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Abstract

In a multi-speaker scenario, the human auditory system is able to attend to one particular speaker of interest and

ignore the others. It has been demonstrated that it is possible to use electroencephalography (EEG) signals to infer to

which speaker someone is attending by relating the neural activity to the speech signals. However, classifying auditory

attention within a short time interval remains the main challenge. We present a convolutional neural network-based

approach to extract the locus of auditory attention (left/right) without knowledge of the speech envelopes. Our results

show that it is possible to decode the locus of attention within 1 to 2 s, with a median accuracy of around 81%. These

results are promising for neuro-steered noise suppression in hearing aids, in particular in scenarios where per-speaker

envelopes are unavailable.

Index Terms

Convolutional neural networks (CNN), Auditory attention detection (AAD), Electroencephalography (EEG),

Neuro-steered auditory prosthesis, Brain-computer interfaces (BCI)

I. INTRODUCTION

In a multi-speaker scenario the human auditory system is able to focus on just one speaker, ignoring all other

speakers and noise. This situation is called the “cocktail party problem” (Cherry, 1953). However, elderly people

and people suffering from hearing loss have particular difficulty attending to one person in such an environment.

In current hearing aids, this problem is mitigated by automatic noise suppression systems. When multiple speakers

are present, however, these systems have to rely on heuristics such as the speaker volume or the listener’s look

direction to determine the relevant speaker, which often fail in practice.

The emerging field of auditory attention decoding (AAD) tackles the challenge of directly decoding auditory

attention from neural activity, which may replace such unreliable and indirect heuristics. This research finds

applications in the development of neuro-steered hearing prostheses that analyze brain signals to automatically

decode the direction or speaker to whom the user is attending, to subsequently amplify that specific speech stream

while suppressing other speech streams and surrounding noise. The desired result is increased speech intelligibility

for the listener.
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In a competing two-speaker scenario, it has been shown that the neural activity (as recorded using electroen-

cephalography (EEG) or magnetoencephalography (MEG)) consistently tracks the dynamic variation of an incoming

speech envelope during auditory processing, and that the attended speech envelope is typically more pronounced

than the unattended speech envelope (Ding and Simon, 2012; O’sullivan et al., 2014). This neural tracking of the

stimulus can then be used to determine auditory attention. A common approach is stimulus reconstruction, where

the post-stimulus brain activity is used to decode and reconstruct the attended stimulus envelope (O’sullivan et al.,

2014; Pasley et al., 2012). The reconstructed envelope is then correlated with the original stimulus envelopes, and

the one yielding the highest correlation is then considered to belong to the attended speaker. Other methods for

attention decoding include the forward modeling approach: predicting EEG from the auditory stimulus (Akram

et al., 2016; Alickovic et al., 2016), canonical correlation analysis (CCA)-based methods (de Cheveigné et al.,

2018), and Bayesian state-space modeling (Miran et al., 2018).

All studies mentioned above are based on linear decoders. However, since the human auditory system is inherently

non-linear (Faure and Korn, 2001), non-linear models (such as neural networks) could be beneficial for reliable and

quick AAD. In de Taillez et al. (2017), a feedforward neural network for EEG-based speech stimulus reconstruction

was presented, showing that artificial neural networks are a feasible alternative to linear decoding methods.

Recently, convolutional neural networks CNNs have become the preferred approach for many recognition and

detection tasks, in particular in the field of image classsification (LeCun et al., 2015). Recent research on CNNs

has also shown promising results for EEG classification: in seizure detection (Acharya et al., 2018a; Ansari et al.,

2018a), depression detection (Liu et al., 2017), and sleep stage classification (Acharya et al., 2018b; Ansari et al.,

2018b). In terms of EEG-based AAD, Ciccarelli et al. (2019) recently showed that a (subject-dependent) CNN

using a classification approach can outperform linear methods for decision windows of 10 s.

Current state-of-the-art models are thus capable of classifying auditory attention in a two-speaker scenario with

high accuracy (75 to 85%) over a data window with a length of 10 s, but their performance drops drastically

when shorter windows are used (e.g., de Cheveigné et al. (2018); Ciccarelli et al. (2019)). However, to achieve

sufficiently fast AAD-based steering of a hearing aid, short decision windows (down to a few seconds) are required.

This inherent trade-off between accuracy and decision window length was investigated by Geirnaert et al. (2020),

who proposed a method to combine both properties into a single metric, by searching for the optimal trade-off point

to minimize the expected switch duration in an AAD-based volume control system with robustness constraints. The

robustness against AAD errors can be improved by using smaller relative volume changes for every new AAD

decision, while the decision window length determines how often an AAD decision (volume step) is made. It was

found that such systems favor short window lengths (�10 s) with mediocre accuracy over long windows (10 to 30 s)

with high accuracy.

Apart from decoding which speech envelope corresponds to the attended speaker, it may also be possible to

decode the spatial locus of attention. That is, not decoding which speaker is attended to, but rather which location

in space. The benefit of this approach for neuro-steered auditory prostheses is that no access to the clean speech

stimuli is needed. This has been investigated based on differences in the EEG entropy features (Lu et al., 2018), but

the performance was insufficient for practical use (below 70% for 60 s windows). However, recent research (Wolbers
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et al., 2011; Bednar and Lalor, 2018; Patel et al., 2018; O’Sullivan et al., 2019; Bednar and Lalor, 2020) has shown

that the direction of auditory attention is neurally encoded, indicating that it could be possible to decode the attended

sound position or trajectory from EEG. A few studies employing MEG have suggested that in particular the alpha

power band could be tracked to determine the locus of auditory attention (Frey et al., 2014; Wöstmann et al., 2016).

Another study, employing scalp EEG, found the beta power band related with selective attention (Gao et al., 2017).

The aim of this paper is to further explore the possibilities of CNNs for EEG-based AAD. As opposed to de Taillez

et al. (2017) and Ciccarelli et al. (2019), who aim to decode the attended speaker (for a given set of speech envelopes),

we aim to decode the locus of auditory attention (left/right). When the locus of attention is known, a hearing aid

can steer a beamformer in that direction to enhance the attended speaker.

II. MATERIALS AND METHODS

A. Experiment setup

The dataset used for this work was gathered previously (Das et al., 2016). EEG data was collected from 16

normal-hearing subjects while they listened to two competing speakers and were instructed to attend to one particular

speaker. Every subject signed an informed consent form approved by the KU Leuven ethical committee.

The EEG data was recorded using a 64-channel BioSemi ActiveTwo system, at a sampling rate of 8196Hz,

in an electromagnetically shielded and soundproof room. The auditory stimuli were low-pass filtered with a cut-

off frequency of 4 kHz and presented at 60 dBA through Etymotic ER3 insert earphones. APEX 3 was used as

stimulation software (Francart et al., 2008).

The auditory stimuli were comprised of four Dutch stories, narrated by three male Flemish speakers (DeBuren,

2007). Each story was 12min long and split into two parts of 6min each. Silent segments longer than 500ms were

shortened to 500ms. The stimuli were set to equal root-mean-square intensities and were perceived as equally loud.

The experiment was split into eight trials, each 6min long. In every trial, subjects were presented with two

parts of two different stories. One part was presented in the left ear, while the other was presented in the right ear.

Subjects were instructed to attend to one of the two via a monitor positioned in front of them. The symbol “<”

was shown on the left side of the screen when subjects had to attend to the story in the left ear, and the symbol

“>” was shown on the right side of the screen when subjects had to attend to the story in the right ear. They did

not receive instructions on where to focus their gaze.

In subsequent trials, subjects attended either to the second part of the same story (so they could follow the story

line) or to the first part of the next story. After each trial, subjects completed a multiple-choice quiz about the

attended story. In total, there was 8 × 6min = 48min of data per subject. For an example of how stimuli were

presented, see Table I. (The original experiment (Das et al., 2016) contained 12 additional trials of 2min each,

collected at the end of every measurement session. These trials were repetitions of earlier stimuli and were not

used in this work.)

The attended ear alternated over consecutive trials to get an equal amount of data per ear (and per subject), which

is important to avoid the lateralization bias described by Das et al. (2016). Stimuli were presented in the same order

to each subject, and either dichotically or after head-related transfer function (HRTF) filtering (simulating sound
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coming from ±90°). As with the attended ear, the HRTF/dichotic condition was randomized and balanced within

and over subjects. In this work we do not distinguish between dichotic and HRTF to ensure there is as much data

as possible for training the neural network.

TABLE I: First eight trials for a random subject. Trials are numbered according to the order in which they were

presented to the subject. Which ear was attended to first was determined randomly. After that, the attended ear

was alternated. Presentation (Dichotic/HRTF) was balanced over subjects with respect to the attended ear. Adapted

from Das et al. (2016).

Trial Left Stimulus Right Stimulus Attn. Ear Presentation

1 Story1, part1 Story2, part1 Left Dichotic

2 Story2, part2 Story1, part2 Right HRTF

3 Story3, part1 Story4, part1 Left Dichotic

4 Story4, part2 Story3, part2 Right HRTF

Trial Left Stimulus Right Stimulus Attn. Ear Presentation

5 Story2, part1 Story1, part1 Left Dichotic

6 Story1, part2 Story2, part2 Right HRTF

7 Story4, part1 Story3, part1 Left Dichotic

8 Story3, part2 Story4, part2 Right HRTF

B. Data preprocessing

The EEG data was filtered with an equiripple FIR bandpass filter and its group delay was compensated for. For

use with linear models, the EEG was filtered between 1 and 9Hz, which has been found to be an optimal frequency

range for linear attention decoding (Pasley et al., 2012; Ding and Simon, 2012). For the CNN models, a broader

bandwidth between 1 and 32Hz was used, as de Taillez et al. (2017) show that this is more optimal. In both cases,

the maximal bandpass attenuation was 0.5 dB while the stopband attenuation was 20 dB (at 0–1Hz) and 15 dB

(at 32–64Hz). After the bandpass filtering the EEG data was downsampled to 20Hz (linear model) and 128Hz

(CNN). Artifacts were removed with the generic MWF-based removal algorithm described in Somers et al. (2018).

Data of each subject was divided into a training, validation and test set. Per set, data segments were generated

with a sliding window equal in size to the chosen window length and with an overlap of 50%. Data was normalized

on a subject-by-subject basis, based on statistics of the training set only, and in such a way that proportions between

EEG channels were maintained. Concretely, for each subject we calculated the power per channel, based on the 10%

trimmed mean of the squared samples. All channels were then divided by the square root of the median of those 64

values (one for each EEG channel). Data of each subject was thus normalized based on a single (subject-specific)

value.
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C. Convolutional neural networks

A convolutional neural network (CNN) consists of a series of convolutional layers and non-linear activation

functions, typically followed by pooling layers. In convolutional layers, one or more convolutional filters slide over

the data to extract local data features. Pooling layers then aggregate the output by computing, for example, the

mean. Similarly to other types of neural networks, a CNN is optimized by minimizing a loss function, and the

optimal parameters are estimated with an optimization algorithm such as stochastic gradient descent.

Our proposed CNN for decoding the locus of auditory attention is shown in Fig. 1. The input is a 64×T matrix,

where 64 is the number of EEG channels in our dataset and T is the number of samples in the decision window.

(We tested multiple decision window lengths, as discussed later.) The first step in the model is a convolutional layer,

indicated in blue. Five independent 64 × 17 spatio-temporal filters are shifted over the input matrix, which, since

the first dimension is equal to the number of channels, each result in a time series of dimensions 1× T . Note that

“17” is 130ms at 128Hz, and 130ms was found to be an optimal filter width—that is, longer or shorter decision

window lengths gave a higher loss on a validation set. A rectifying linear unit (ReLu) activation function is used

after the convolution step.

Avg-PoolConv + ReLu
FC

64xT

5@1xT 5@1x1 2

64x17

Input

5

Output

Fig. 1: CNN architecture (windows of T samples). Input: T time samples of a 64-channel EEG signal, at a sampling

rate of 128Hz. Output: two scalars that determine the attended direction (left/right). The convolution, shown in

blue, considers 130ms of data over all channels.

In the average pooling step, data is averaged over the time dimension, thus reducing each time series to a single

number. After the pooling step, there are two fully connected (FC) layers. The first layer contains five neurons (one

for each time series) and is followed by a sigmoid activation function, and the second layer contains two (output)

neurons. These two neurons are connected to a cross-entropy loss function. Note that with only two directions

(left/right), a single output neuron (coupled with a binary cross-entropy loss) would have sufficed as well. With this

setup it is easier to extend to more locations, however. The full CNN consists of approximately 5500 parameters.

The implementation was done in MATLAB 2016b and MatConvNet (version 1.0-beta25), a CNN toolbox for

MATLAB (Vedaldi and Lenc, 2015). The source code is available at https://github.com/exporl/locus-of-auditory-

attention-cnn.
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D. CNN training and evaluation

The model was trained on data of all subjects, including the subject it was tested on (but without using the same

data for both training and testing). This means we are training a subject-specific decoder, where the data of the

other subjects can be viewed as a regularization or data augmentation technique to avoid overfitting on the (limited)

amount of training data of the subject under test.

To prevent the model from overfitting to one particular story, we cross-validated over the four stories (resulting

in four folds). That is, we held out one story and trained on the remaining three stories (illustrated in Table II).

Such overfitting is not an issue for simple linear models, but may be an issue for the CNN we propose here

Indeed, even showing only the EEG responses to a part of a story could result in the model learning certain story-

specific characteristics. That could then lead to overly optimistic results when the model is presented with the EEG

responses to another (albeit different) part of the same story. Similarly, since each speaker has their own “story-

telling” characteristics (for example, speaking rate or intonation), and a different voice timbre, EEG responses to

different speakers may differ. Therefore, it is possible that the model gains an advantage by having “seen” the EEG

response to a specific speaker, so we retained only the folds wherein the same speaker was never simultaneously

part of both the training and the test set. In the end, only two folds remained (see Table II). We refer to the combined

cross-validation approach as leave-one-story+speaker-out.

TABLE II: Cross-validating over stories and speakers. With the current dataset, there are only two folds that do not

mix stories and speakers across training and test sets. Top: story 1 as test data; story 2, 3 and 4 as training data and

validation data (85/15% division, per story). Bottom: similarly, but now with a different story and speaker as test

data. In both cases the story and speaker are completely unseen by the model. The model is trained on the same

training set for all subjects and tested on a unique, subject-specific, test set.

Story Speaker Subject 1 Subject 2 ... Subject 16

1 1 test test ... test

2 2 train/val

3 3 train/val

4 3 train/val

Story Speaker Subject 1 Subject 2 ... Subject 16

1 1 train/val

2 2 test test ... test

3 3 train/val

4 3 train/val

In an additional experiment we investigated the subject-dependency of the model, where, in addition to cross-

validating over story and speaker, we also cross-validated over subjects. That is, we no longer trained and tested

on N subjects, but instead trained on N − 1 subjects and tested on the held-out subject. Such a paradigm has the

advantage that new subjects do not have to undergo potentially expensive and time-consuming re-training, making it
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more suitable for real-life applications. Whether it is actually a better choice than subject-specific retraining depends

on the difference in performance between the two paradigms. If the difference is sufficiently large, subject-dependent

retraining might be a price one is willing to pay.

We trained the network by minimizing the cross-entropy between the network outputs and the corresponding

labels (the attended ear). We used mini-batch stochastic gradient descent with an initial learning rate of 0.09 and

a momentum of 0.9. We applied a step decay learning schedule that decreased the learning rate after epoch 10

and 35 to 0.045 and 0.0225, respectively, to assure convergence. The batch size was set to 20, partly because of

memory constraints, and partly because we did not see much improvement with larger batch sizes. Weights and

biases were initialized by drawing randomly from a normal distribution with a mean of 0 and a standard deviation

of 0.5. Training ran for 100 epochs, as early experiments showed that the optimal decoder was usually found

between epoch 70 and 95. Regularization consisted of weight decay with a value of 5× 10−4, and, after training,

of selecting the decoder in the iteration where the validation loss was minimal. Note that the addition of data of

the other subjects can also be viewed as a regularization technique that further reduces the risk of overfitting.

All hyperparameters given above were determined by running a grid search over a set of reasonable values.

Performance during this grid search was measured on the validation set.

Note that in this work the decoding accuracy is defined as the percentage of correctly classified decision windows

on the test set, averaged over the two folds mentioned earlier (one for each story narrated by a different speaker).

E. Linear baseline model (Stimulus reconstruction)

A linear stimulus reconstruction model (Biesmans et al., 2017) was used as baseline. In this model, a spatio-

temporal filter was trained and applied on the EEG data and its time-shifted versions up to 250ms delay, based on

least-squares regression, in order to reconstruct the envelope of the attended stimulus. The reconstructed envelope

was then correlated (Pearson correlation coefficient) with each of the two speaker envelopes over a data window

with a pre-defined length, denoted as the decision window (different lengths were tested). The classification was

made by selecting the position corresponding to the speaker that yielded the highest correlation in this decision

window. The envelopes were calculated with the “powerlaw subbands” method proposed by Biesmans et al. (2017);

that is, a gammatone filter bank was used to split the speech into subbands, and per subband the envelope was

calculated with a power law compression with exponent 0.6. The different subbands were then added again (each

with a coefficient of 1) to form the broadband envelope. Envelopes were filtered and downsampled in the same

vein as the EEG recordings.

For a fairer comparison with the CNN, the linear model was also trained in a leave-one-story+speaker-out way.

In contrast to the CNN, however, the linear model was not trained on any other data than that of the subject under

testing, since including data of other subjects harms the performance of the linear model.

Note that the results of the linear model here merely serve as a representative baseline, and that a comparison

between the two models should be treated with care—in part because the CNN is non-linear, but also because

the linear model is only able to relate the EEG to the envelopes of the recorded audio, while the CNN is free to

extract any feature it finds optimal (though only from the EEG, as no audio is given to the CNN). Additionally, the
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prepossessing is slightly different for both models. However, that preprocessing was chosen such that each model

would perform optimally—using the same preprocessing would, in fact, negatively impact one of the two models.

F. Minimal expected switch duration

For some of the statistical tests below, we use the minimal expected switch duration (MESD) proposed by Geir-

naert et al. (2020) as a relevant metric to assess AAD performance. The goal of the MESD metric is to have a single

value as measure of performance, resolving the trade-off between accuracy and the decision window length. The

MESD was defined as the expected time required for an AAD-based gain control system to reach a stable volume

switch between both speakers, following an attention switch of the user. The MESD is calculated by optimizing a

Markov chain as a model for the volume control system, which uses the AAD decision time and decoding accuracy

as parameters. As a by-product, it provides the optimal volume increment per AAD decision.

One caveat is that the MESD metric assumes that all decisions are taken independently of each other, but this

may not be true when the window length is very small, for example, smaller than 1 s. In that case the model behind

the MESD metric may slightly underestimate the time needed for a stable switch to occur. However, it can still

serve as a useful tool for comparing models.

III. RESULTS

A. Decoding performance

Seven different decision window lengths were tested: 10, 5, 2, 1, 0.5, 0.25 and 0.13 s. This defines the amount

of data that is used to make a single left/right decision. In the AAD literature, decision windows range from

approximately 60 to 5 s. In this work, the focus lies on shorter decision windows. This is done for practical reasons:

in neuro-steered hearing aid applications the detection time should ideally be short enough to quickly detect attention

switches of the user.

To capture the general performance of the CNN, the reported accuracy for each subject is the mean accuracy of

10 different training runs of the model, each with a different (random) initialization. All MESD values in this work

are based on these mean accuracies.

The linear model was not evaluated at a decision window length of 0.13 s since its kernel has a width of 0.25 s,

which places a lower bound on the possible decision window length.

Figure 2 shows the decoding accuracy at 1 and 10 s for the CNN and the linear model. For both decision windows

the CNN had a higher median decoding accuracy, but a larger inter-subject variability. Two subjects had a decoding

accuracy lower than 50% at a window length of 10 s, and were therefore not considered in the subsequent analysis,

nor are they shown in the figures in this section.

For 1 s decision windows, a Wilcoxon signed-rank test yielded significant differences in detection accuracy

between the the linear decoder model and the CNN (W = 3, p < 0.001), with an increase in median accuracy from

58.1% to 80.8%. Similarly, for 10 s decision windows, a Wilcoxon signed-rank test showed a significant difference

between the two models (W = 16, p = 0.0203), with the CNN achieving a median accuracy of 85.1% compared

to 75.7% for the linear model.
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Fig. 2: Auditory attention detection performance of the CNN for two different window lengths. Linear decoding

model shown as baseline. Blue dots: per-subject results, averaged over two test stories. Gray lines: same subjects.

Red triangles: median accuraries.

The minimal expected switch duration (MESD) (Geirnaert et al., 2020) outputs a single number for each subject,

given a set of window lengths and corresponding decoding accuracies. This allows for a direct comparison between

the linear and the CNN model, independent of window length. As shown in Fig. 3, the linear model achieves a

median MESD of 22.6 s, while the CNN achieves a median MESD of only 0.819 s. A Wilcoxon-signed rank test

shows this difference to be significant (W = 105, p < 0.001). The extremely low MESD for the CNN is the result

of the median accuracy still being 68.7% at only 0.13 s, and the fact that the MESD typically chooses the optimal

operation point at short decision window lengths (Geirnaert et al., 2020).

0 120

0.819
CNN

22.6
Linear

MESD (s)

Fig. 3: Minimal expected switch durations (MESDs) for the CNN and the linear baseline. Dots: per-subject results,

averaged over two test stories. Gray lines: same subjects. Vertical black bars: median MESD. As before, two poorly

performing subjects were excluded from the analysis.

It is not entirely clear why the CNN fails for two of the 16 subjects. Our analysis shows that the results depend

heavily on the story that is being tested on: for the two subjects with below 50% accuracy the CNN performed

poorly on story 1 and 2, but performed well on story 3 and 4 (80% and higher). Our results are based on story 1 and

2, however, since story 3 and 4 are narrated by the same speaker and we wanted to avoid having the same speaker

in both the training and test set. It is possible that the subjects did not comply with the task in these conditions.
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B. Effect of decision window length

Shorter decision windows contain less information and should therefore result in poorer performance compared

to longer decision windows. Figure 4 visualizes the relation between window length and detection accuracy.
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Fig. 4: Auditory attention detection performance as a function of the decision window length. Blue dots: per-subject

results, averaged over two test stories. Gray lines: same subjects. Red triangles: median accuracies.

A linear mixed-effects model fit for decoding accuracy, with decision window length as fixed effect and subject

as random effect, shows a significant effect of window length for both the CNN model (df = 96, p < 0.001) and

the linear model (df = 94, p < 0.001). The analysis was based on the decision window lengths shown in Fig. 4;

that is, seven window lengths for the CNN and six for the linear model.

C. Interpretation of the results

Interpreting the mechanisms behind a neural network remains a challenge. In an attempt to understand which

frequency bands of the EEG the network uses we retested (without retraining) the model in two ways: (1) by filtering

out a certain frequency range (Fig. 5, left); (2) by filtering out everything except a particular frequency range (Fig. 5,

right). The frequency ranges are defined as follows: δ = 1–4Hz; θ = 4–8Hz; α = 8–14Hz; β = 14–32Hz.
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Fig. 5: Auditory attention detection performance of the CNN when one particular frequency band is removed (left)

and when only one band is used (right). The original results are also shown, for reference. Each box plot contains

results for all window lengths, and for the two test stories.

Figure 5 shows that the CNN uses mainly information from the beta band, in line with Gao et al. (2017). Note

that the poor results for the other frequency bands (Fig. 5, right) does not necessarily mean that the network does

not use the other bands, but rather, if it does, it is in combination with other bands.

We additionally investigated the weights of the filters of the convolutional layer, as they give an indication of what

channel the model finds important. We calculated the power of the filter weights per channel, and to capture the

general trend, we calculated a grand-average over all models (i.e,. all window lengths, stories, and runs). Moreover,

we normalized the results with the per-channel power of the EEG in the training set, to account for that fact that

what comes out of the convolutional layer is a function of both the filter weights and the magnitude of the input.

The results are shown in Fig. 6. We see primarily activations in the frontal and temporal regions, and to a lesser

extent also in the occipital lobe. Activations appear to be slightly stronger on the right side, as well. This result is

in line with Ciccarelli et al. (2019), who also saw stronger activations in the frontal channels (mostly for the “Wet

18 CH” and “Dry 18 CH” systems). Additionally, Gao et al. (2017) also found the frontal channels to significantly

differ from the other channels within the beta band (Fig. 3 and Table 1 in Gao et al. (2017)). The prior (eye) artifact

removal step in the EEG preprocessing and the importance of the beta band in the decision making (Fig. 5) suggests

that the focus on the frontal channel is not necessarily attributed to eye artifacts. It is noted that the filters of the

network act as backward decoders, and therefore care should be taken when interpreting topoplots related to the

decoder coefficients. As opposed to a forward (encoding) model, the coefficients of a backward (decoding) model

are not necessarily predictive for the strength of the neural response in these channels. For example, the network

may perform an implicit noise reduction transformation, thereby involving channels with low SNR as well.
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Fig. 6: Grand-average topographic map of the normalized power of the convolutional filters.

D. Effect of validation procedure

In all previous results we used a leave-one-story+speaker-out scheme to prevent the CNN from gaining an

advantage by already having seen EEG responses elicited by the same speaker or different parts of the same story.

However, it is noted that in the majority of the AAD literature, training and test sets often do contain samples from

the same speaker or story (albeit from different parts of the story).

To investigate the impact of cross-validating over speaker and story, we trained the CNN again, but this time

using data of each trial (later referred to as “Every trial”). Here, the training set consisted of the first 75% of

each trial, the validation set of the next 15%, and the test set of the last 15%. We performed this experiment

twice—once using data preprocessed in the manner explained in the “Data processing” section, and once with the

artefact removal filtering (MWF) stage excluded.

Figure 7 shows the results of all three experiments for decision windows of 1 s. Other window lengths show

similar results.

For decision windows of 1 s, using data from all trials, in addition to applying a per-trial MWF filter, results in

a median decoding accuracy of 92.8% (Fig. 7, right), compared to only 80.8% when leaving out both story and

speaker (Fig. 7, left). A Wilcoxon signed-rank test shows this difference to be significant (W = 91, p = 0.0134).

There is, however, no statistically significant difference in decoding accuracy between leaving out both story and

speaker and when using data of all trials, but without applying any spatial filtering for artefact removal (W = 48,

p = 0.8077).

It appears that having the same speaker and story in both the training and test set is less problematic than we had

anticipated, and employing a classical scheme wherein both sets draw from the same trials (though use different

parts) is fine, but only on the condition that they are preprocessed in a trial-independent way.

E. Subject-independent decoding

In a final experiment we investigated how well the CNN performs on subjects that were not part of the training

set. Here, the CNN is trained on N − 1 subjects and tested on the held-out subject—but still in a leave-one-
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Fig. 7: Impact of the model validation strategy on the performance of the CNN (decision windows of 1 s). In

Leave-one-story+speaker-out, the training set does not contain examples of the speakers or stories that appear in

the test set. In Every trial (unprocessed), the training, validation and test sets are extracted from every trial (although

always disjoint), and no spatial filtering takes places. In Every trial (per-trial MWFs), data is again extracted from

every trial, but this time per-trial MWF filters are applied.

story+speaker-out manner, as before. The results are shown in Fig. 8. For windows of 1 s, a Wilcoxon signed-rank

test shows that leaving out the test subject results in a significant decrease in decoding accuracy from 80.8% to

69.3% (W = 14, p = 0.0134). Surprisingly, for one subject the network performs better when its data was not

included during training. Other window lengths show similar results.

IV. DISCUSSION

We proposed a novel CNN-based model for decoding the direction of attention (left/right) without access to the

stimulus envelopes, and found it to significantly outperform a linear decoder that was trained to reconstruct the

envelope of the attended speaker.

A. Decoding accuracy

The CNN model resulted in a significant increase in decoding accuracy compared to the linear model: for

decision windows as low as 1 s, the CNN’s median performance is around 81%. This is also better than entropy-

based direction classification presented in literature (Lu et al., 2018), in which the average decoding performance

proved to be insufficient for real-life use (less than 80% for decision windows of 60 s). Moreover, our network
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Fig. 8: Impact of leaving out the test subject on the accuracy of the CNN model (decision windows of 1 s). Blue

dots: per-subject results, averaged over two test stories. Gray lines: same subjects. Red triangles: median accuracies.

achieves an unprecedented median MESD of only 0.819 s, compared to 22.6 s for the linear method, allowing for

robust neuro-steered volume control with a practically acceptable latency.

Despite the impressive median accuracy of our CNN, there is clearly more variability between subjects in

comparison to the linear model. Figure 4, for example, shows that some subjects have an accuracy of more than

90%, while others are at chance-level—and two subjects even perform below chance level. While this increase in

variance could be due to our dataset being too small for the large number of parameters in the CNN, we observed

that the poorly performing subjects do better on story 3 and 4, which were originally excluded as a test set in

the cross-validation. Why our system performs poorly on some stories, and why this effect differs from subject to

subject, is not clear, but nevertheless it does impact the per-subject results. This story-effect is not present in the

linear model, probably because that model has far fewer parameters and is unable to pick up certain intricacies of

stories or speakers.

As expected, we found a significant effect of decision window length on accuracy. This effect is, however, clearly

different for the two models: the performance of the CNN is much less dependent on window length than is the

case for the linear model. For the CNN, going from 10 s to 1 s, the median accuracy decreases by only 4.3% (from

85.1% to 80.8%), while with the linear model it decreases by 17.6% (from 75.7% to 58.1%). Moreover, even

at 0.25 s the CNN still achieves a median accuracy of 74.0%, compared to only 53.4% for the linear model. We

hypothesize that this difference is because that the CNN does not know the stimulus and is only required to decode

the locus of attention. As opposed to traditional AAD techniques, it does not have to relate the neural activity to

the underlying speech envelopes. The latter requires computing correlation coefficients between the stimulus and
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the neural responses, which are only sufficiently reliable and discriminative when computed over long windows.

As usual with deep neural networks, it is hard to pinpoint exactly which information the system uses to achieve

attention decoding. Potential information sources are spatial patterns of brain activity related to auditory attention,

but also eye gaze or (ear) muscle activity which can be reflected in the EEG. While the subjects most likely focused

on a screen in front of them and were instructed to sit still, and we conducted a number of control experiments

such as removing the frontal EEG channels, none of these arguments or experiments was fully conclusive, so we

can not exclude the possibility that information from other sources than the brain was used to decode attention.

Lastly, we evaluated our system using a leave-one-story+speaker-out approach, which is not commonly done in

the literature. The usual approach is to leave out a single trial without consideration for speaker and/or story. This is

probably fine for linear models, but we wanted to see whether the same would hold for a more complex model such

as a CNN. Our results demonstrate that, when properly preprocessing the data, there is no significant difference in

decoding accuracy between the leave-one-story+speaker-out approach and the classical approach. However, strong

overfitting effects were observed when a per-trial (data-driven) preprocessing is performed, e.g., for artifact removal.

This implies that the data-driven procedure generates inter-trial differences in the spatio-temporal data structure that

can be exploited by the network. We conclude that one should be careful when applying data-driven preprocessing

methods such as independent component analysis, principal component analysis, or MWF in combination with

spatio-temporal decoders. In such cases, it is important not to run the preprocessing on a per-trial basis, but run it

only once on the entire recording to avoid adding per-trial fingerprints that can be discovered by the network.

B. Future improvements

We hypothesize that much of the variation within and across subjects and stories currently observed is due to

the small size of the dataset. The network probably needs more examples to learn to generalize better. However,

a sufficiently large dataset, one which also allows for the strict cross-validation used in this work, is currently not

available.

Partly as a result of the limited amount of data available, the CNN proposed in this work is relatively simple.

With more data, more complex CNN architectures would become feasible. Such complex CNN architectures may

benefit more from generalization features such as dropout and batch normalization, not discussed in this work.

Also, for a practical neuro-steered hearing aid, it may be beneficial to make soft decisions. Instead of the

translation of the continuous softmax outputs into binary decisions, the system could output a probability of left

or right being attended, and the corresponding noise suppression system could adapt accordingly. In this way the

integrated system could benefit from temporal relations or the knowledge of the current state to predict future states.

The CNN could for example be extended by a long short term memory (LSTM) network.

C. Applications

The main bottleneck in the implementation of neuro-steered noise suppression in hearing aids thus far has been the

detection speed (state-of-the-art algorithms only achieve reasonable accuracies when using long decision windows).

This can be quantified through the MESD metric, which captures both the effect of detection speed and decoding
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accuracy. While our linear baseline model achieves a median MESD of 22.6 s, our CNN achieves a median MESD

of only 0.819 s, which is a major step forward.

Moreover, our CNN-based system has an MESD of 5 s or less for 11 out of 16 subjects (8 subjects even have an

MESD below 1 s), which is what we assume the minimum for an auditory attention detection system to be feasible

in practice.1 (For reference, an MESD of 5 s corresponds to a decoding accuracy of 70% at 1 s.) On the other hand,

one subject does have an MESD of 33.4 s, and two subjects have an infinitely high MESD due to below 50%

performance. The inter-subject variability thus remains a challenge, since the goal is to create an algorithm that is

both robust and able to quickly decode attention within the assumed limits for all subjects.

Another difficulty in neuro-steered hearing aids is that the clean speech envelopes are not available. This has so

far been addressed using sophisticated noise suppression systems (Van Eyndhoven et al., 2017; O’Sullivan et al.,

2017; Aroudi et al., 2018). If the speakers are spatially separated, our CNN might elegantly solve this problem by

steering a beamformer towards the direction of attention, without requiring access to the envelopes of the speakers

at all. Note that in a practical system the system would need to be extended to more than two possible directions

of attention, depending on the desired spatial resolution.

For application in hearing aids, a number of other issues need to be investigated, such as the effect of hearing

loss (Holmes et al., 2017), acoustic circumstances (for example, background noise, speaker locations and reverbera-

tion (Das et al., 2018, 2016; Fuglsang et al., 2017; Aroudi et al., 2019)), mechanisms for switching attention (Akram

et al., 2016), etc. The computational complexity would also need to be reduced. Especially if deeper, more complex

networks are designed, CNN pruning will be necessary (Anwar et al., 2017). Then a hardware DNN implementation,

or even computation on an external device such as a smartphone could be considered. Another practical obstacle are

the numerous electrodes used for the EEG measurements. Similar to the work of Mirkovic et al. (2015); Narayanan

Mundanad and Bertrand (2018); Fiedler et al. (2016); Montoya-Martínez et al. (2019), it should be investigated

how many and which electrodes are minimally needed for adequate performance.

In addition to potential use in future hearing devices, fast and accurate detection of the locus of attention can

also be an important tool in future fundamental research. Thus far it was not possible to measure compliance of the

subjects with the instruction to direct their attention to one ear. Not only may the proposed CNN approach enable

this, but it will also allow to track the locus of attention in almost real-time, which can be useful to study attention

in dynamic situations, and its interplay with other elements such as eye gaze, speech intelligibility and cognition.

In conclusion, we proposed a novel EEG-based CNN for decoding the locus of auditory attention (based only on

the EEG), and showed that it significantly outperforms a commonly-used linear model for decoding the attended

speaker. Moreover, we showed that the way the model is trained, and the way the data is preprocessed, impacts the

results significantly. Although there are still some practical problems, the proposed model approaches the desired

1Note that while a latency of 5 s may at first sight still seem long for practical use, it should not be confused with the time it takes to actually

start steering towards the attended speaker: the user will already hear the effect of switching attention sooner. Instead, the MESD corresponds

to the total time it takes to switch an AAD-steered volume control system from one speaker to the other in a reliable fashion by introducing

an optimized amount of “inertia” in the volume control system to avoid spurious switches due to false positives (Geirnaert et al., 2020).
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real-time detection performance. Furthermore, as it does not require the clean speech envelopes, this model has

potential applications in realistic noise suppression systems for hearing aids.
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