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ABSTRACT

Neural Source Coding (NSC) is a technique that exploits the
modelling power of (deep) neural network for the purpose of source
coding. Its goal is to transform the data into a space of low en-
tropy, where they can be coded by classic entropy coding schemes.
In this paper, our goal is to investigate the use of NSC in so-called
neuro-sensor networks, i.e., a type of body-sensor network consist-
ing of a collection of wireless sensor nodes that record brain activity
at different scalp locations, e.g., via electroencephalography (EEG)
sensors. All nodes wirelessly transmit their data to a fusion center,
where inference is then performed on the joint sensor signals by a
given deep neural network. The NSC parameters and inference net-
work are learned jointly, optimizing the trade-off between accuracy
and bitrate for a given application. We validate this method on a mo-
tor execution task in an emulated EEG sensor network and compare
the resulting trade-offs with those obtained by directly quantizing
the transmitted data to low-bit precision. We demonstrate that NSC
yields more favorable trade-offs than straightforward quantization
for very low bit depths and allows for large bandwidth gains at little
loss in accuracy on the investigated brain-computer interface (BCI)
task.

Index Terms— Quantized Deep neural networks, Distributed
deep neural networks, Wireless EEG sensor networks

1. INTRODUCTION

In the last few years, technological advances such as miniaturization
of microprocessors and energy-efficient batteries have increasingly
enabled the usage of wearable, physiological sensors for ambulant
health monitoring. Many applications however, will require record-
ing of different data modalities or multiple channels of the same data
type at different locations to extract meaningful patterns. This natu-
rally leads to the concept of a body-sensor network (BSN), where the
different sensors wirelessly share their data and solve a given task
in a distributed setting. One example of such a BSN is a so-called
neuro-sensor network to record brain activity, e.g., based on elec-
troencephalography (EEG) sensors, in which case it is referred to as
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a Wireless EEG Sensor Network (WESN) [1, 2]. EEG is a widely
used, noninvasive way to measure the electrical activity of the brain.
These signals can be harnessed for various purposes, including,
e.g., sleep stage analysis [3], epileptic seizure detection [4] and
brain-computer interfaces (BCI), allowing for direct communication
between the human brain and external machines. In a WESN, the
EEG is not recorded with a bulky cap as would traditionally be the
case, but by a number of lightweight mini-EEG devices, each one
capable of recording one or a few EEG channels from its local scalp
area, performing some pre-processing and transmitting this data to
the other nodes or a fusion center. A major constraint in the design
of these networks is that they should be energy-efficient, enabling
a maximal battery lifetime. In BSNs, the typical energy bottleneck
will be the wireless transmission of the data between the sensors
and/or a fusion center [1], motivating the search for solutions that
reduce the amount of data to be transmitted without affecting the
ability of the BSN to achieve sufficient performance on the given
inference task.

In this paper, we investigate the use of Neural Source Coding
(NSC) [5,6] as a way to perform efficient, learnable quantization and
coding to decrease the bandwidth requirements for nodes transmit-
ting their data to be analyzed by a deep neural network (DNN) and
investigate whether it is able to outperform straightforward mixed-
precision training. In contrast to previous work in NSC, we will em-
ploy NSC to perform task-specific compression and minimize the
bitrate of multiple nodes simultaneously, while controlling for a bal-
anced bit allocation across the different nodes. While our evaluation
use case is focused on brain signals, the methodology is presented in
a generic setting without any assumption on the content of the data.
In Section 2, we formally present our problem statement and discuss
mixed-precision training, i.e., directly quantizing the data at low-bit-
precision, as a benchmark method. We then proceed by presenting
the NSC framework and how it can be applied to our use case in
Section 3. In Section 4, we evaluate and compare both approaches
on real EEG data for solving a motor execution task. Conclusions
and future extensions are discussed in Section 5.

2. PROBLEM STATEMENT AND BENCHMARK

Consider a sensor network with node set N containing N sensor
nodes, where each node n ∈ N measures a multi-channel EEG
signal at its respective scalp location and transmits windows of this
data xn to a fusion center. At the fusion center, the different data
{xn|n ∈ N} are merged and analyzed by a multi-channel model,
in our case a DNN. However, simply offloading the measured, raw
data xn would consume a large amount of transmission energy,
which cannot be reasonably supplied by the small batteries on these



miniaturized devices. Thus, the question arises how we can transmit
xn as efficiently as possible by compressing it locally at node n
and performing reconstruction at the fusion center. By allowing
for some distortion on the data we transmit (i.e., performing lossy
compression), we could trade a small amount of task accuracy to
achieve large bandwidth gains. By training the compression at all
the nodes n ∈ N and the inference DNN at the fusion center jointly
in an end-to-end fashion, it is possible to perform task-dependent
compression, allowing for the discarding of signal components that
might be useful for a precise reconstruction, but offer little informa-
tion for the specific task at hand. Furthermore, the model can learn
to deal with the added distortion to achieve more favorable trade-
offs than it would be able to otherwise. A final aspect to take into
account here is that the battery lifetime of the system will ultimately
depend on the node with the highest required bitrate: the critical
node. We will thus not only have to minimize the average bitrate
of the nodes, but also ensure a balanced load across the nodes. In
this paper, we will focus on compressing the signal by performing
downsampling and coding the samples to a lower amount of bits
than the standard 32-bit precision. While this work will focus on
the specific use case of a WESN, it is important to note that the
methods that we will discuss can be employed in any body-sensor
network, or more in general, any setting where the input data for
a neural network is distributed across sensor nodes that can only
communicate on bandwidth-limited channels.

A straightforward way to reduce the consumed bandwidth of the
nodes is to forego the traditional full 32-bit precision used for float-
ing point numbers, but instead represent the transmitted data with
a smaller number of bits. In neural networks in particular, moving
from 32 to 8-bit precision can typically yield great improvements
in memory footprint and inference efficiency while barely affect-
ing task accuracy at all on a wide range of computer vision mod-
els [7]. More recently, models reaching even lower bit depths of
2-4 bits have been proposed with only marginal losses in perfor-
mance. [8–10]. Typically, these models quantize both the network
weights and the activation values and employ the same number of
bits in every layer of the network. In contrast, since the transmission
energy will form the bottleneck of the WESN design, we are only
concerned with quantizing the data to be transmitted by the nodes of
the WESN, so we will only target a lower bit depth at this point in
the network, i.e., we quantize xn into a quantized vector x̄n. Once
the data x̄n is received at the fusion center, we compute an approx-
imation x̂n of the original data that is further processed in standard
32-bit precision. As a benchmark, we use a state-of-the-art learn-
able quantization scheme, namely the Learnable Step Quantization
(LSQ+) approach of [10] for its simplicity and capability of reaching
high accuracies with only a low number of bits. To quantize a float-
ing point number x to an integer x̄, we pass it through a quantizer Q
at the nodes and a dequantizer Q−1 at the fusion center:

Q(x) = x̄ = ⌊clip(x− β

s
,−2b−1, 2b−1 − 1)⌉

Q−1(x̄) = x̂ = sx̄+ β

(1)

with b the number of bits, s a learnable scale parameter and β a
learnable offset. This scale allows us to find an optimal quanti-
zation step size for the given task that creates a trade-off between
the dynamic range and the quantization error. To enable this quan-
tizer to be learned through backpropagation, we employ the straight-
through estimator (STE) [11], ignoring the non-differentiable round-
ing operation in the backward pass and treating it as a simple iden-

tity operation. Previous research in quantizing neural networks has
provided ample evidence that Quantization-Aware Training (QAT),
i.e., re-training the network with knowledge of the quantizer and
the resulting quantization noise, yields better bit-accuracy trade-offs
than Post-Training Quantization (PTQ), i.e., simply quantizing the
weights and activations of a learned full-precision model post-hoc,
especially in low-precision settings [12, 13]. Even more advanta-
geous is not performing QAT from scratch, but initializing the model
by first performing full-precision training and then fine-tuning the
quantized model [14, 15], an approach we will also follow here.

3. NEURAL SOURCE CODING

In order to further reduce the bandwidth, we propose the use of
Neural Source Coding (NSC), a framework becoming more and
more popular in image compression [6]. Here, we will adopt a
similar approach for compressing sensor network signals (in partic-
ular for EEG data), and compare it with a standard mixed-precision
approach. The main differences between our approach and previous
work in NSC are that (1) we perform task-specific compression
instead of reconstruction of the original data, (2) we investigate how
well the nodes can compress their local data xn without having
access to the data xj of the other nodes j ̸= n and (3) we will add
some additional regularization to ensure that the transmission load
is balanced across the network nodes. The main idea behind NSC is
to transform the data into discrete symbols, which are then encoded
by entropy coding schemes such as Huffman coding or Asymmetric
Numeral Systems [16], which yield an expected code length equal to
the entropy of the discrete source. By modeling the distributions of
these discrete symbols, estimating their entropy and adding a regu-
larization term to the loss function that penalizes high entropies, the
network is encouraged to transform the data in a discrete space of
low entropy that can be efficiently coded, while reducing the impact
on the task performance as much as possible.

To implement this scheme in our network, we follow the ap-
proach of Ballé et al. [6]. The data window xn ∼ pn(xn) that
each node needs to transmit is first fed to an encoding transforma-
tion gαn(xn), allowing us to alter the distribution of xn. In our
case, this transformation consists of a convolutional layer and then
multiplication with a scaling vector, that can widen or narrow the
distribution of the generated elements to increase or lower their en-
tropy. The transformed data zn is then discretized to z̄n, a process
that is simulated during training by adding uniform noise in the in-
terval [−0.5,+0.5], which mirrors the effect of quantization noise.
During validation, the data is instead rounded to the nearest integer.
The encoding transformation and the discretization of xn result in a
new distribution p⋆n(z̄n). For each element z̄ni in the vector z̄n , the
univariate entropy model qϕni

(z̄ni), a neural network architecture
described in [6], is learned to estimate its likelihood. The likelihood
of the full vector qϕn

(z̄n) is then estimated as the product of these
independent, univariate likelihoods. In order to both fit the entropy
model qϕn

(z̄n) to the distribution of the transformed data p⋆n(z̄n)
and penalize the entropy of this distribution, we define the loss term
LR,n for each node n:

LR,n(xn,ϕn,αn) = Ez̄n∼p⋆n(z̄n)[− log2(qϕn
(z̄n))]

= Exn∼pn(xn)[− log2(qϕn
(Q(gαn(xn)))]

(2)

with pn(xn) the distribution of xn, the input data of node n, gαn

the encoding transform of node n (a neural network parameterized
by αn), qϕn

the entropy model estimating the likelihood of the data



Fig. 1: Schematic overview of the proposed NSC-based network. Blue blocks indicate the distributed baseline with down-and upsampling
(both used LSQ+ and NSC), orange blocks indicate modules added in the NSC framework.

(a neural network parameterized by ϕn and whose architecture is
described by [6]) and Q the quantizer adding noise during training
and performing rounding at validation. This loss minimizes the KL-
divergence between p⋆n and qn, the true and estimated distribution of
z̄n and at the same time minimizes the entropy of the estimated dis-
tribution, encouraging the encoding transformation to transform the
original data into a new space of lower entropy and consequently,
lower code lengths. The discrete data z̄n is then losslessly source
coded with the distribution qϕn

(z̄n) and transmitted to the fusion
center. Here, a decoding transform hβn

transforms the data back
into the original space to produce an approximation x̂n, in this case
employing a transposed convolution and scaling to mirror the encod-
ing transform. This reconstruction is then fed to the original classi-
fier network. We then propose the following rate-distortion loss:

L(x, y,θ,ϕ,α,β) = LCE (fθ (hβ (Q (gα (x)))))

+ λ

(
(1− µ)

∑
n

LR,n (xn,ϕn,αn)

+ µmax
n

LR,n (xn,ϕn,αn)

) (3)

with LCE the cross-entropy loss between the classification of the in-
put data x = [xT

1 , ...x
T
N ]T and the target label y, hβn

the decoding
transform for node n parameterized by βn, fθ the original classifi-
cation network with parameters θ and λ a parameter to be tuned to
perform the trade-off between the rate (the entropy of the transmit-
ted data z̄n) and the distortion (i.e., the classification accuracy of the
BCI task). Important to note is that in our setting, we are not only
interested in the average bitrate Ravg across the nodes, but the bat-
tery life of the system will rather be dependent on the critical node,
i.e., the node with the maximal bitrate Rmax. Thus, a third term is
included in the loss, which penalizes the rate of the currently most
demanding node. This will prevent the rate of a single node to domi-
nate and enforce a more balanced transmission load across the node.
This loss is balanced with the total bitrate with a hyperparameter
µ, a value between 0 and 1 which we will set at 0.5. A schematic
overview of the NSC scheme is presented in Figure 1.

4. EXPERIMENTAL RESULTS

4.1. Experimental setup

We evaluate the capability of the proposed NSC-based pipeline to
reduce the bandwidth of the nodes in a simulated WESN solving a

motor execution task and compare it to LSQ+. In this setting, each
of the nodes is able to record a single EEG channel, perform some
local processing and transmit the data to a fusion center where data
of all the nodes is aggregated and classified. The goal of the motor
execution task is to decode from EEG signals which specific body
movement is executed by the subject. For our experiments, we make
use of the publicly available High Gamma Dataset1 [17], containing
128-channel EEG recordings from 14 subjects, with about 880 trials
of executed movement per subject following a visual cue. These
movements belong to one of four classes: left hand, right hand,
feet and rest. We employ the standard preprocessing procedure
from [17]. The neural network architecture we employ for clas-
sification in the fusion center is the multiscale parallel filter bank
convolutional neural network (MSFBCNN) proposed in [18].

In the WESN setting, we are only capable of using a small num-
ber of mini-EEG devices. Thus, for each run, we first perform an
EEG channel selection step, using the regularized Gumbel-softmax
method described in [19]. To do so, we first train the the centralized
MSFBCNN after extending it with a selection layer, which jointly
learns the optimal set of N channels for the given task and archi-
tecture, together with the network weights. Each of these channels
is then assigned to a node and we begin training the distributed
network for the WESN. In our experiments, we will employ both a
value of N = 6 nodes, a realistic value for a WESN and a value of
N = 12 nodes to evaluate the consistency of the methods in larger
sensor networks.

At each of the sensor nodes, we will first perform downsampling
of the recorded data with two strided learnable convolutional layers,
already decreasing the bandwidth requirements before quantization,
at the cost of some information loss, as in [2]. At the fusion cen-
ter, the data is upsampled with two transposed, strided convolutional
layers, mirroring the strides of the downsampling layers, to restore
the data to its original dimension before feeding it to the original,
centralized MSFBCNN classifier. In the LSQ+ case, the model is
extended with a quantizer and dequantizer at the interface between
the nodes and the fusion center, with a learnable quantization step
size and offset as described in Equation (1). In the NSC case, we add
the encoding and decoding transforms gαn and hβn

, discretization
Q, the entropy models qϕn

and the rate-distortion loss (see Figure
1). For both approaches, we will first initialize the weights of the
down-and upsampling layer and the MSFBCNN classifier by pre-

1https://github.com/robintibor/high-gamma-dataset



(a) Downsampling factor 1 (b) Downsampling factor 4 (c) Downsampling factor 9

Fig. 2: Bandwidth-accuracy trade-off for the LSQ+ and NSC schemes with different downsampling factors and different number of nodes.
Mean test accuracies are plotted against average number of bits per element of the transmitted windows for the critical node of the network,
which requires the highest transmission rate. 10 runs are performed for different values of the trade-off parameter λ for NSC and different
bit lengths for LSQ+. Shaded regions indicate one standard deviation of the individual runs. Dotted lines indicate accuracies of the 6- and
12-node network without any quantization. NSC allows for more favorable Pareto fronts than LSQ+, especially in very low-precision regions.

training the network without quantization on the data of all subjects
jointly. In the second step of the training, the modules responsible
for the quantization are enabled, while the parts of the network that
have already been trained in the first step will be fine-tuned with a
learning rate that is 10 times lower.

4.2. Model performance

The bandwidth-accuracy trade-offs obtained by LSQ+ and NSC for
a network of 6 and 12 nodes with different downsampling factors are
presented in Figure 2. Important to note is that in these trade-offs,
we are mainly interested in the bitrate of the critical node Rmax, not
the average bitrate across the nodes Ravg . A first thing to note is
that both schemes already allow for a large reduction of bandwidth
with only small losses in accuracy compared to the full-precision
baseline, easily handling 4-bit precision. When enough bits are em-
ployed, the quantized networks can even slightly exceed the baseline
in some cases, due to the quantization’s regularizing effect. NSC
however, generally outperforms LSQ+ in the very low-bandwidth
regions of 1-3 bit. A second advantage of NSC is that it also allows
us to access a continuous range of bit depths, since each window is
encoded with a variable amount of bits and the average code length
is dependent on the entropy of the generated symbols. LSQ+ in con-
trast, by default allocates a fixed, discrete number of bits to each ele-
ment of the transmitted vector. Finally, we investigate how balanced
the transmission load across the network is and verify whether the
achieved bitrates are not caused by a single dominating node. To do
this, we look at the relative difference between Rmax and Ravg for
the 6-node network with a downsampling factor of 9 as an example,
illustrated in Figure 3. Here, we see that when µ is 0, i.e., the bitrate
of the critical node is not penalized in Equation (3), the bitrate of the
critical node is on average about 20% higher than the node average.
Enabling the regularization by setting µ to 0.5 reduces this gap about
5%, thus enforcing a more equally balanced load across the nodes.

5. CONCLUSION AND FUTURE OUTLOOK

We have studied how to efficiently code the data to be transmitted in
a WESN solving a motor execution task and investigated whether the
performance of a state-of-the-art mixed-precision approach based on

0 0.5

µ

0

5

10

15

20

25

30

35

40

Fig. 3: Relative difference between the bitrate of the critical node
and average bitrate, i.e. Rmax−Ravg

Ravg
for the 6-node NSC network

with a downsampling factor of 9. Setting µ to 0.5 to enable penaliza-
tion of the bitrate of the critical node during training decreases this
difference and enforces a more balanced load across the nodes.

LSQ+ could be exceeded by the usage of NSC. We have compared
the capability of both approaches to reduce the required bandwidth
while maintaining as much task accuracy as possible in this prob-
lem. We have also made sure the transmission load across the nodes
is balanced (i.e., there is no single node with a dominating contri-
bution to the average bitrate) by introducing an extra regularization
term in the rate-distortion loss. We have demonstrated that while
both approaches can easily reduce precision to at least 4 bits with lit-
tle decrease in accuracy, the NSC yields more favorable bandwidth-
accuracy trade-offs than LSQ+ for regions of low bitrates. In future
work, we will extend the NSC framework, e.g., by replacing the en-
coding and decoding transform with specific autoencoders for EEG,
which could allow us to transform the time series into a latent space
with higher sparsity. Another possible extension lies in the entropy
model, which currently factorizes the distribution of the full win-
dow into independent distributions for each element, but could be
extended with conditional dependencies which can model the corre-
lations between subsequent elements in the time series. Future work
will involve studying the impact of these extensions on WESNs and
the generalization to other kinds of body-sensor networks.
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