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ABSTRACT14

Feature selection techniques are very useful approaches for dimensionality reduction in data analysis.
They provide interpretable results by reducing the dimensions of the data to a subset of the original set of
features. When the data lack annotations, unsupervised feature selectors are required for their analysis.
Several algorithms for this aim exist in the literature, but despite their large applicability, they can be very
inaccessible or cumbersome to use, mainly due to the need for tuning non-intuitive parameters and the
high computational demands.
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In this work, a publicly available ready-to-use unsupervised feature selector is proposed, with comparable
results to the state-of-the-art at a much lower computational cost. The suggested approach belongs to the
methods known as spectral feature selectors. These methods generally consist of two stages: manifold
learning and subset selection. In the first stage, the underlying structures in the high-dimensional data
are extracted, while in the second stage a subset of the features is selected to replicate these structures.
This paper suggests two contributions to this field, related to each of the stages involved. In the manifold
learning stage, the effect of non-linearities in the data is explored, making use of a radial basis function
(RBF) kernel, for which an alternative solution for the estimation of the kernel parameter is presented for
cases with high-dimensional data. Additionally, the use of a backwards greedy approach based on the
least-squares utility metric for the subset selection stage is proposed.
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The combination of these new ingredients results in the Utility metric for Unsupervised feature selection
(U2FS) algorithm. The proposed U2FS algorithm succeeds in selecting the correct features in a simulation
environment. In addition, the performance of the method on benchmark datasets is comparable to the
state-of-the-art, while requiring less computational time. Moreover, unlike the state-of-the-art, U2FS does
not require any tuning of parameters.
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INTRODUCTION36

Many applications of data science require the study of highly multi-dimensional data. A high number of37

dimensions implies a high computational cost as well as a large amount of memory required. Furthermore,38

this often leads to problems related to the curse of dimensionality (Verleysen and François, 2005) and39

thus, to irrelevant and redundant data for machine learning algorithms (Maindonald, 2007). Therefore, it40

is crucial to perform dimensionality reduction before analyzing the data.41

There are two types of dimensionality reduction techniques. So-called feature selection techniques42

directly select a subset of the original features. On the other hand, transformation techniques compute43

a new (smaller) set of features, each of which are derived from all features of the original set. Some44

examples of these are Principal Component Analysis (PCA) (Wold et al., 1987), Independent Component45

Analysis (ICA) (Jiang et al., 2006) or the Extended Sammon Projection (ESP) (Ahmad et al., 2019).46



While these methods lead to a reduction in the number of dimensions, results are less interpretable, since47

their direct relationship with the original set of features is lost.48

In this work, the focus is on unsupervised feature selectors. Since these methods do not rely on the49

availability of labels or annotations in the data, the information comes from the learning of the underlying50

structure of the data. Despite this challenge, the generalization capabilities of these methods are typically51

better than for supervised or semi-supervised methods (Guyon and Elisseeff, 2003). Within unsupervised52

feature selectors, sparse learning based methods have gained attention in the last 20 years (Li et al., 2017).53

These methods rely on graph theory and manifold learning to learn the underlying structures of the data54

(Lunga et al., 2013), and they apply sparsity inducing techniques to perform subset selection. However, to55

the best of our knowledge, none explores specifically the behavior of these methods with data presenting56

non-linear relationships between the features (i.e., dimensions). While the graph definition step can make57

use of kernels to tackle non-linearities, these can be heavily affected by the curse of dimensionality, since58

they are often based on a distance metric (Aggarwal et al., 2001).59

After the manifold learning stage, sparse regression is applied to score the relevance of the features60

in the structures present in the graph. These formulations make use of sparsity-inducing regularization61

techniques to provide the final subset of features selected, and thus, they are highly computationally62

expensive. These methods are often referred to as structured sparsity-inducing feature selectors (SSFS),63

or sparse learning based methods (Gui et al., 2016)(Li et al., 2017).64

Despite the large amount of unsupervised SSFS algorithms described in the literature, these methods65

are cumbersome to use for a novice user. This is not only due to the codes not being publicly available,66

but also due to the algorithms requiring regularization parameters which are difficult to tune, in particular67

in unsupervised settings.68

In this work, an efficient unsupervised feature selector based on the utility metric (U2FS) is proposed.69

U2FS is a ready-to-use, publicly available unsupervised sparsity-inducing feature selector designed to be70

robust for data containing non-linearities. The code is available here: https://github.com/avillago/u2fs,71

where all functions and example codes are published. The main contributions of this work are:72

• The definition of a new method to automatically approximate the radial-basis function (RBF) kernel73

parameter without the need for a user-defined tuning parameter. This method is used to tackle the74

curse of dimensionality when embedding the data taking non-linearities into account.75

• The suggestion of a backwards greedy approach for the stage of subset selection, based on the76

utility metric for the least-squares problem. The utility metric was proposed in the framework of77

supervised learning (Bertrand, 2018), and has been used for channel selection in applications such78

as electroencephalography (EEG) (Narayanan and Bertrand, 2020), sensor networks (Szurley et al.,79

2014), and microphone arrays (Szurley et al., 2012). Nevertheless, this is the first work in which80

this type of approach is proposed for the sparsity-inducing stage of feature selection.81

• Propose a non-parametric and efficient unsupervised SSFS algorithm. This work analyzes the82

proposed method U2FS in terms of its complexity, and of its performance on simulated and83

benchmark data. The goal is to reduce the computational cost while maintaining a comparable84

performance with respect to the state-of-the-art. In order to prove this, U2FS is compared to three85

related state-of-the-art algorithms in terms of accuracy of the features selected, and computational86

complexity of the algorithm.87

The rest of the paper is structured as follows. In Related Work, previous algorithms on SSFS are88

summarized. In Methods, the proposed U2FS method is described: first the manifold learning stage,89

together with the algorithm proposed for the selection of the kernel parameter; and further on, the utility90

metric is discussed and adapted to feature selection. The experiments performed in simulations and91

benchmark databases, as well as the results obtained are described in the Results and Discussion sections.92

Finally, the last section provides some conclusions.93

RELATED WORK94

Sparsity-inducing feature selection methods have become widely used in unsupervised learning applica-95

tions for high-dimensional data. This is due to two reasons. On the one hand, the use of manifold learning96

guarantees the preservation of local structures present in the high-dimensional data. Additionally, its97
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combination with feature selection techniques not only reduces the dimensionality of the data, but also98

guarantees interpretability.99

Sparsity-inducing feature selectors learn the structures present in the data via connectivity graphs100

obtained in the high-dimensional space (Yan et al., 2006). The combination of manifold learning and101

regularization techniques to impose sparsity, allows to select a subset of features from the original dataset102

that are able to describe these structures in a smaller dimensional space.103

These algorithms make use of sparsity-inducing regularization approaches to stress those features that104

are more relevant for data separation. The sparsity of these approaches is controlled by different statistical105

norms (lr,p-norms), which contribute to the generalization capability of the methods, adapting them to106

binary or multi-class problems (Gui et al., 2016). One drawback of these sparse regression techniques is107

that generally, they rely on optimization methods, which are computationally expensive.108

The Laplacian Score (He et al., 2006) was the first method to perform spectral feature selection in an109

unsupervised way. Based on the Laplacian obtained from the spectral embedding of the data, it obtains110

a score based on locality preservation. SPEC (Zhao and Liu, 2007) is a framework that contains this111

previous approach, but it additionally allows for both supervised or unsupervised learning, including112

other similarity metrics, as well as other ranking functions. These approaches evaluate each feature113

independently, without considering feature interactions. These interactions are, however, taken into114

account in Multi-Cluster Feature Selection (MCFS) (Cai et al., 2010), where a multi-cluster approach115

is defined based on the eigendecomposition of a similarity matrix. The subset selection is performed116

applying an l1-norm regularizer to approximate the eigenvectors obtained from the spectral embedding117

of the data inducing sparsity. In UDFS (Yang et al., 2011) the l1-norm regularizer is substituted by a118

l2,1-norm to apply sample and feature-wise constraints, and a discriminative analysis is added in the119

graph description. In NDFS (Li et al., 2012), the use of the l2,1-norm is preserved, but a non-negative120

constraint is added to the spectral clustering stage. Additionally, this algorithm performs feature selection121

and spectral clustering simultaneously.122

The aforementioned algorithms perform manifold learning and subset selection in a sequential way.123

However, other methods tackle these simultaneously, in order to adaptively change the similarity metric124

or the selection criteria regarding the error obtained between the original data and the new representation.125

Examples of these algorithms are JELSR (Hou et al., 2013), SOGFS (Nie et al., 2019), (R)JGSC (Zhu126

et al., 2016) and DSRMR (Tang et al., 2018), and all make use of an l2,1-norm. Most recently, the127

SAMM-FS algorithm was proposed (Zhang et al., 2019), where a combination of similarity measures128

is used to build the similarity graph, and the l2,0-norm is used for regression. This group of algorithms129

are currently the ones achieving the best results, at the cost of using complex optimization techniques130

to adaptively tune both stages of the feature selection process. While this can lead to good results, it131

comes with a high computation cost, which might hamper the tuning process, or might simply not be132

worthy for some applications. SAMM-FS and SOGFS are the ones that more specifically suggest new133

approaches to perform the embedding stage, by optimally creating the graph (Nie et al., 2019) or deriving134

it from a combination of different similarity metrics (Zhang et al., 2019). Again, both approaches require135

computationally expensive optimization techniques to select a subset of features.136

In summary, even if SSFS methods are getting more sophisticated and accurate, this results in137

algorithms becoming more complex in terms of computational time, and in the ease of use. The use of138

advanced numerical optimization techniques to improve results makes algorithms more complex, and139

requires regularization parameters which are not easy to tune. In this work, the combination of a new140

approach to estimate the graph connectivity based on the RBF kernel, together with the use of the utility141

metric for subset selection, results in an efficient SSFS algorithm, which is easy to use and with lower142

complexity than the state-of-the-art. This efficient implementation is competitive with state-of-the-art143

methods in terms of performance, while using a simpler strategy, which is faster to compute and easier to144

use.145

METHODS146

This section describes the proposed U2FS algorithm, which focuses on selecting the relevant features147

in an unsupervised way, at a relatively small computational cost. The method is divided in three parts.148

Firstly, the suggested manifold learning approach is explained, where an embedding based on binary149

weighting and the RBF kernel are used. Then a method to select the kernel parameter of the RBF kernel150
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is proposed, specially designed for high-dimensional data. Once the manifold learning stage is explained,151

the Utility metric is proposed as a new approach for subset selection.152

Manifold learning considering non-linearities153

Given is a data matrix X ∈ RN×d , with X = [x1;x2; . . . ;xN ], xi = [x(1)i ,x(2)i , . . . ,x(d)i ], i = 1, . . . ,N, N the154

number of data points, and d the number of features (i.e., dimensions) in the data. The aim is to learn the155

structure hidden in the d-dimensional data and approximate it with only a subset of the original features.156

In this paper, this structure will be identified by means of clustering, where the dataset is assumed to be157

characterized by c clusters.158

In spectral clustering, the clustering structure of this data can be obtained by studying the eigenvectors159

derived from a Laplacian built from the original data (Von Luxburg (2007), Biggs et al. (1993)). The160

data is represented using a graph G = (V ,E ). V is the set of vertices vi, i = 1, . . . ,N where vi = xi.161

E = {ei j} with i = 1, . . . ,N j = 1, . . . ,N is the set of edges between the vertices where {ei j} denotes the162

edge between vertices vi and v j. The weight of these edges is determined by the entries wi j ≥ 0 of a163

similarity matrix W. We define the graph as undirected. Therefore, the similarity matrix W, is symmetric164

(since wi j = w ji, with the diagonal set to wii = 0).165

Typically, W is computed after coding the pairwise distances between all N data points. There are166

several ways of doing this, such as calculating the k-nearest neighbours (KNN) for each point, or choosing167

the ε-neighbors below a certain distance (Belkin and Niyogi, 2002).168

In this paper, two similarity matrices are adopted inspired by the work in (Cai et al., 2010), namely a169

binary one and one based on an RBF kernel. The binary weighting is based on KNN, being wi j = 1 if and170

only if vertex i is within the K closest points to vertex j. Being a non-parametric approach, the binary171

embedding allows to simply characterize the connectivity of the data.172

Additionally, the use of the RBF kernel is considered, which is well suited for non-linearities and173

allows to characterize complex and sparse structures (Von Luxburg, 2007). The RBF kernel is defined as174

K(xi,x j) = exp(−||xi−x j||2/2σ2). The selection of the kernel parameter σ is a long-standing challenge175

in machine learning. For instance, in Cai et al. (2010), σ2 is defined as the mean of all the distances176

between the data points. Alternatively, a rule of thumb, uses the sum of the standard deviations of the data177

along each dimension (Varon et al., 2015). However, the estimation of this parameter is highly influenced178

by the amount of features or dimensions in the data, making it less robust to noise and irrelevant features.179

In the next section, a new and better informed method to approximate the kernel parameter is proposed.180

The graph G, defined by the similarity matrix W, can be partitioned into multiple disjoint sets. Given181

the focus on multi-cluster data of our approach, the k-Way Normalized Cut (NCut) Relaxation is used,182

as proposed in Ng et al. (2002). In order to obtain this partition, the degree matrix D of W must be183

calculated. D is a diagonal matrix for which each element on the diagonal is calculated as Dii = ∑ j Wi, j.184

The normalized Laplacian L is then obtained as L = D−1/2WD−1/2, as suggested in Von Luxburg (2007).185

The vectors y embedding the data in L can be extracted from the eigenvalue problem (Chung and Graham,186

1997):187

Ly = λy (1)

Given the use of a normalized Laplacian for the data embedding, the vectors y must be adjusted using188

the degree matrix D:189

α = D1/2y, (2)

which means that α is the solution of the generalized eigenvalue problem of the pair W and D. These190

eigenvectors α are a new representation of the data, that gathers the most relevant information about the191

structures appearing in the high-dimensional space. The c eigenvectors, corresponding to the c highest192

eigenvalues (after excluding the largest one), can be used to characterize the data in a lower dimensional193

space (Ng et al., 2002). Thus, the matrix E = [α1,α2, . . . ,αc] containing column-wise the c selected194

eigenvectors, will be the low-dimensional representation of the data to be mimicked using a subset of the195

original features, as suggested in Cai et al. (2010).196
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Kernel parameter approximation for high-dimensional data197

One of the most used similarity functions is the RBF kernel, which allows to explore non-linearities in198

the data. Nevertheless, the kernel parameter σ2 must be selected correctly, to avoid overfitting or the199

allocation of all data points to the same cluster. This work proposes a new approach to approximate this200

kernel parameter, which will be denoted by σ̂2 when derived from our method. This method takes into201

account the curse of dimensionality and the potential irrelevant features or dimensions in the data.202

As a rule of thumb, σ2 is approximated as the sum of the standard deviation of the data along each203

dimension (Varon et al., 2015). This approximation grows with the number of features (i.e. dimensions)204

of the data, and thus, it is not able to capture its underlying structures in high-dimensional spaces.205

Nevertheless, this σ2 is commonly used as an initialization value, around which a search is performed,206

considering some objective function (Alzate and Suykens, 2008; Varon et al., 2015).207

The MCFS algorithm skips the search around an initialization of the σ2 value by substituting the sum208

of the standard deviations by the mean of these (Cai et al., 2010). By doing so, the value of σ2 does not209

overly grow. This estimation of σ2 suggested in Cai et al. (2010) will be referred to as σ2
0 . A drawback of210

this approximation in high-dimensional spaces is that it treats all dimensions as equally relevant for the211

final estimation of σ2
0 , regardless of the amount of information that they actually contain.212

The aim of the proposed approach is to provide a functional value of σ2 that does not require213

any additional search, while being robust to high-dimensional data. Therefore, this work proposes an214

approximation technique based on two factors: the distances between the points, and the number of215

features or dimensions in the data.216

The most commonly used distance metric is the euclidean distance. However, it is very sensitive to217

high-dimensional data, deriving unsubstantial distances when a high number of features is involved in the218

calculation (Aggarwal et al., 2001). In this work, the use of the Manhattan or taxicab distance (Reynolds,219

1980) is proposed, given its robustness when applied to high-dimensional data (Aggarwal et al., 2001).220

For each feature l, the Manhattan distance δl is calculated as:221

δl =
1
N

N

∑
i, j=1
|xil− x jl | (3)

Additionally, in order to reduce the impact of irrelevant or redundant features, a system of weights222

is added to the approximation of σ̂2. The goal is to only take into account the distances associated to223

features that contain relevant information about the structure of the data. To calculate these weights, the224

probability density function (PDF) of each feature is compared with a Gaussian distribution. Higher225

weights are assigned to the features with less Gaussian behavior, i.e. those the PDF of which differs the226

most from a Gaussian distribution. By doing so, these will influence more the final σ̂2 value, since they227

allow a better separation of the structures present in the data.228

Figure 1 shows a graphical representation of this estimation. The dataset in the example has 3229

dimensions or features: f1, f2 and f3. f1 and f2 contain the main clustering information, as it can be230

observed in Figure 1a, while f3 is a noisy version of f1, derived as f3 = f1 +1.5n, where n is drawn from231

a normal distribution N (0,1). Figures 1b, 1c and 1d show in a continuous black line the PDFs derived232

from the data, and in a grey dash line their fitted Gaussian, in dimensions f1, f2 and f3 respectively. This233

fitted Gaussian was derived using the Curve Fitting toolbox of MatlabTM. As it can be observed, the234

matching of a Gaussian with an irrelevant feature is almost perfect, while those features that contain more235

information, like f1 and f2, deviate much more from a normal distribution.236

Making use of these differences, an error, denoted φl , for each feature l, where l = 1, . . . ,d, is237

calculated as:238

φl =
1
H

H

∑
i=1

(pi−gi)
2, (4)

where H is the number of bins in which the range of the data is divided to estimate the PDF (p), and g239

is the fitted Gaussian. The number of bins in this work is set to 100 for standardization purposes. Equation240

(4) corresponds to the mean-squared error (MSE) between the PDF of the data over feature l and its fitted241

Gaussian. From these φl , the final weights bl are calculated as:242
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Figure 1. Weight system for relevance estimation. In Figure 1A, f1 and f2 can be seen. 1B, 1C and 1D
show in black the PDFs pi of f1, f2 and f3 respectively, and in grey dotted line their fitted Gaussian gi.

bl =
φl

∑
d
l=1 φl

(5)

Therefore, combining (3) and (5), the proposed approximation, denoted σ̂2, is derived as:243

σ̂
2 =

d

∑
l=1

blδl , (6)

which gathers the distances present in the most relevant features, giving less importance to the244

dimensions that do not contribute to describe the structure of the data. The complete algorithm to calculate245

σ̂2 is described in Algorithm 1.246

Algorithm 1 Kernel parameter approximation for high-dimensional data.

Input: Data X ∈ RN×d .
Output: Sigma parameter σ̂2

1: Calculate the Manhattan distances between the datapoints using Equation (3): vector of distances per
feature δl .

2: Obtain the weights for each of the features using Equations (4) and (5): weights bl .
3: Calculate σ̂2 using Equation (6).

Utility metric for feature subset selection247

In the manifold learning stage, a new representation E of the data based on the eigenvectors was built,248

which described the main structures present in the original high-dimensional data. The goal is to select249

a subset of the features which best approximates the data in this new representation. In the literature,250

this feature selection problem is formulated using a graph-based loss function and a sparse regularizer251

of the coefficients is used to select a subset of features, as explained in Zhu et al. (2016). The main252

idea of these approaches is to regress the data to its low dimensional embedding along with some sparse253

regularization. The use of such regularization techniques reduces overfitting and achieves dimensionality254

reduction. This regression is generally formulated as a least squares (LS) problem, and in many of these255
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cases, the metric that is used for feature selection is the magnitude of their corresponding weights in256

the least squares solution (Cai et al., 2010; Gui et al., 2016). However, the optimized weights do not257

necessarily reflect the importance of the corresponding feature as it is scaling dependent and it does258

not properly take interactions across features into account (Bertrand, 2018). Instead, the importance259

of a feature can be quantified using the increase in least-squared error (LSE) if that feature was to be260

removed and the weights were re-optimized. This increase in LSE, called the ‘utility’ of the feature can261

be efficiently computed (Bertrand, 2018) and can be used as an informative metric for a greedy backwards262

feature selection procedure (Bertrand, 2018; Narayanan and Bertrand, 2020; Szurley et al., 2014), as an263

alternative for (group-)LASSO based techniques. Under some technical conditions, a greedy selection264

based on this utility metric can even be shown to lead to the optimal subset (Couvreur and Bresler, 2000).265

After representing the dataset using the matrix E ∈ RN×c containing the c eigenvectors, the following
LS optimization problem finds the weights p that best approximate the data X in the c-dimensional
representation in E:

J = min
P

1
N
||Xp−E||2F (7)

where J is the cost or the LSE and ||.||F denotes the Frobenius norm.266

If X is a full rank matrix and if N > d, the LS solution p̂ of (7) is

p̂ = R−1
XXRXE, (8)

with RXX = 1
N XT X and RXE = 1

N XT E.267

The goal of this feature selection method is to select the subset of s(< d) features that best represents268

E. This feature selection problem can be reduced to the selection of the best s(< d) columns of X which269

minimize (7). However, this is inherently a combinatorial problem and is computationally unfeasible to270

solve. Nevertheless, several greedy and approximative methods have been proposed (Gui et al., 2016; Nie271

et al., 2019; Narayanan and Bertrand, 2020). In the current work, the use of the utility metric for subset272

selection is proposed to select these best s columns.273

The utility of a feature l of X, in an LS problem like (7), is defined as the increase in the LSE J when274

the column corresponding to the l-th feature in X is removed from the problem and the new optimal275

weight matrix, p̂−l , is re-computed similar to (8). Consider the new LSE after the removal of feature l276

and the re-computation of the weight matrix p̂−l to be J−l , defined as:277

J−l =
1
N
||X−l p̂−l−E||2F (9)

where X−l denotes the matrix X with the column corresponding to l-th feature removed. Then278

according to the definition, the utility of feature l, Ul is:279

Ul = J−l− J (10)

A straightforward computation of Ul would be computationally heavy due to the fact that the compu-280

tation of p̂l requires a matrix inversion of X−lXT
−l , which has to be repeated for each feature l.281

However, it can be shown that the utility of the l-th feature of X in (10) can be computed efficiently282

without the explicit recomputation of p̂−l by using the following expression (Bertrand, 2018):283

Ul =
1
ql
||p̄l ||2, (11)

where ql is the l-th diagonal element of R−1
XX and pl is the l-th row in p̂, corresponding to the l-th284

feature. The mathematical proof of (11) can be found in Bertrand (2018). Note that R−1
XX is already known285

from the computation of p̂ such that no additional matrix inversion is required.286

However, since the data matrix X can contain redundant features or features that are linear combi-287

nations of each other in its columns, it cannot be guaranteed that the matrix X in (7) is full-rank. In288

this case, the removal of a redundant column from X will not lead to an increase in the LS cost of (7).289
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Moreover, R−1
XX, used to find the solution of (7) in (8), will not exist in this case since the matrix X is rank290

deficient. A similar problem appears if N < d, which can happen in case of very high-dimensional data.291

To overcome this problem, the definition of utility generalized to a minimum l2-norm selection (Bertrand,292

2018) is used in this work. This approach eliminates the feature yielding the smallest increase in the293

l2-norm of the weight matrix when the column corresponding to that feature were to be removed and the294

weight matrix would be re-optimized. Moreover, minimizing the l2-norm of the weights further reduces295

the risk of overfitting.296

This generalization is achieved by first adding an l2-norm penalty β to the cost function that is297

minimized in (7):298

J = min
p

1
2
||Xp−E||2F +β ||p||22 (12)

where 0 < β 6 µ with µ equal to the smallest non-zero eigenvalue of RXX in order to ensure that the299

bias added due to the penalty term in (12) is negligible. The minimizer of (12) is:300

p̂ = R−1
XXβ

RXE = (RXX +β I)−1RXE (13)

It is noted that (13) reduces to R†
XXRXE when β → 0, where R†

XX denotes the Moore-Penrose pseudo-301

inverse. This solution corresponds to the minimum norm solution of (7) when X contains linearly302

dependent columns or rows. The utility Ul of the l-th column in X based on (12) is (Bertrand, 2018):303

Ul =
(
||X−l p̂−l−E||22−||Xp̂−E||22

)
+β

(
||p̂−l ||22−||p̂||22

)
= (J−l− J)+β

(
||p̂−l ||22−||p̂||22

) (14)

Note that if column l in X is linearly independent from the other columns, (14) closely approximates304

to the original utility definition in (10) as the first term dominates over the second. However, if column l305

is linearly dependent, the first term vanishes and the second term will dominate. In this case, the utility306

quantifies the increase in l2-norm after removing the l-th feature.307

To select the best s features of X, a greedy selection based on the iterative elimination of the features308

with the least utility is carried out. After the elimination of each feature, a re-estimation of the weights p̂309

is carried out and the process of elimination is repeated, until s features remain.310

Note that the value of β depends on the smallest non-zero eigenvalue of RXX. Since RXX has to be311

recomputed every time when a feature is removed, also its eigenvalues change along the way. In practice,312

the value of β is selected only once and fixed for the remainder of the algorithm, as smaller than the313

smallest non-zero eigenvalue of RXX before any of the features are eliminated (Narayanan and Bertrand,314

2020). This value of β will be smaller than all the non-zero eigenvalues of any principal submatrix of315

RXX using the Cauchy’s interlace theorem (Hwang, 2004).316

The summary of the utility subset selection is described in Algorithm 2. Algorithm 3 outlines the317

complete U2FS algorithm proposed in this paper.318

Algorithm 2 Utility metric algorithm for subset selection.

Input: Data X, Eigenvectors E, Number of features s to select
Output: s features selected

1: Calculate RXX and RXE as described in Equation (8).
2: Calculate β as the smallest non-zero eigenvalue of RXX
3: while Number of features remaining is > s do
4: Compute R−1

XXβ
and p̂ as described in (13).

5: Calculate the utility of the remaining features using (11)
6: Remove the feature fl with the lowest utility.
7: Update RXX and RXE by removing the rows and columns related to that feature fl .
8: end while
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Algorithm 3 Unsupervised feature selector based on the utility metric (U2FS).

Input: Data X, Number of clusters c, Number of features s to select
Output: s features selected

1: Construct the similarity graph W as described in Section selecting one of the weightings:
• Binary
• RBF kernel, using σ2

0
• RBF kernel, using σ̂2 based on Algorithm 1

2: Calculate the normalized Laplacian L and the eigenvectors α derived from Equation (2).
Keep the c eigenvectors corresponding to the highest eigenvalues, excluding the first one.

3: Apply the backward greedy utility algorithm 2.
4: Return the s features remaining from the backward greedy utility approach.

As it has been stated before, one of the most remarkable aspects of the U2FS algorithm is the use of319

a greedy technique to solve the subset selection problem. The use of this type of method reduces the320

computational cost of the algorithm. This can be confirmed analyzing the computational complexity of321

U2FS, where the most demanding steps are the eigendecomposition of the Laplacian matrix (step 2 of322

Algortihm 3), which has a cost of O(N3) (Tsironis et al., 2013), and the subset selection stage in step 3 of323

Algorithm 3. Contrary to the state-of-the-art, the complexity of U2FS being a greedy method depends on324

the number of features to select. The most computationally expensive step of the subset selection in U2FS325

is the calculation of the matrix R−1
XX, which has a computational cost of O(d3). In addition, this matrix326

needs to be updated d− s times. This update can be done efficiently using a recursive updating equation327

from Bertrand (2018) with a cost of O(t2), with t the number of features remaining in the dataset, i.e.328

t = d− s. Since t < d, the cost for performing d− s iterations will be O((d− s)d2), which depends on329

the number of features s to be selected. Note that the cost of computing the least squares solution p̂−l for330

each l in (14) is eliminated using the efficient equation (11), bringing down the cost for computing the331

utility from O(t4) to O(t) in each iteration. This vanishes with respect to the O(d3) term (remember that332

t < d). Therefore, the total asymptotic complexity of U2FS is O(N3 +d3).333

RESULTS334

The aim of the following experiments is to evaluate the U2FS algorithm based on multiple criteria. With335

the focus on the new estimation of the embedding proposed, the proposed RBF kernel approach using336

the estimated σ̂2 is compared to the σ2
0 parameter proposed in Cai et al. (2010), and to the binary KNN337

graph commonly used in Gui et al. (2016). On the other hand, the utility metric for subset selection is338

compared to other sparsity-inducing techniques, based on lp−norm regularizations. In these experiments,339

this is evaluated using the l1−norm. The outline of the different combinations considered in this work340

summarized in Table 1. The last method, RBFσ̂2 + Utility, would be the one referred to as U2FS,341

combining the novelties suggested in this work.342

Table 1. Methods compared in the experiments

Similarity measure Subset selection
KNNBin + l1−norm KNN + binary weighting l1-norm
RBF

σ2
0

+ l1−norm RBF kernel, σ2
0 l1-norm

KNNBin + Utility KNN + binary weighting Utility metric
RBF

σ2
0

+ Utility RBF kernel, σ2
0 Utility metric

RBFσ̂2 + Utility RBF kernel, σ̂2 Utility metric

These novelties are evaluated in two different scenarios, namely a simulation study, and in the343

application of the methods on benchmark datasets. In particular for the latter, the methods are not only344

evaluated in terms of accuracy, but also regarding computational cost. Additionally, U2FS is compared345

with 3 representative state-of-the-art algorithms from the general family of unsupervised sparsity-inducing346

feature selection algorithms:347
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• MCFS(Cai et al., 2010)1. This algorithm served as inspiration to create U2FS, and therefore,348

it is added to the set of comparison algorithms as baseline reference. MCFS performs spectral349

embedding and l1-norm regularization sequentially, and which served as inspiration to create U2FS.350

• NDFS(Li et al., 2012)2, which performs nonnegative spectral analysis with l2,1-norm regularization.351

This algorithm is added to the experiments since it is an improvement of MCFS, while being the first352

algorithm simultaneously adapting both stages of manifold learning and subset selection. Therefore,353

NDFS represents the transition to these adaptive optimization-based feature selection algorithms.354

• RJGSC(Zhu et al., 2016) optimally derives the embedding of the data by adapting the results with355

l2,1-norm regularization. This algorithm is taken as a reference for the large class of adaptive356

sparsity-inducing feature selection algorithms, which are much more complex than U2FS, since357

they apply optimization to recursively adapt the embedding and feature selection stages of the358

methods. RJGSC was already compared to several feature selectors in Zhu et al. (2016), and359

therefore, it is taken here as upper-bound threshold in performance.360

Figure 2. Toy examples used for simulations: Clouds (A), Moons (B), Spirals (C), Corners (D),
Half-Kernel (E), Crescent Moon (F).

Simulations361

A set of nonlinear toy examples typically used in clustering problems are proposed to test the different362

feature selection methods. In these experiments, the goal was to verify the correct selection of the original363

set of features. Figure 2 shows the toy examples considered3, which are described by features f1 and f2 ,364

and the final description of the datasets can be seen in Table 2.365

All these problems are balanced, except for the last dataset Cres-Moon, for which the data is divided366

25% to 75% between the two clusters. Five extra features in addition to the original f1 and f2 were added367

to each of the datasets in order to include redundant or irrelevant information:368

• f ′1 and f ′2: random values extracted from two Pearson distributions characterized by the same369

higher-order statistics as f1 and f2 respectively.370

• f ′3 and f ′4: Original f1 and f2 contaminated with Gaussian noise (νN (0, 1)), with ν = 1.5.371

• f ′5: Constant feature of value 0.372

The first step in the preprocessing of the features was to standardize the data using z-score to reduce373

the impact of differences in scaling and noise. In order to confirm the robustness of the feature selection374

techniques, the methods were applied using 10-fold cross-validation on the standardized data. For each375

fold a training set was selected using m-medoids, setting m to 2000 and using the centers of the clusters376

found as training samples. By doing so, the generalization ability of the methods can be guaranteed377

1http://www.cad.zju.edu.cn/home/dengcai/Data/MCFS.html
2http://www.cs.cmu.edu/ yiyang/Publications.html
3The codes used to generate these datasets are available in https://github.com/avillago/u2fs
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Table 2. Description of the toy example datasets.

# samples # classes
Clouds 9000 3
Moons 10000 2
Spirals 10000 2
Corners 10000 4
Half-Kernel 10000 2
Crescent-Moon 10000 2

(Varon et al., 2015). On each of the 10 training sets, the features were selected applying the 5 methods378

mentioned in Table 1. For each of the methods, the number of clusters c was introduced as the number of379

classes presented in Table 2. Since these experiments aim to evaluate the correct selection of the features,380

and the original features f1 and f2 are known, the number of features s to be selected was set to 2.381

Regarding the parameter settings within the embedding methods, the binary was obtained setting k in382

the kNN approach to 5. For the RBF kernel embedding, σ2
0 was set to the mean of the standard deviation383

along each dimension, as done in Cai et al. (2010). When using σ̂2, its value was obtained by applying384

the method described in Algorithm 1.385

In terms of subset selection approaches, the method based on the l1−norm automatically sets the386

value of the regularization parameter required for the LARS implementation, as described in (Deng Cai,387

Chiyuan Zhang, 2020). For the utility metric, β was automatically set to the smallest non-zero eigenvalue388

of the matrix RXX as described in Algorithm 2.389

The performance of the algorithm is evaluated comparing the original set of features f1 and f2 to those390

selected by the algorithm. In these experiments, the evaluation of the selection results is binary: either the391

feature set selected is correct or not, regardless of the additional features f ′i , for i = 1,2, ...,5, selected.392

In Table 3 the most common results obtained in the 10 folds are shown. The utility-based approaches393

always obtained the same results for all 10 folds of the experiments. On the contrary, the l1− norm394

methods provided different results for different folds of the experiment. For these cases, Table 3 shows395

the most common feature pair for each experiment, occurring at least 3 times.396

Table 3. Results feature selection for toy examples

Method Utility metric l1−norm
Embedding KNNBin RBF

σ2
0

RBFσ̂2 KNNBin RBF
σ2

0
Clouds f 1, f 2 f ’1, f ’4 f 1, f 2 f ’1, f ’2 f ’1, f ’2
Moons f 1, f 2 f ’3, f ’4 f 1, f 2 f ’1, f ’3 f ’1, f ’3
Spirals f 1, f 2 f 1, f 2 f 1, f 2 f 2, f ’2 f 2, f ’2
Corners f 1, f 2 f ’1, f ’2 f 1, f 2 f 2, f ’2 f 2, f ’2
Half-Kernel f 1, f 2 f 2, f ’3 f 1, f 2 f 1, f ’3 f 1, f ’3
Cres-Moon f 1, f 2 f 1, f ’4 f 1, f 2 f 2, f ’1 f 2, f ’2

As shown in Table 3, the methods that always obtain the adequate set of features are based on utility,397

both with the binary weighting and with the RBF kernel and the suggested σ̂2. Since these results were398

obtained for the 10 folds, they confirm both the robustness and the consistency of the U2FS algorithm.399

Benchmark datasets400

Additionally, the proposed methods were evaluated using 6 well-known benchmark databases. The401

databases considered represent image (USPS, ORL, COIL20), audio (ISOLET) and text data (PCMAC,402

BASEHOCK)4, proposing examples with more samples than features, and vice versa. The description of403

these databases is detailed in Table 4. All these datasets are balanced, except USPS.404

In these datasets, the relevant features are unknown. Therefore, the common practice in the literature405

to evaluate feature selectors consists of applying the algorithms, taking from 10 to 80% of the original406

4All datasets downloaded from http://featureselection.asu.edu/datasets.php

11/18



Table 4. Description of the benchmark databases

Data Type Samples Features Classes
USPS Images 9298 256 10
Isolet Audio 1560 617 26
ORL Images 400 1024 40
COIL20 Images 1440 1024 20
PCMAC Text 1943 3289 2
BASEHOCK Text 1993 4862 2

set of features, and evaluating the accuracy of a classifier when trained and evaluated with the selected407

feature set (Zhu et al., 2016). The classifier used for this aim in other papers is k-Nearest Neighbors408

(KNN), setting the number of neighbors to 5.409

These accuracy results are computed using 10-fold cross-validation to confirm the generalization410

capabilities of the algorithm. By setting m to 90% of the number of samples available in each benchmark411

dataset, m-medoids is used to select the m centroids of the clusters and use them as training set. Feature412

selection and the training of the KNN classifier are performed in these 9 folds of the standardized data,413

and the accuracy of the KNN is evaluated in the remaining 10% for testing. Exclusively for USPS, given414

the size of the dataset, 2000 samples were used for training and the remaining data was used for testing.415

These 2000 samples were also selected using m-medoids. Since PCMAC and BASEHOCK consist of416

binary data, these datasets were not standardized.417

The parameters required for the binary and RBF embeddings, as well as β for the utility algorithm,418

are automatically set as detailed in section .419

Figure 3 shows the median accuracy obtained for each of the 5 methods. The shadows along the420

lines correspond to the 25 and 75 percentile of the 10 folds. As a reference, the accuracy of the classifier421

without using feature selection is shown in black for each of the datasets. Additionally, Figure 4 shows the422

computation time for both the utility metric and the l1−norm applied on a binary weighting embedding.423

In this manner, the subset selection techniques can be evaluated regardless of the code efficiency of the424

embedding stage. Similarly to Figure 3, the computation time plots show in bold the median running time425

for each of the subset selection techniques, and the 25 and 75 percentiles around it obtained from the426

10-fold cross-validation.427

The difference in the trends of the l1−norm and utility in terms of computation time is due to their428

formulation. Feature selection based on l1−norm regularization, solved using the LARS algorithm in429

this case, requires the same computation time regardless of the number of features aimed to select. All430

features are evaluated together, and later on, an MCFS score obtained from the regression problem is431

assigned to them (Cai et al., 2010). The features with the higher scores are the ones selected. On the other432

hand, since the utility metric is applied in a backward greedy trend, the computation times change for433

different number of features selected. The lower the number of features selected compared to the original434

set, the higher the computation time. This is aligned with the computational complexity of the algorithm,435

described in Section . In spite of this, it can be seen that even the highest computation time for utility is436

lower than the time taken using l1−norm regularization. The experiments were performed with 2x Intel437

Xeon E5-2640 @ 2.5 GHz processors and 64GB of working memory.438

Finally, the experiments in benchmark databases are extended to compare U2FS to other key algorithms439

in the state-of-the-art. As it was mentioned at the beginning of this section, the selected algorithms are440

MCFS, NDFS, and RJGSC, which represent, respectively, the precursor of U2FS, an improved version of441

MCFS, and an example from the class of adaptive algorithms which recursively optimize the objective442

function proposed. NDFS and RJGSC require the tuning of their regularization parameters, for which443

the indications in their corresponding articles were followed. For NDFS, the value of γ was set to 108,444

and α and β were selected from the values {10−6,10−4, ...,106} applying grid search. The matrix F was445

initialized with the results of spectral clustering using all the features. For RJGSC, the results described446

in Zhu et al. (2016) for the BASEHOCK and PCMAC datasets are taken as a reference. In MCFS, the447

embedding is done using KNN and binary weighting, and the l1− norm is used for subset selection.448

U2FS, on the other hand, results from the combination of the RBF kernel with σ̂2 and the utility metric.449

Table 5 summarizes the results by showing the KNN accuracy (ACC) for 10% of the features used, and450

the maximum ACC achieved among the percentages of features considered, for the BASEHOCK and451
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Figure 3. Accuracy results for the benchmark databases, for selecting from 10 to 80% of the original
number of features. The thick lines represent the median accuracy of the 10-fold cross-validation, and the
shadows, the 25 and 75 percentile. USPS (Figure 3A), Isolet (B), ORL (C), COIL20 (D), PCMAC (E),
BASEHOCK (F).

Figure 4. Computation time for extracting from 10 to 80% of the original number of features for each of
the benchmark databases. USPS (Figure 4A), Isolet (B), ORL (C), COIL20 (D), PCMAC (E),
BASEHOCK (F).
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PCMAC datasets.452

Table 5. Comparison of classification accuracy (ACC) with the state-of-the-art for PCMAC and
BASEHOCK datasets.

Dataset Method ACC at 10% features % features at Max ACC Max ACC

PCMAC U2FS 0.785 60% 0.83
MCFS 0.67 20% 0.697
NDFS 0.73 40% 0.83
RJGSC 0.805 60% 0.83

BASEHOCK U2FS 0.87 50% 0.925
MCFS 0.815 80% 0.84
NDFS 0.76 20% 0.794
RJGSC 0.902 80% 0.917

453

DISCUSSION454

The results obtained in the experiments suggest that the proposed U2FS algorithm obtains comparable455

results to the state-of-the-art in all the applications suggested, taking less computational time. Nevertheless,456

the performance of the utility metric for feature selection varies for the different experiments presented457

and requires a detailed analysis.458

From Table 3, in Section , it can be concluded that the utility metric is able to select the correct459

features in an artificially contaminated dataset. Both the binary embedding and the RBF kernel with σ̂2
460

select the original set of features for the 10 folds of the experiment. The stability in the results also applies461

for the RBF embedding with σ2
0 , which always selected the same feature pair for all 10 folds even though462

they are only correct for the spirals problem.463

Therefore, considering the stability of the results, it can be concluded that the proposed approach is464

more robust in the selection of results than that based on the l1−norm.465

On the other hand, when considering the suitability of the features selected, two observations can be466

made. First of all, it can be seen that the lack of consistency in the l1−norm approaches discards the467

selection of the correct set of features. Moreover, the wrong results obtained with both l1−norm and468

utility methods for the RBF embedding using σ2
0 reveal the drawback of applying this approximation469

of σ2
0 in presence of redundant or irrelevant features. Since this value is calculated as the mean of the470

standard deviation of all the dimensions in the data, this measure can be strongly affected by irrelevant471

data, that could be very noisy and enlarge this sigma, leading to the allocation of all the samples to a472

mega-cluster.473

While the use of the proposed approximation for σ̂2 achieves better results than σ2
0 , these are474

comparable to the ones obtained with the KNN binary embedding when using the utility metric. The use475

of KNN to build graphs is a well-known practice, very robust for dense clusters, as it is the case in these476

examples. The definition of a specific field where each of the embeddings would be superior is beyond477

the scope of this paper. However, the excellence of both methods when combined with the proposed478

subset selection method only confirms the robustness of the utility metric, irrespective of the embedding479

considered.480

For standardization purposes, the performance of the method was evaluated in benchmark databases.481

As it can be observed, in terms of the accuracy obtained for each experiment, U2FS achieves comparable482

results to the l1− norm methods for most of the datasets considered, despite its condition of greedy483

method.484

In spite of this, some differences in performance can be observed in the different datasets. The different485

ranking of the methods, as well as the accuracy obtained for each of the databases can be explained taking486

into account the type of data under study and the ratio between samples and dimensions.487

With regard to the type of data represented by each test, it can be observed that for the ISOLET dataset,488

containing sound information, two groups of results are distinguishable. The group of the utility metric489
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results outperforms those derived from the l1−norm, which only reach comparable results for 60% of the490

features selected. These two groups of results are caused by the subset selection method applied, and not491

for the embedding, among which the differences are not remarkable.492

In a similar way, for the case of the image datasets USPS, ORL and COIL20, the results derived493

from utility are slightly better than those coming from the l1−norm. In these datasets, similarly to the494

performance observed in ISOLET, accuracy increases with the number of features selected.495

Regarding the differences between the proposed embeddings, it can be observed that the results496

obtained are comparable for all of them. Nonetheless, Figure 3 shows that there is a slight improvement497

in the aforementioned datasets for the RBF kernel with σ̂2, but the results are still comparable to those498

obtained with other embeddings. Moreover, this similarity in the binary and RBF results holds for the499

l1−norm methods, for which the accuracy results almost overlap in Figure 3. This can be explained by500

the relation between the features considered. Since for these datasets the samples correspond to pixels,501

and the features to the color codes, a simple neighboring method such as the binary weighting is able to502

code the connectivity of pixels of similar colors.503

The text datasets, PCMAC and BASEHOCK, are the ones that show bigger differences between the504

results obtained with utility and those obtained with the l1−norm. This can be explained by the amount505

of zeros present in the data, with which the utility metric is able to cope slightly better. The sparsity of the506

data leads to more error in the l1−norm results, since more features end up having the same MCFS score,507

and among those, the order for selection comes at random. The results obtained with the utility metric508

are more stable, in particular for the BASEHOCK dataset. For this dataset, U2FS even outperforms the509

results without feature selection if at least 40% of the features are kept.510

In all the datasets proposed, the results obtained with the l1−norm show greater variability, i.e. larger511

percentiles. This is aligned with the results obtained in the simulations. The results for the l1− norm512

are not necessarily reproducible in different runs, since the algorithm is too sensitive to the training set513

selected. The variability of the utility methods is greater for the approaches based on the RBF kernel.514

This is due to the selection of the σ2 parameter, which also depends on the training set. The tuning of this515

parameter is still very sensitive to high-dimensional and large-scale data, posing a continuous challenge516

for the machine learning community (Yin and Yin, 2016; Tharwat et al., 2017).517

Despite it being a greedy method, the utility metric proves to be applicable to feature selection518

approaches and to strongly outperform the l1−norm in terms of computational time, without significant519

reduction in accuracy. U2FS proves to be effective both in cases with more samples than features and520

vice versa. The reduction in computation time is clear, for all the benchmark databases described, and is521

particularly attractive for high-dimensional datasets. Altogether, our feature selection approach U2FS,522

based on the utility metric, and with the binary or the RBF kernel with σ̂2 is recommended due to its fast523

performance and its interpretability.524

Additionally, the performance of U2FS is comparable to the state-of-the-art, as shown in Table 5. In525

this table, the performance of U2FS (RBF kernel and σ̂2, with the utility metric) is compared to that of526

MCFS, NDFS and RJGSC. For MCFS, it can be seen that, as expected, U2FS appears as an improvement527

of this algorithm, achieving better results for both datasets. For NDFS, the results are slightly worse than528

for U2FS, most probably due to problems in the tuning of regularization parameters. Given the consistent529

good results for different datasets of RJGSC when compared against the state-of-the-art, and its condition530

of simultaneously adapting the spectral embedding and subset selection stages, this algorithm is taken531

as example of the most complex SSFS algorithms (SAMM-FS, SOGFS or DSRMR). These algorithms532

perform manifold learning and feature selection simultaneously, iteratively adapting both steps to achieve533

optimal results.534

It is clear that in terms of accuracy, both for 10% of the features and for the maximal value of achieved,535

U2FS obtains similar results to RJGSC, while at the same time having a much smaller computational536

complexity. Furthermore, while RJGSC requires the manual tuning of extra parameters, similarly to other537

algorithms in the state-of-the-art, U2FS tunes its parameters automatically. Hence, the application of the538

method is straightforward for the users. The stages of higher complexity in U2FS, previously defined539

as O(N3 + d3), are shared by most of the algorithms in the state-of-the-art. However, on top of these540

eigendecompositions and matrix inversions, the algorithms in the literature require a number of iterations541

in the optimization process that U2FS avoids. Additionally, U2FS is the only algorithm for which the542

computation time scales linearly with the amount of features selected.543

The current state-of-the-art of unsupervised spectral feature selectors applies the stages of manifold544
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learning and subset selection simultaneously, which can lead to optimal results. In a field that gets more545

and more complex and goes far from applicability, U2FS is presented as a quick solution for a sequential546

implementation of both stages of SSFS algorithms, yet achieving comparable results to the state-of-the-art.547

Being a greedy method, the utility metric cannot be applied simultaneously to the manifold learning and548

subset selection stages. However, other sequential algorithms from the state-of-the-art could consider549

the use of utility for subset selection, instead of the current sparsity-inducing techniques. One of the550

most direct applications could be the substitution of group-LASSO for group-utility, in order to perform551

selections of groups of features as proposed by Bertrand (2018). This can be of interest in cases where the552

relations between features are known, such as in channel selection (Narayanan and Bertrand, 2020) or in553

multi-modal applications (Zhao et al., 2015).554

CONCLUSION555

This work presents a new method for unsupervised feature selection based on manifold learning and556

sparse regression. The main contribution of this paper is the formulation of the utility metric in the field557

of spectral feature selection, substituting other sparse regression methods that require more computational558

resources. This method, being a backward greedy approach, has been proven to obtain comparable559

results to the state-of-the-art methods with analogous embedding approaches, yet at considerably reduced560

computational load. The method shows consistently good results in different applications, from images561

to text and sound data; and it is broadly applicable to problems of any size: using more features than562

samples or vice versa.563

Furthermore, aiming to show the applicability of U2FS to data presenting non-linearities, the proposed564

approach has been evaluated in simulated data, considering both a binary and an RBF kernel embedding.565

Given the sensitivity of the RBF kernel to high-dimensional spaces, a new approximation of the RBF566

kernel parameter was proposed, which does not require further tuning around the value obtained. The567

proposed approximation outperforms the rule-of-thumb widely used in the literature in most of the568

scenarios presented. Nevertheless, in terms of feature selection, the utility metric is robust against the569

embedding.570

U2FS is proposed as a non-parametric efficient algorithm, which does not require any manual tuning571

or special knowledge from the user. Its simplicity, robustness and accuracy open a new path for structure572

sparsity-inducing feature selection methods, which can benefit from this quick and efficient technique.573
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