controllerC ∈ Lc is regular if and
only if Pc = C∞(R, Rc).

Proof: Let R( d
dt )w + M( d

dt )c = 0 be a minimal kernel
representation ofPfull. Note thatPc = C∞(R, Rc) is equiv-
alent toR having full row rank. SupposeC ∈ Lc is given
by a minimal kernel representationC( d

dt )c = 0. Combining
minimal kernel representations forPfull andC leads to[

R( d
dt ) M( d

dt )
0 C( d

dt )

] [
w
c

]
= 0,

a kernel representation ofKfull.
(if): SupposePc = C∞(R, Rc), equivalently, thatR has
full row rank. It follows that rank([ R M

0 C ]) = rank(R) +
rank(C) = rank([R M ]) + rank([0 C]). Hence, the
controller is regular.
(only if): We need to show that if every controller is regular

thenPc = C∞(R, Rc). Assume, to the contrary, thatPc 6=
C∞(R, Rc). This implies thatR does not have full row rank.
Then there exists an equivalent minimal kernel representation
of Pfull of the form[

R1( d
dt ) M1( d

dt )
0 M2( d

dt )

] [
w
c

]
= 0

with R1 and 0 6= M2 having full row rank. We see that
the controllerC ∈ Lc with minimal kernel representation
M2( d

dt )c = 0 is a controller that is obviously not regular.
This contradiction establishes thatPc = C∞(R, Rc). �

VI. REGULARITY OF THE CANONICAL CONTROLLER

We now come to the issue of regularity of the canon-
ical controller. The following theorem shows thatPc =
C∞(R, Rc) is a necessary and sufficient condition for
C′canonical to be a regular controller. In other words, the
canonical controller is maximally irregular: it is regular if and
only if everycontroller is regular, and this does not depend
on the desired controlled behavior that is being implemented
by the canonical controller.

Theorem 5: Consider the plantPfull ∈ Lw+c, a desired
controlled behaviorK ∈ Lw, assumed implementable (N ⊆
K ⊆ P), and the associated canonical controllerC′canonical ∈
Lc. The canonical controller implementsK regularly if and
only if Pc = C∞(R, Rc).
Proof : (if): If Pc = C∞(R, Rc), then, by the previous
theorem, every controller is regular.



(only if): Without loss of generality, assume thatPfull has
a minimal kernel representation of the form

Pfull : R1(
d

dt
)w + M1(

d

dt
)c = 0, M2(

d

dt
)c = 0,

with R1 and M2 of full row rank. SinceN ⊆ K, K has a
minimal kernel representation of the form

F (
d

dt
)R1(

d

dt
)w = 0.

Then, the following is a latent variable representation of the
canonical behavior (with latent variablev).

C′canonical : R1(
d

dt
)v + M1(

d

dt
)c = 0,M2(

d

dt
)c = 0,

F (
d

dt
)R1(

d

dt
)v = 0.

Eliminatingv from the equations ofC′canonical (and using the
full row rank condition onR1) yields a kernel representation
of the canonical controllerCcan of the form:

M2(
d

dt
)c = 0 F (

d

dt
)M1(

d

dt
)c = 0 .

We see thatCcan always repeats some laws ofPfull, namely
the rows inM2. ThusCcan is a regular controller only if the
equationM2( d

dt )c = 0 is absent from the equations ofPfull.
This is equivalent toPc = C∞(R, Rc). �

Recapitulating, we have shown that the following are
equivalent for a plant behaviorPfull ∈ Lw+c:

1) Pc = C∞(R, Rc): the plant control variables are free;
2) Every controller is regular;
3) The canonical controller is regular.

The conditionPc = C∞(R, Rc) is not particularly restric-
tive. It is satisfied in the standard LQG-like setting, with
additive ‘noise’ surjectively entering the observed output.

VII. C ONCLUSIONS

The canonical controller is a very attractive idea, the
controllerpar excellencethat carries out internal model based
thinking. We showed that it always implements an imple-
mentable controlled behavior, but that it is, unfortunately,
maximally irregular. It is regular only if every controller
is. One issue that is worth investigating in the future is the
excessively large dynamic order of the canonical controller.
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