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ABSTRACT
Distributed algorithms allow wireless acoustic sensor net-
works (WASNs) to divide the computational load of signal
processing tasks, such as speech enhancement, among the
sensor nodes. However, current algorithms focus on perfor-
mance optimality, oblivious to the energy constraints that
battery-powered sensor nodes usually face. To extend the
lifetime of the network, nodes should be able to dynamically
scale down their energy consumption when decreases in per-
formance are tolerated. In this paper we study the relationship
between energy and performance in the DANSE algorithm
applied to speech enhancement. We propose two strategies
that introduce flexibility to adjust the energy consumption
and the desired performance. To analyze the impact of these
strategies we combine an energy model with simulations. Re-
sults show that the energy consumption can be substantially
reduced depending on the tolerated decrease in performance.
This shows significant potential for extending the network
lifetime using dynamic system reconfiguration.

Index Terms— Dynamic system reconfiguration, dis-
tributed signal processing, wireless acoustic sensor networks

1. INTRODUCTION

Speech enhancement is a field in audio signal processing
where the goal is to improve the quality and/or intelligibility
of a speech signal corrupted by noise. The need to enhance
a speech signal arises in several applications such as speech
communication and speech recognition, hearing aids, com-
puter games, etc. In order to exploit spatial diversity, several
microphone arrays equipped with wireless communication
capabilities can be deployed, enabling them to cooperate by
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exchanging processed signals to jointly execute a given signal
processing task. In this way, each array has access to more
audio signals captured at different locations. The resulting
system is referred to as a wireless acoustic sensor network
(WASN), which we define as a collection of battery-powered
sensor nodes, distributed over an area of interest, where each
node is equipped with several microphones, a processing unit
and a wireless communications module.

In WASNs, distributed algorithms are preferred due to
their ability to divide the computational effort among the sen-
sor nodes. However, optimizing the data exchange among
nodes becomes a crucial matter due to the high energy cost of
wireless communications, even when using low-power tech-
nology [1]. The distributed adaptive node-specific signal es-
timation (DANSE) algorithm has been proven to converge to
the centralized linear minimum mean squared error (MMSE)
estimator with reduced data exchange in [2, 3], and has been
applied to speech enhancement [4]. Nevertheless, the focus
on performance optimality may lead to short network life-
time, since the algorithm requires frequent communication
and is executed with fixed parameters, such as the number
of active nodes or the bandwidth and bit resolution of the ex-
changed signals. Adjusting these parameters allows nodes to
reduce their energy consumption at the cost of reduced per-
formance, resulting in an energy-vs-performance (EvP) trade-
off. To extend the lifetime of the network while keeping a
reasonable performance, it is necessary that nodes exploit this
trade-off to wisely invest the available energy.

In this paper, we study the influence of the aforesaid pa-
rameters on the performance of DANSE and on the energy
consumption of each node in a WASN. We explain the EvP
trade-offs associated with reducing the bandwidth and bit res-
olution of the exchanged signals, and how they add flexibility
to scale the energy consumption and the speech enhancement
performance. To analyze the impact of these strategies we
combine an energy model with simulations. The results show
that the energy consumption can be significantly reduced de-
pending on the tolerated impact on performance. Besides,
they show potential for dynamic network and node reconfig-
urability as a function of the performance requirements and
network lifetime.



2. SIGNAL MODEL AND THE DANSE ALGORITHM

2.1. Signal model

We consider a WASN composed of K nodes, where the k-
th node has access to Mk microphones. We denote the set
of nodes by K = {1, . . . ,K} and the total number of mi-
crophones by M =

∑
k∈KMk. The signal ykm captured by

the m-th microphone of the k-th node can be described in the
frequency domain as

ykm(ω) = xkm(ω) + vkm(ω), m ∈ {1 . . .Mk}, (1)

where xkm(ω) is the desired speech signal component and
vkm(ω) is the undesired noise component. In a pratical set-
ting, each signal is processed in frames of length L, on which
an L-point discrete Fourier transform (DFT) is applied (see
Section 2.3). Each sample in the frame is encoded with B
bits.

We denote by yk(ω) the Mk × 1 vector whose elements
are the signals ykm(ω) of node k, and y(ω) as theM×1 vec-
tor in which all yk(ω) are stacked. The vectors xk(ω), vk(ω),
x(ω) and v(ω) are defined in a similar manner. Throughout
this paper, we assume that there is a single1 desired speech
source s(ω). The desired speech signal components are then
given by

xk(ω) = ak(ω)s(ω), ∀k ∈ K, (2)
where ak(ω) is an Mk × 1 vector containing the acoustic
transfer functions from the source to each microphone, in-
cluding room acoustics and microphone characteristics.

2.2. The DANSE algorithm

In a speech enhancement application in a WASN, the goal of
the k-th node is to obtain an estimate of the speech signal
component captured by one of its microphones, for instance
the first microphone signal xk1(ω). The linear MMSE esti-
mator ŵk is given by

ŵk = arg min
wk

E
{
|xk1 −wH

k y|2
}
, (3)

where E{·} is the expectation operator and the superscript H
denotes conjugate transpose. For conciseness, we omit the
variable ω from now on, but we note that (3) has to be solved
for each frequency ω. The solution to (3) is known as multi-
channel Wiener filter (MWF), and is given by [2]

ŵk = R−1
yy Rxx e1, (4)

where Ryy = E{yyH}, Rxx = E{xxH} and e1 is the
M × 1 vector e1 = [1, 0, 0, . . . , 0]T . A key drawback of
solving (3) in a WASN is that it requires the node to have ac-
cess to y. This means that all microphone signals ykm have
to be exchanged between the nodes, which is unaffordable for
battery-powered nodes.

1We note here that the DANSE algorithm can handle any number of de-
sired sources [2, 3], but we use this assumption to simplify our EvP analysis.

The DANSE algorithm finds the node-specific estimated
signals {ŵH

k y,∀k ∈ K} without the need to exchange all the
microphone signals yk [2, 3]. We consider a fully connected
network as it is the simplest case, but we note that the algo-
rithm has also been adapted for a network with a tree topol-
ogy [5]. The main idea of the DANSE algorithm is that each
node broadcasts a linearly compressed single-channel signal

zk = fH
k yk, ∀k ∈ K, (5)

which every other node can receive. The compression filter fk
will be defined later (see (10)). The K × 1 vector collecting
all broadcast signals is denoted by z = [z1, . . . , zK ]T . Each
node has now access to M̃k = Mk + K − 1 signals, which
are stacked in the vector

ỹk =
[

yk

z−k

]
, (6)

where z−k denotes the vector z with the entry zk removed.
The vectors x̃k and ṽk are similarly defined. Then, each node
computes an MWF w̃k given by [2]

w̃k = R−1
ỹkỹk

Rx̃kx̃k
ẽ1, (7)

where Rỹkỹk
= E{ỹkỹH

k }, Rx̃kx̃k
= E{x̃kx̃H

k }. and ẽ1 is
the M̃k × 1 vector ẽ1 = [1, 0, 0, . . . , 0]T . We can partition
w̃k in two multi-channel filters, one applied to yk and one
applied to z−k, as follows:

w̃k =
[
hk

gk

]
, (8)

and write the estimated speech component at the k-th node as

x̂k1 = w̃H
k ỹ = hH

k yk + gH
k z−k. (9)

In the DANSE algorithm, the compression filter in (5) is

fk = hk, ∀k ∈ K. (10)

Notice that hk is also part of the estimator in (7). However,
the computation of (7) relies on access to the compressed sig-
nals z−k. To solve this problem, the set {hk,∀k ∈ K} is
initialized with random vectors, and then every node follows
an iterative process where w̃k and fk are updated according
to (7)-(10), based on the most recent values of ỹk.

Under assumption (2), it is proven in [2, 3] that the set
{w̃k,∀k ∈ K} converges to a stable equilibrium where, at
each node k, the estimated signal in (9) is equal to the cen-
tralized node-specific MWF output signal ŵH

k y.

2.3. Implementation details

For the EvP study we focus on DANSE with simultaneous up-
dates, named rS-DANSE, since it provides faster convergence
[3]. The algorithm is implemented in a weighted overlap-add
framework, in the same way as [4], using a root-Hann win-
dow with 50% overlap. This procedure allows to select the



frame length L equal to the DFT length and, as the audio sig-
nals are real, the filters w̃k are estimated at the frequencies
{ωl = 2π l

L , l ∈ {0, . . . , L/2}}. Since the speech compo-
nents at the k-th node x̃k are not observable, the correlation
matrix Rx̃kx̃k

cannot be estimated using temporal averaging.
However, due to the independence of x̃k and ṽk, it can be
estimated as Rx̃x̃ = Rỹkỹk

− Rṽkṽk
. The noise correlation

matrix Rṽkṽk
= E{ṽkṽH

k } can be estimated during silence
periods, when the desired speech source is not active. A voice
activity detection (VAD) module is necessary to use this strat-
egy. The correlation matrices Rỹkỹk

and Rṽkṽk
are estimated

using a forgetting factor 0 � λ < 1. Since the statistics of
the compressed signals z change with each update, a sufficient
number of new frames is needed to achieve a reliable estima-
tion of the correlation matrices. The parameter Nmin sets the
minimum number of frames of ’speech and noise’ and ’noise’
that have to be collected before an update is performed.

3. ENERGY VS PERFORMANCE TRADE-OFFS

A straightforward strategy to extend the lifetime of the net-
work is to reduce the number of active nodes. However, shut-
ting down nodes can have a too large impact on the speech
enhancement performance.

Since the communication costs are orders of magnitude
higher than the computation costs, is interesting to explore
more flexible options which keep the nodes active but reduce
the amount of data they need to exchange. Therefore, in this
section we propose two strategies for achieving a more flexi-
ble EvP trade-off: reducing the bandwidth and the bit resolu-
tion of the shared signals z.

3.1. Shared bandwidth reduction

Until now, we have considered distributed speech enhance-
ment over the whole available speech bandwidth, which is
half of the sampling frequency fs used by the nodes. In order
to obtain the optimal multi-channel filter (7), every node has
to transmit the complete set of DFT coefficients of its com-
pressed signal {zk(ωl),∀l ∈ {0, . . . , L/2}}. However, if we
relax our optimality goal for the whole bandwidth, nodes can
compute (7) only at certain frequencies. At the remaining
frequencies, nodes can compute a local MWF based only on
their own microphone signals, given by

wlocal
k = R−1

ykyk
Rxkxk

e1, (11)

where Rykyk
= E{ykyH

k } and Rxkxk
= E{xkxH

k }. Notice
that this divides the bandwidth in the part where spatial infor-
mation from other nodes is used and the part where the node
relies only on its own spatial information.

We can look at the effects of this modification from the
perspectives of performance reduction and energy saving. In
terms of enhancement performance, low frequencies (below
1 kHz) are more important for speech perception [6]. This

suggests the use of distributed enhancement for low frequen-
cies and local enhancement for high frequencies to ensure a
smooth decrease in performance. We denote by Lsh the index
of the maximum frequency ωLsh where (7) is computed.

In terms of energy saving, nodes only need to share Lsh
DFT coefficients instead of L/2+1. The communication cost
grows with the number of coefficients transmitted, and thus
reducing the shared bandwidth allows nodes to reduce their
energy consumption. Besides, notice that the local estimator
(11) involves Mk ×Mk matrices, which are smaller than the
M̃k × M̃k matrices required in (7). This means that the com-
putational cost also decreases when using shared bandwidth
reduction, as we explain in Section 4.1.

3.2. Quantization of shared signals

Another way to reduce the energy spent in communication is
to use less bits to quantize the DFT coefficients of the broad-
cast signals zk(ωl), thereby reducing the number of bits that
need to be transmitted. The quantization of a real number
a ∈ [−A/2, A/2] with Q bits can be expressed as

ǎ = ∆
⌊
|a|
∆

+
1
2

⌋
sgn(a), (12)

where ∆ = A/2Q and sgn(·) is the signum function. As
mentioned in Section 2.1, nodes executing the rS-DANSE al-
gorithm use B bits to encode a signal sample for processing,
but in order to save energy they can apply (12) with Q < B
bits to the real and imaginary parts of zk(ωl) before transmis-
sion. In terms of performance, the effect of this modification
is to add an additional error to the signal estimate (9).

4. ENERGY MODEL

4.1. Computational cost

We use the term ’computational cost’ for the energy spent
by a node in performing the operations specified by the rS-
DANSE algorithm, including the modifications described in
Section 3. These operations are additions and multiplications,
and are measured in floating-point operations (flops). In order
to count the required flops, we have divided the processing
tasks of each node per new audio frame in four steps:
1. Acquire and compress the signal frames
2. Update the correlation matrices
3. Update the filters
4. Estimate the desired speech signal frame.
We have summarized in Table 1 the number of flops required
by each step for each audio frame of length L. The vari-
able M̃k was defined in Section 2.2. The cost of performing
an FFT is taken to be 5L log2L flops. To convert from the
number of flops to energy consumption, we assume that ev-
ery flop consumes the same energyEflop, which is determined
by the hardware executing the algorithm. We have neglected



Step Number of operations

1 Mk (L+5L log2L)+(2Mk−1)(Lsh+1)

2 4M̃2
k(Lsh+1)+4M2

k(L/2−Lsh)

3 ( 1
3 M̃3

k+2M̃2
k)(Lsh+1)+( 1

3 M3
k+2M2

k)(L/2−Lsh)

4 (2M̃k−1)(Lsh+1)+(2Mk−1)(L/2−Lsh)+5L log2L+L

Table 1. Operations per new signal frame in rS-DANSE1

the cost associated with memory access, making our compu-
tational cost model optimistic.

We notice that step 3 is the most costly step. However,
as opposed to steps 1, 2 and 4, this step is not performed for
every new frame, but only when a sufficient number Nmin of
’speech’ and ’noise’ frames have been collected to achieve a
reliable estimation of the correlation matrices. A low value
yields better tracking, but increases the computational cost
and yields larger estimation errors in the correlation matrices.

4.2. Communication cost

For every new audio frame, the rS-DANSE algorithm requires
each node to broadcast one DFT frame of size Lsh and to re-
ceive K − 1 frames from the other nodes. Therefore, the
communication cost for each node per audio frame is given
by

Ecomm = 2QLsh
(
Etx

cbit + (K − 1)Erx
cbit

)
, (13)

where Q is the number of bits used to encode zk(ωl), and the
factor 2 accounts for each coefficient being a complex num-
ber. The variables Etx

cbit and Etx
cbit are the energy spent to suc-

cesfully transmit and receive one bit. It includes the energy
spent by the electronics of the transmitter, the radiation of the
electromagnetic signal, the costs of acknowledgement signals
and possible retransmissions. Due to the behaviour of wave
propagation, Etx

cbit and Erx
cbit are random variables which de-

pend on the SNR observed at the receiver. We use the analysis
done in [7] to characterize the average of these quantities.

5. SIMULATION RESULTS

In order to illustrate the EvP trade-offs we explained in Sec-
tion 3, we have simulated a WASN in the acoustic scenario
represented in Fig 1. It consists of a cubic room of dimen-
sions 5 × 5 × 5 m, with a reverberation time of 0.2 s. In the
room there are four babble noise sources and a desired speech
source. All sources are located at a height of 1.8 m. The de-
sired speech signal is a concatenation of sentences from the
TIMIT database and periods of silence, with a total duration
of 140.73 s. The WASN consists of eight nodes, placed 2.5
m high, where each node is equipped with 4 omnidirectional
microphones. The inter-microphone distance at each node is
2 cm and the sampling rate is 16 kHz. The broadband in-
put SNR for every node lies between -2.7 dB and -2 dB. The

0 1 2 3 4 5
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Nodes

Noise sources

Target speech

Fig. 1. Schematic of the acoustic scenario.

acoustics of the room are modeled using a room impulse re-
sponse generator, which allows to simulate the impulse re-
sponse between a source and a microphone using the image
method. The code is available online2. In all simulations, we
use a DFT length L = 512, a forgetting factor λ = 0.995
and Nmin is set to 188, which is the number of frames col-
lected in 3 seconds. An ideal VAD is used to exclude the
influence of speech detection errors. The energy parameters
of the nodes are selected to be Eflop = 1 nJ, Etx

cbit = 100 nJ
andErx

cbit = 100 nJ. These values represent sensor nodes, such
as Zigduino [8], which use a radio compatible with the IEEE
802.15.4 standard.

In order to assess the speech enhancement performance
we focus on two aspects; the noise reduction achieved and
the speech distortion introduced by the filtering.

5.1. Noise reduction performance

In order to evaluate the noise reduction performance, we
chose as a measure the speech intelligibility (SI) weighted
SNR, where the speech and noise signals are filtered sepa-
rately by one-third octave bandpass filters, and the SNR is
computed per band. The SI-weighted SNR gain is defined as

∆SNRSI =
∑

i

Ii(SNRi,out − SNRi,in), (14)

where the weight Ii expresses the importance for intelligibil-
ity of the i-th one-third octave band with center frequency
fc,i. The values for fc,i and Ii are defined in [9].

The SI-weighted SNR improvement is plotted as a func-
tion of the energy spent by each node in Fig. 2. Each curve in
the figure corresponds to a particular choice of Lsh andQ, and
the different marks indicate the number of active nodes (e.g.
the first mark of each curve indicates one active node, and the
last mark indicates eight active nodes). We define the shared
bandwidth reduction parameter as bsh = Lsh/(L/2). We ob-
serve, for instance comparing the circle and square marks for
the same number of nodes, that decreasing Q up to 6 bits
yields a moderate reduction in performance, while the energy
consumption is up to one third of the energy consumed when
using the maximum Q. The use of shared bandwidth reduc-
tion has a larger impact on performance, as a result of losing
spatial information in part of the spectrum. This can be ob-
served by comparing the curves with the same type of mark,

2http://home.tiscali.nl/ehabets/rir generator.html
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Fig. 2. Trade-off between energy and noise reduction performance
in the simulated scenario.

e.g. circle, where we observe that the energy savings are
also larger, up to one eighth using shared bandwidth reduc-
tion with the maximum Q. The reason is that, although the
communication cost is proportional to both Lsh and Q, Lsh
can be reduced to a smaller fraction of its maximum value.

5.2. Speech distortion

To evaluate the speech distortion we chose the PESQ mea-
sure, an objective method which predicts the speech quality
perceived by a human listener. Its goal is to compare the clean
and degraded signals and give a score of the speech quality in
a scale from 0 to 5 [10]. Since our interest is to analyze the
distortions on the speech waveform, in our simulations we
compare the input and output speech signals without noise.
As shown in Fig. 3, the shared bandwidth reduction and the
quantization do not significantly affect the speech distortion.
The reason is that these modifications are only applied to the
shared signals and not to the node’s own signals. This is im-
portant because it shows that the energy consumption can be
reduced at the expense of the noise reduction performance
while having a small impact on the speech waveform.

6. CONCLUSIONS

We have studied energy-vs-performance trade-offs in the
DANSE algorithm applied to speech enhancement for wire-
less acoustic sensor networks. We have proposed two algo-
rithm modifications that allow nodes to spend less energy,
at the cost of a reduction in the speech enhancement perfor-
mance. Compared to the strategy of shutting down nodes,
these modifications provide more flexibility to adjust the en-
ergy consumption and the desired performance. In order to
analyze the energy spent by a node while executing the al-
gorithm, we have provided an energy model that accounts
for the energy consumed in computation and communication.
Simulations have shown that our modifications allow nodes to

1 2 3 4 5 6 7 8
0

1

2

3

4

5

Number of active nodes

PE
SQ

sc
or

e

bsh = 1, Q = 16 bsh = 1, Q = 6

bsh = 1/2, Q = 16 bsh = 1/2, Q = 4

bsh = 1/4, Q = 16 bsh = 1/4, Q = 6

bsh = 1/8, Q = 16 bsh = 1/8, Q = 6

Fig. 3. PESQ scores of the output speech component for different
operating parameters.

significantly scale down their energy consumption depending
on the tolerated reduction in performance. These results show
significant potential for extending the network lifetime using
dynamic system reconfiguration, which will be the topic of
future work.
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