
A distributed neural network architecture for
dynamic sensor selection with application to
bandwidth-constrained body-sensor networks

Thomas Strypsteen and Alexander Bertrand, Senior Member, IEEE

Abstract—We propose a dynamic sensor selection approach
for deep neural networks (DNNs), which is able to derive an
optimal sensor subset selection for each specific input sample
instead of a fixed selection for the entire dataset. This dynamic
selection is jointly learned with the task model in an end-to-
end way, using the Gumbel-Softmax trick to allow the discrete
decisions to be learned through standard backpropagation. We
then show how we can use this dynamic selection to increase
the lifetime of a wireless sensor network (WSN) by imposing
constraints on how often each node is allowed to transmit. We
further improve performance by including a dynamic spatial
filter that makes the task-DNN more robust against the fact that
it now needs to be able to handle a multitude of possible node
subsets. Finally, we explain how the selection of the optimal
channels can be distributed across the different nodes in a
WSN. We validate this method on a use case in the context of
body-sensor networks, where we use real electroencephalography
(EEG) sensor data to emulate an EEG sensor network for motor
execution decoding. For this use case, we demonstrate that the
distributed algorithm -with only a small amount of cooperation
between the nodes- achieves a performance close to the upper
bound defined by a fully centralized dynamic selection (maximum
absolute decrease of 4% in accuracy). Furthermore, we observe
that our dynamic sensor selection framework can achieve large
reductions in transmission energy with a limited cost to the
task accuracy, validating it as a practical tool for increasing the
lifetime of body-sensor networks.

Index Terms—Distributed deep neural networks, Sensor Selec-
tion, Wireless sensor networks, EEG channel selection

I. INTRODUCTION

Wearable, physiological sensors are increasingly being
used for ambulant health monitoring, thanks to technological
advances like miniaturization of microprocessors and energy-
efficient batteries. In many applications though, multiple
modalities or multiple channels of one data type will have to
be measured on different devices on different locations on the
body. This has led to the creation of body-sensor networks
(BSNs), where the sensor nodes communicate over a wireless
network to share their data and solve a given task together [1].

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 802895). The authors also acknowledge the
financial support of the FWO (Research Foundation Flanders) for project
G.0A49.18N, and the Flemish Government under the “Onderzoeksprogramma
Artificiële Intelligentie (AI) Vlaanderen” programme.
T. Strypsteen and A. Bertrand are with KU Leuven, Department of Electri-
cal Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal
Processing and Data Analytics and with Leuven.AI - KU Leuven insti-
tute for AI, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium (e-mail:
thomas.strypsteen@kuleuven.be, alexander.bertrand@kuleuven.be).

Figure 1: Conceptual diagram of a wireless EEG sensor network (WESN).
Each node measures local EEG, consisting of one or more EEG channels. In
addition, each node can perform some local processing, before transmitting
and aggregating all node data in a fusion center for joint inference. Each node
is powered by its own local battery.

One example of such a BSN is a neuro-sensor network that
monitors the brain with with electroencephalography (EEG)
sensors, a so-called Wireless EEG Sensor Network (WESN)
[2,3]. EEG is a widely used, noninvasive way to record
time series of electrical brain activity. These contain useful
information for a variety of tasks such as epileptic seizure
detection [4], sleep stage analysis [5] and brain-computer
interfacing (BCI) [6]. However, EEG typically requires
measurements at multiple locations on the scalp - referred to
as ’EEG channels’ - for two reasons. Firstly, the information
of interest for a specific task may be concentrated in different
area’s of the brain. Secondly, EEG signals typically suffer
from an extremely low signal-to-noise ratio (SNR), which
needs to be improved by leveraging the spatio-temporal
correlations between different EEG channels with multi-
channel signal processing techniques [2]. These channels
are traditionally jointly measured by a bulky, cumbersome
EEG cap. In contrast, a WESN employs multiple lightweight
mini-EEG sensor devices to locally record one or a few EEG
channels from their respective scalp areas, pre-process the
data, and wirelessly transmit it to other nodes or a central
fusion center for joint inference. This concept is schematically

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2025.3533154

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KU Leuven Libraries. Downloaded on January 27,2025 at 13:50:39 UTC from IEEE Xplore. Restrictions apply.

illustrated in Figure 1. The absence of wires between the
different nodes reduces electromagnetic interference and
wire artifacts, which are a notorious disturbance in EEG
recordings, while at the same time resulting in a discreet and
flexible deployment [2].

Ensuring maximal battery lifetime is a crucial consideration
in the design of these WESNs or other types of BSNs [7].
The energy bottleneck will typically be found in the wireless
transmission of the data between the sensors and/or a fusion
center [2]. This not only motivates energy-efficient hardware
design, but also a shift in the algorithmic design of the
models running on these sensor nodes. Instead of optimizing
the model only for accuracy, the amount of data that needs
to be transmitted when the model is used in the context of a
BSN becomes an important design factor.

In this paper, we focus on reducing this data transmission
by teaching the nodes a policy where they only transmit their
data when the contribution of this specific node towards the
inference task would be very informative for the current input
sample, while upholding a given bandwidth constraint. Such
a constraint could be, e.g., that each node can on average
only transmit at most 50% of its collected sensor data. To this
end, we propose a dynamic channel selection methodology.
For each block of collected samples across the nodes of the
BSN, a distributed dynamic channel selector computes an
input-dependent, optimal subset of channels, represented by
a binary mask across the channels, as illustrated in Fig. 2.
Inference is then performed on the masked input by a deep
neural network (DNN) at a fusion center which collects the
data transmitted by the sensors. The selector and the inference
model are trained jointly in an end-to-end manner, with the
discrete parameters involved in the selection process being
made trainable through the Gumbel-Softmax trick [8,9]. How
often each channel is selected is limited by a per-channel
sparsity loss on the computed masks.

The application of this dynamic channel selection in a
sensor network however, comes with two design constraints
that is absent in traditional dynamic feature selection
paradigms. Firstly, since the lifetime of the BSN will
ultimately be determined by the critical node, i.e., the node
with the highest transmission load, it is crucial that the the
dynamic selection is balanced, meaning that on average,
all sensor nodes are required to transmit their data equally
as often. Secondly, to avoid the high transmission costs
associated with centralizing all the sensor data, the selection
algorithms must operate in a distributed way.

In addition, the usage of this dynamic channel selection
means that the inference model will be presented with
different channel subsets for different inputs, as if channels
were randomly missing. We show that applying dynamic
spatial filtering (DSF) [10] to the masked input to re-weight
the channels helps the inference model become more robust

against the missing of channels and improves performance.

To validate our proposed architecture, we focus on a specific
use case in the area of brain-computer interfaces, where a
WESN needs to solve a motor execution decoding task. We
note that, while our evaluation use case is focused on brain
signals, our proposed methodology is generic and can be
applied to other kinds of BSNs or more broadly, to any
kind of wireless sensor network (WSN). Our Pytorch [11]
implementation is available at Github1.

The main contributions of this paper are:
• We propose an end-to-end learnable dynamic sensor or

channel selection method that selects, for each window
of a multi-channel input, an optimal subset of channels to
use for inference, given a certain selection budget. This
dynamic selection is learned jointly with the task DNN
model and the Gumbel-Softmax trick is used to enable
backpropagation for the discrete decisions involved.

• We demonstrate how this methodology can be used to
reduce the transmission load in a wireless sensor network,
thus increasing its battery lifetime. We do this by moving
from centralized to distributed channel selection and en-
forcing per-node constraints to ensure a proper balancing
of the transmission load. In addition, we present a use
case where the method can improve the robustness of the
classifier to noise bursts.

The paper is organized as follows. In section II we go over
previous work in static and dynamic feature selection. Section
III formally presents our problem statement and dynamic
channel selection methodology. In section IV we provide
an overview of the used dataset and how it was used to
emulate a WESN environment and provide more details on the
used model architecture and training strategy for this specific
experiment. Our experimental results are then presented in
section V and we end with some conclusions in section VI.

Note on terminology: Throughout this paper, we will
always use the term ‘channel selection’ to refer to a selection
of channels from a multi-channel input signal. Sensor selection
or node selection could be viewed as a special case of channel
selection. In the case of single-channel sensors, sensor or
channel selection refer to the same thing. However, in the
case of multi-channel sensors, sensor selection refers to the
problem of selecting pre-defined groups of channels rather
than individual channels, where each group corresponds to a
sensor. For the sake of an easy exposition, but without loss of
generality, we will assume single-channel sensors throughout
this paper. Sometimes, we will refer to sensors as ‘nodes’ for
consistency in terminology with the WSN literature.

II. RELATED WORK

A. Static feature selection

The goal of feature selection is to find an optimal subset of
an available set of features that maximizes the performance of

1https://github.com/AlexanderBertrandLab/Dynamic-Channel-Selection

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2025.3533154

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KU Leuven Libraries. Downloaded on January 27,2025 at 13:50:39 UTC from IEEE Xplore. Restrictions apply.

Fusion center

𝒚

ℛ𝟏 ℛ𝟐 ℛ𝟑 ℛ𝟒

Fusion center

𝒚

ℛ𝟏 ℛ𝟐 ℛ𝟑 ℛ𝟒

𝒙𝟏
(𝟏) 𝒙𝟒

(𝟏)
𝒙𝟐
(𝟏)

𝒙𝟑
(𝟏)

𝒙𝟏
(𝟐)

𝒙𝟐
(𝟐)

𝒙𝟑
(𝟐)

𝒙𝟒
(𝟐)

Figure 2: Schematic illustration of dynamic sensor selection in a WSN. Sensor
data is measured at nodes m and transmitted to a fusion center for joint
inference at a rate Rm. For each input window X(i), a subset of the available
nodes is dynamically selected to employ for inference, reducing the average
amount of data to be transmitted.

a classification or regression model on a given task. A host
of literature exists that solves this problem in a static way,
i.e., the optimal subset is determined for a certain dataset as
a whole and the same selection is then applied to all input
samples. Filter-based approaches rank the available features
by a criterion like mutual information (MI) with the target
labels and select the K highest scoring features [12]. Wrapper-
based approaches use methods like greedy backward selection
to efficiently explore the space of possible feature subsets,
train the model on these candidate subsets and finally select
the one that performs the best [13]. Embedded approaches
jointly learn the subset and the task model in an end-to-end
way, by performing L1 regularization on the input weights
[14] or learning the discrete parameters of the feature selection
using continuous relaxations [15,16]. In this paper, we employ
this approach of continuous relaxations to perform dynamic
channel selection instead.

B. Dynamic feature selection

In dynamic, or instance-wise feature selection, the aim
is to find an optimal subset of features for each individual
input sample. One area where this approach has been highly
relevant is field of explainable machine learning, where the
goal is to indicate which features contributed most to the
model output. For instance, L2X [17] trains an explainer
model that maximizes the mutual information between the
feature subset of size K of a given sample and the class
distribution yielded by a trained task model. This line of work
however, is mainly interested in finding the most relevant
features for an already trained model, not in optimizing the
performance of the model on reduced feature sets.

Another relevant area is the field of active feature
acquisition [18,19]. In this setting, obtaining features is
associated with a certain cost. The goal is then to obtain
maximal model performance with a minimal amount of
features, without being able access all the features of a
given input sample from the start. This typically results in
an iterative procedure where, based on the current feature
subset, the optimal feature to extend the set with is estimated,

until sufficient confidence in the model prediction is reached
or the budget is saturated. In our WSN setting in contrast,
we do have access to all the features to perform subset
selection, but we are not allowed to centralize all of them
by transmitting them over the wireless link. In addition, a
balanced selection across the features is not really a concern
for traditional feature active feature acquisition, as there is no
real disadvantage to a certain feature being present in every
dynamic selection instance. In the WSN context though, a
single node having to continuously transmit its data would
mean the lifetime of the WSN has not been improved at all.

The most similar approach to ours in terms of methods is
taken by Verelst et al. in the field of computer vision [20].
The aim of their work is to decrease the computation time and
energy of a CNN by learning input-dependent binary masks
that are applied to the feature maps of an image at each layer.
That layer then only performs convolutions on the pixels that
are not masked out. A sparsity loss on these masks then forces
the network to adhere to a certain computational budget, with
backpropagation for the discrete masks being enabled through
the Gumbel-Softmax trick. We will employ a similar strategy
to learn binary masks for our dynamic selection, albeit in a
distributed architecture and with the goal of reducing the data
transmission over the wireless links, as detailed in the next
section.

III. PROPOSED METHOD

In this section, we describe our dynamic channel selection
methodology. Without loss of generality, we assume a classi-
fication task, although all methods can be easily extended to a
regression task. For the sake of an easy exposition, we will ini-
tially assume a centralized architecture where all the channels
are available to make a decision on the selection. In a WSN
context, this implies that the channel selection is performed
after transmitting all the channels to the fusion center, in
which case there are no bandwidth savings. Nevertheless, this
setting is still relevant to make the network robust against non-
stationary noise influences and/or to reduce the computational
complexity at the fusion center. Later on, in Section III-E, we
will explain how the channel selection can be performed at
the level of the sensor nodes, such that non-selected channels
do not have to be transmitted at all.

A. Problem statement

Let D = {(X(1), y(1)), (X(2), y(2)), . . . , (X(N), y(N))} be
a dataset of N samples of a multi-channel signal X(i) with
class labels y(i). Each X(i) ∈ IRM×L contains M channels
and a window of L consecutive time steps. We are also given
a DNN model fθ that is used to perform inference on these
samples. Our goal is to learn a dynamic selection function that,
for each separate input sample, determines this sample’s opti-
mal subset of channels to be presented to the inference model,
while adhering to certain budget constraints on the amount of
channels we are allowed to use on average. This selection of
channels is based on a score vector α ∈ RM that is computed

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2025.3533154

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KU Leuven Libraries. Downloaded on January 27,2025 at 13:50:39 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Overview of the dynamic channel selection. An L-sample window of an M-channel signal is passed to a channel scoring module, yielding
unnormalized channel scores α. These are then converted in discrete selections by the Gumbel-Softmax module and applied to the input as a binary mask z̄,
dropping a number of channels. This masked input X̂ is then fed to the DSF module which re-weights the received channels with an attention mechanism,
computing a weight matrix W and bias b that are multiplied with and added to the masked input: X̃ = WX̂ + b [10]. Finally, the original classifier is then
applied to the resulting signal to obtain a prediction y. The entire pipeline is jointly learned in an end-to-end manner.

by a channel scoring function hφ(X) for each input X . To go
from a continuous score to a discrete selection in a way that
still allows for end-to-end learning through backpropagation,
we make use of a Gumbel-Softmax module G, which converts
the score vector α to a binary mask z̄ ∈ {0, 1}M to be applied
to the input. Formally, this means learning parameters θ of
the task model fθ and the parameters φ of a selection model
sφ = G ◦ hφ : RM×L 7→ {0, 1}M×1;X 7→ z̄ such that

φ∗, θ∗ =argmin
φ,θ

LCE(fθ(X ⊙ z̄1⊤
L), y) + λLS(z̄)

=argmin
φ,θ

LCE(fθ(X ⊙ sφ(X)1⊤
L), y) + λLS(sφ(X))

(1)

with LCE(p, y) the cross-entropy loss between the predicted
label p and the ground truth y, ⊙ an element-wise product,
1⊤
L the row vector of dimension L containing only ones, LS a

cost function that enforces sparsity in the learned masks and
λ a hyperparameter to balance the two losses. A schematic
overview of our method is presented in Fig. 3. We will now
delve deeper into the design of each of the modules involved.

B. Learning discrete decisions with Gumbel-Softmax

To enable the network to learn discrete decisions while still
keeping the entire network end-to-end learnable we make use
of the Gumbel-Softmax trick [8,9]. Take a discrete random
variable, drawn from a categorical distribution with K classes
and class probabilities π1, ...πK , represented as a one-hot
vector ȳ ∈ {0, 1}K , with the index of the one indicating the
class ȳ belongs to. Discrete samples from this distribution can
then be drawn with the Gumbel-Max trick [8]:

ȳ = one hot(argmax
k

(log πk + gk)) (2)

with gk independent and identically distributed (i.i.d.) samples
from the Gumbel distribution [21] and one hot(i) the operator
that generates a one-hot K × 1 vector where the one is
placed at position i. The Gumbel-Softmax is then a continuous,
differentiable relaxation of this discrete sampling procedure,

approximating the discrete one-hot vectors ȳ with continuous
vectors y whose elements sum to one instead by replacing the
argmax with a softmax. For the k-th element yk, this results
in [8]:

yk =
exp((log πk + gk)/τ)∑K
j=1 exp((log πj + gj)/τ)

(3)

with τ the temperature of this continuous relaxation. Lowering
the temperature causes the softmax to more closely resemble
an argmax, thus causing the continuous y to be a closer
approximation of the discrete ȳ. It will however, also cause
the relaxation to become less smooth and increase the
variance of the gradients.

Our goal is to model a learnable, binary random variable z̄m
for each channel m, which is 1 when the channel is selected
and 0 otherwise. In the case of such a binary random variable
z̄m, with P (z̄m = 1) = π1, it can be shown [20] that by
setting K = 2 in Eq. 3, the Gumbel-Softmax trick can be
simplified to

y1 = σ

(
log π1 + g1 − g2

τ

)
y2 = 1− y1

(4)

with σ(·) the sigmoid function. A continuous relaxation zm of
the binary random variable z̄m can then be obtained by taking
zm = y1 We can use this binary Gumbel-Softmax trick to
transform unnormalized, learnable channel scores α ∈ IRM

yielded by a network hφ(X) into continuous, differentiable
approximations z = [z1, ..., zM]⊤ of the discrete z̄ ∈ {0, 1}M .
There are a number of ways this continuous relaxation can be
used to obtain approximating gradients for the discrete z̄, but
we will follow the Straight-Through estimator approach [8,20].
This means that we will sample discrete decisions from our

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2025.3533154

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KU Leuven Libraries. Downloaded on January 27,2025 at 13:50:39 UTC from IEEE Xplore. Restrictions apply.

Figure 4: Illustration of the Gumbel-Softmax trick. During training, hard decisions are sampled by perturbing the channel scores α with Gumbel noise, passing
this through a sigmoid to obtain soft probabilities and applying a thresholding operator. Backpropagation through the thresholding operation is enabled by
using a Straigth-Through estimator, treating the threshold in the backward pass as an identity function, i.e. ∂z̄

∂z
≈ 1 and thus ∇φz̄ ≈ ∇φz

binary distribution in the forward pass [20]:

z̄m =

⌊
σ

(
αm + g1 − g2

τ

)⌉
=

{
1, if zm = σ

(
αm+g1−g2

τ

)
> 0.5

0, otherwise

(5)

with ⌊·⌉ the rounding operator, resulting in a binary distri-
bution where P (z̄m = 1) = σ(αm) (replacing π1 in Eq.
4). To enable backpropagation through the discrete rounding
operator, we use gradients from the continuous relaxation in
the backward pass, which implies the approximation

∇φz̄ ≈ ∇φz. (6)

This scheme allows for hard decisions to be used during
training and learned through end-to-end backpropagation. This
process is schematically illustrated in Fig. 4. At inference time,
Gumbel noise is no longer added to the score vector, resulting
in the network no longer sampling from binary distributions,
but behaving in a deterministic manner instead, i.e. z̄m = 1 if
σ(αm) > 0.5.

C. Enforcing sparsity

We assume that each channel is measured on a different
node of a wireless sensor network, whose nodes are able
to communicate with each other over bandwidth-constrained
links. To reduce the communication load of these nodes, we
now impose constraints on how often these nodes are allowed
to transmit their data., i.e., yield a 1 in their computed binary
mask. Let the relative rate Rm be the percentage of input
samples for which the binary transmission decision for node
m is set to 1, i.e.,

Rm = EX [z̄m]. (7)

We consider two types of constraints, corresponding to an
unbalanced and a balanced distribution of the rate across the

nodes. If we do not consider balancing the load, we simply
expect the average rate to be below a certain target T ∈ [0, 1]:

Ravg =
1

M

M∑
m=1

Rm ≤ T. (8)

In a scenario where we require a balanced load however, the
rate of every individual node must be below the target T
instead of simply the average. In other words, the rate of the
critical node, i.e., the node with the highest transmission load,
must be lower than T ∈ [0, 1]:

Rmax = max
m

Rm ≤ T (9)

To enforce these constraints during training, we apply one
of the following sparsity losses:

LS,unbalanced =
1

M

M∑
m=1

LS,m

LS,balanced = max
m

LS,m

(10)

where

LS,m = max

(
1

B

B∑
b=1

σ

(
α
(b)
m

τ0

)
− T, 0

)2

(11)

with B the batch size, α(b)
m the score for node m for the b’th

input sample of the batch and τ0 a temperature constant we
set at 0.1. This sparsity loss replaces the expected value in
the constraints of Eqs. 8 and 9 with a batch average and the
discrete node decisions z̄m with the continuous approxima-
tion σ

(
α(b)

m

τ0

)
. The fact that this approximation is computed

through a sigmoid with a low temperature, without the addition
of Gumbel noise means we more closely approximate the
behaviour of the selection layer at inference time than we
would if we directly penalized the hard decisions z̄. This is
important to ensure that if the sparsity constraints are met
at training time, they will also be met at inference time. For
instance, if the network ensures that for all X , σ(αm) = 0.51,
then due to the addition of Gumbel noise in the computation

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2025.3533154

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KU Leuven Libraries. Downloaded on January 27,2025 at 13:50:39 UTC from IEEE Xplore. Restrictions apply.

of z̄m, the network will sample z̄m = 1 and z̄m = 0 an
about equal amount of times during training. At inference
time however, when no noise is added, the network will
always yield z̄m = 1 since σ(αm) > 0.5, surely violating the
constraints. Also important to note is that using Eq. 10 requires
training with a large enough batch size such that the batch
average of Eq. 10 is a meaningful estimate of the expected
value used in Eqs. 8 and 9.

D. Dealing with different channel subsets

Performing dynamic channel selection means the classifica-
tion network fθ will see a different subset of active channels
depending on the current input sample. Stated in another way,
our network needs to be able to deal with missing inputs. This
can cause problems in the learning of the network weights, as
the network needs to be able to extract relevant information
when a channel is selected, but not cause interference when
the channel is not selected and the corresponding input only
contains zeros. Ideally, we would employ a number of separate
classification networks, each optimized for a specific channel
subset. In practice however, this would require training and
storage of 2M networks, which quickly becomes infeasible.
Thus, the question arises how we can make a single network
be able to cope as efficiently as possible when multiple input
sets are possible. We tackled this issue by extending our
network with the Dynamic Spatial Filtering (DSF) proposed
by Banville et al. [10]. The idea of DSF is to re-weight the
M input channels using an attention layer. In this setting,
new (virtual) channels are formed by applying a spatial filter
to all input channels, i.e., making linear combinations of
the channels, with the weights being computed from the
spatial covariance matrix of the current input window. This
re-weighting decreases the impact of missing channels on the
network activations and has been shown to make a network
more robust against noisy or missing channels.

E. From centralized to distributed

The channel scoring function hφ in Eq. 1 currently still uses
all M input channels to make a decision. However, an impor-
tant aspect to be taken into account is the distributed nature
of WSN platforms, where different channels are recorded on
different physical devices. In this setting, we want to reduce
the transmission load of these devices by only selecting and
thus transmitting the signal of a node when its information is
relevant for the current sample. However this will only actually
be beneficial when we are able to perform the selection without
centralizing the data of the different sensors in the first place.
Thus, this requires the channel selection module to perform
inference in a distributed way. To investigate the consequences
of the transition from centralized to distributed inference, we
will consider three different cases corresponding to different
constraints on our dynamic channel scoring function hφ(X):

• Centralized: The selection is derived from the joint in-
formation of all channels, i.e., α = hφ(X). This setting
serves as a theoretical upper bound for the following two
practical settings.

• Distributed: Each node has to decide whether to transmit
solely on its own data, i.e., αm = hφ,m(xm) where xm

denotes the m-th row of X . This allows channel selection
to be performed without requiring any data centralization.

• Distributed-Feedback: Each node computes a short vector
βm = hφ,m(xm) ∈ RC with C << L, that is transmitted
to the fusion center. At the fusion center, the βm of
all nodes are combined into the stacked vector β to
determine a final scoring vector α = gϕ(β). The discrete
selection z̄ resulting from this scoring vector is then
returned to the nodes to inform them which of them
should transmit. The size of these vectors βm should
be small compared to the length L of the window to
be transmitted to minimize the overhead cost of the
selection. In order to reduce the trainable parameters,
one can decide to make the different hφ,m models copies
of each other, with shared weights for all layers, except
the final layer having its own set of parameters for each
channel m.

These three settings are illustrated in Fig. 5.

F. Training strategy

Successfully training a model with masking units typically
hinges on a good initialization. Since a sparsity loss is much
easier to minimize than the training objective - by simply
driving the weights of the binary masks to zero - the network
can quickly collapse into a state where barely any units are
executed [20,22]. Once this has happened, it is very hard for
the network to learn task-relevant information that could pull
it out of this state. To avoid this, we adopt a step-wise training
strategy that learns one module at a time.

1) Initialize the weights of the classifier fθ with the weights
of the original M-channel network trained without any
dynamic selection.

2) Add the centralized dynamic selection layer and train it
while fine-tuning (i.e., training at a lower learning rate)
the classifier.

3) Add the DSF module and train it while fine-tuning the
the dynamic selection and classifier.

4) Transform the centralized dynamic selection layer in
a distributed dynamic selection layer and fine-tune the
whole model (see below).

To go from a centralized to a distributed architecture, we
employ a 2-step transfer learning approach. First, we employ
the centralized channel scoring function hφ as a teacher model
and try to ensure that the outputs αdistr of the student model
- the distributed channel scoring function - match the outputs
αcentr of the teacher by minimizing the following loss:

L(hφ,distr) = LBCE(σ(αdistr), ⌊σ(αcentr)⌉) (12)

with LBCE the binary cross-entropy loss. By minimizing this
loss, we do not necessarily ensure that the channel scores α are
exactly alike, but rather that the discrete outputs at inference
time will be similar, which is what we ultimately want. In
the final step, we use the newly learned distributed channel

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2025.3533154

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KU Leuven Libraries. Downloaded on January 27,2025 at 13:50:39 UTC from IEEE Xplore. Restrictions apply.

(a) Centralized (b) Distributed (c) Distributed-Feedback

Figure 5: Different settings for the channel scoring module in a sensor network. Blue blocks indicate modules on the sensor nodes, orange modules on the
fusion center and red dotted lines communications between the two. (a) The centralized upper bound employs all joint information of all channels to compute
the optimal selection for a given input segment, but would require all data to be centralized. Since the transmission load of centralizing the data would outweigh
any gains of the dynamic selection, this setting only serves as a theoretical performance benchmark without practical application. (b) The distributed setting
does not allow for communication between the nodes (via the fusion center) and makes each selection only dependent on the local data of the corresponding
node, eliminating the need for data centralization. (c) The distributed-feedback setting allows for a small amount of communication between the nodes to
make a better, joint decision compared to the fully distributed setting.

selection layer, initialize the DSF module and the classifier
with the corresponding weights of the centralized model and
fine-tune the whole network in an end-to-end fashion.

IV. APPLICATION TO WIRELESS EEG SENSOR NETWORKS

A. Data set

In the field of BCI, the motor execution paradigm is used to
decode body movement from the corresponding neural signals
in the motorsensory areas of the brain. The High Gamma
Dataset [23] contains EEG training data from about 1000 trials
of executed movements following a visual cue for each of the
14 subjects. From this, a validation set comprising 200 trials
per subject, is extracted for early stopping and model selection.
Evaluation is performed on an additional, held-out test set of
about 180 trials per subject. The dataset includes 4 classes
of movements - left hand, right hand, feet, and rest - with
the trials being balanced across these classes. As in [23] we
only use the 44 channels that cover the motor cortex, which
are preprocessed by resampling at 250 Hz, highpass filtering
above 4 Hz, standardizing the per-channel mean and variance
to 0 and 1 respectively, and extracting a window of 4.5 seconds
for each trial. This pre-processing is adopted from [23] and
described in full detail there.

B. WESN node emulation and selection

In a WESN, each EEG sensor node has its own local set
of electrodes and is galvanically separated from the other
sensors. As a result, we cannot, we cannot measure the
potential between a given electrode and a distant reference
(e.g. the mastoid or Cz electrode) , as we would in traditional
EEG caps [13]. Instead, we can only record the local
potential between two nearby electrodes belonging to the
same sensor device. Due to the local measurements with
short inter-electrode distances, the expected spatio-temporal
correlation across the signals of different nodes is lower than

traditional scalp EEG, yet a joint multi-channel processing
has been shown to be advantageous [2,3,13].

To emulate this setting using a standard cap-EEG recording,
we follow the method proposed in [13], which considers each
pair of electrodes within a certain maximum distance as a
candidate electrode pair or node. By subtracting one channel
from the other, we can remove the common far-distance
reference and obtain a signal that emulates the local potential
of the node. Applying this method with a distance threshold of
3 cm to our dataset, we obtain a set of 286 candidate electrode
pairs or nodes, which have an average inter-electrode distance
of 1.98 cm and a standard deviation of 0.59 cm.

Given that our WESN will consist of a limited number
of mini-EEG devices, we first need to select the M most
informative sensor nodes from the pool of 286 candidate
nodes. To achieve this, we adopt the static channel selection
method described in [16], which enables us to learn the M
optimal nodes for a given task and neural network by jointly
training the network and a selection layer. Note that this is
a fixed selection for the entire data set, not for each sample
separately. We train this selection layer, along with the
centralized network (fθ in Fig. 3 we will use for classification
(see Section IV-C), using data from all subjects in the dataset,
which results in a subject-independent set of M mini-EEG
nodes that are best suited for solving the motor execution
task. We do this for 3 different values of M , corresponding
to a small WESN (M = 4 nodes), a medium-size WESN
(M = 8 nodes), and a high-density WESN (M = 16 nodes).

C. Model architecture

As mentioned above, the neural network architecture we
employ for classification (fθ in Fig. 3) is the MSFBCNN

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2025.3533154

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KU Leuven Libraries. Downloaded on January 27,2025 at 13:50:39 UTC from IEEE Xplore. Restrictions apply.

proposed in [24], which was designed specifically for a motor
execution task. Inspired by the Filterbank-CSP approach of
[25], this model computes log-power features by applying
a number of temporal filters in parallel, aggregating these
with spatial filters, and then applying squaring and average
pooling over time. These features are then classified by a
single linear layer. While the details of this network are not
relevant for this study, we provide a summary of this network
in table format in Appendix A for completeness.

For our channel scoring module hφ in the centralized
setting, we will employ a similar, smaller version of this
architecture, with the final linear layer being adapted to output
a vector of dimension M × 1 (see Appendix B for details). In
the two distributed settings, the different node scoring models
hφ,m are copies of each other, with shared weights for all
layers, except the final layer having its own set of parameters
for each node/channel m. The network architecture of
these hφ,m too is simply a single-input, smaller version of
the MSFBCNN, but where the last fully-connected layer
outputs the scalar αm in the distributed setting and the node
summary βm ∈ RC×1 in the distributed-feedback setting
(see Appendix C). The dimension of these node summaries
βm is chosen to be C = 10, ensuring the overhead of its
transmission is negligible compared to the transmission of the
full window of L = 1125 time samples.The module gϕ(β)
aggregating the node summaries in the fusion center is a
simple 2-layer multilayer perceptron (MLP) with a hidden
dimension of 50 and ReLU nonlinearity. The DSF module
also consists of a 2-layer MLP with hidden dimension 50 and
ReLU nonlinearity, which is applied to the vectorized sample
covariance matrix 1

LX̂X̂⊤ of the masked input sample and
which produces a weight matrix W ∈ RM×M and a bias
b ∈ RM×1 which are used to compute a re-weighted output
X̃ = WX̂ + b.

Finally, for training, we follow the procedure described in
section III-F, using the Adam optimizer [26] with a learning
rate of 10−3 when a module is trained for the first time
and 10−4 when it is fine-tuned during subsequent steps. A
batchsize of 64 is employed and training lasts for 100 epochs
with early stopping activated when the validation loss does
not decrease for 10 epochs. The hyperparameter λ, controlling
the penalization of the sparsity loss was set to 10 for this
application and a fixed temperature τ = 1 was used for the
Gumbel-Softmax module.

D. A note on computational complexity

Before moving on to the experimental results, there are
a few important points to consider on computational com-
plexity. While our proposed approach for dynamic channel
selection allows for a reduction in the energy required for
wireless transmission, it comes at the cost of the introduction
of local computations on the sensor nodes in the form of
the channel scoring module. These local computations have
two important consequences for the WSN. They introduce a

computational energy overhead and cause additional latency.
To combat both these issues, it is crucial that the channel
scoring model is as small as possible. In our experiments,
each node’s channel scoring model is an extremely small
model containing only 7670 parameters and only requiring
about 0.08 MFLOPS (floating point operations per second)
to operate, which will cause only a negligible overhead in
terms of computational energy and latency. For more complex
problems, model compression techniques allowing the channel
scoring module to operate at lower bit precisions could also
still be applied if necessary.

V. EXPERIMENTAL RESULTS

A. Evaluation procedure

We will now proceed to validate our proposed dynamic
channel selection method and how well it is able to trade
transmission rate for accuracy in the motor execution
WESN described above. We will employ Rmax − Ravg ,
the difference between the rate of the node with the highest
transmission rate and the average rate across the nodes, as
a metric for the imbalance of the node transmission rates.
The closer this metric comes to zero, the more similar
the different transmission rates are to each other and the
more balanced the selection is. We will first consider the
scenario where the rate is allowed to be unbalanced across
the nodes and then proceed to the more challenging case
where the rate must also be balanced across the nodes, i.e.,
every individual node needs to meet the bandwidth constraints.

In both the balanced and unbalanced scenario’s, we compare
our distributed and distributed-feedback approaches with a
theoretical, centralized upper bound, where all data can be
jointly analyzed to perform the selection. In addition, we will
compare the performance of our method with a state-of-the-
art dynamic feature selection method: the Greedy Conditional
Mutual Information (CMI) approach of Covert et al. [19].
The goal of greedy CMI is to find the optimal K out of M
features on an instance-wise basis. It does this by learning an
iterative policy network where, starting from an empty subset
of features, the feature that would be the most informative
in conjunction with the features already acquired is selected
and added to the subset. This process is repeated until the
given, desired amount of features K (a fixed value set a-
priori) is reached. The major advantage of this method is
that it is able to estimate the value of adding an additional
feature, without having access to this feature in the first place.
In our WSN setting, this means that it does not require a
distributed implementation on the sensor nodes, as it can
be fully operated on the fusion center, requesting data from
the sensor nodes based on the data it has previously already
acquired. However, by construction, the greedy CMI method
will select exactly K channels for every input instance. As
a consequence, the average rate Ravg achieved in this way
will be equal to the ratio K

M . Since K and M are integers,
this also means that we can only explore a discrete number of
target rates. Applying this method to the unbalanced selection

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2025.3533154

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KU Leuven Libraries. Downloaded on January 27,2025 at 13:50:39 UTC from IEEE Xplore. Restrictions apply.

scenario thus only requires setting the appropriate value for K
given the target Ravg . To extend the greedy CMI method to
also be able to deliver balanced selection policies, we apply
the balanced sparsity loss of Eq. 10 to the decisions yielded by
the policy network. This leads to a new version of CMI, which
we will henceforth refer to as ’CMI-balanced’ throughout the
remainder of this paper.

B. Unbalanced dynamic selection

Firstly, we will analyze the rate-accuracy trade-off obtained
by our proposed dynamic channel selection method and
investigate the impact of going from a theoretical, centralized
approach to a practical, distributed one in an unbalanced load
scenario. To do this, we train our model while applying the
unbalanced sparsity loss of Eq. 10 for a given target rate T ,
indicating the average percentage of input samples for which
the data of each node should be used and transmitted. We
train our model for a range of target rates and for networks
consisting of 4, 8 and 16 nodes, each time averaging the
results over 5 runs.

Fig. 6 shows the resulting rate-accuracy tradeoffs and
corresponding load imbalance. Firstly, we can observe that
moving from a centralized to a distributed network does
not affect the performance of the model all that much.
Secondly, we can see that the proposed dynamic selection
method consistently outperforms the greedy CMI method.
One explanation for this is that our proposed method is able
to analyze all available channels jointly to decide upon the
selection, while the greedy CMI method can only rely on
previously selected channels to decide which channel to add
next. Also, our proposed method has the advantage that it has
more freedom in its selection: it is able to assign a variable
amount of nodes for each specific input sample, while the
CMI must always assign K nodes. In addition, note that we
can only evaluate the CMI performance at a discrete number
of target rates, since this is determined by the amount of
iterations K the policy network performs.

When comparing the networks with a different amount of
nodes, it can be observed that the more nodes are being used,
the smaller the relative performance losses are when moving
from the starting rate of 100% to a rate of 50% (for instance,
the 16-node network only loses 5% accuracy, while the 4-
node network loses about 10%). Since there will be a higher
amount of redundancy between the 16 nodes than between the
4 nodes, it makes sense that dropping channels in the former
has less of an impact on the accuracy than in the latter. Finally,
it can be observed that the selections yielded by both methods
are highly unbalanced. Without explicit constraints on the per-
node rates, some nodes are required to send their data for every
single input sample, meaning the lifetime of the WSN is not
improved at all by these solutions, as some nodes will run out
of energy much quicker than all the others.

C. Balanced dynamic selection

We will now proceed to investigate the performance of
our model when enforcing a fair, balanced load across the
nodes by applying the balanced sparsity penalty of Eq. 10
during training. In this scenario, we are interested in the trade-
off between the accuracy and the rate of the critical node
Rmax as opposed to the previously employed average Ravg ,
as illustrated in Fig. 7. It can be observed that the balanced
sparsity loss enables a far more balanced distribution of the
rates, as the rate difference between the critical node and
the node average rarely exceeds 10%. The more stringent
constraints in this scenario are also reflected in a slight
decrease in accuracy for similar rate levels compared to Fig.
6. Important to note is that the distributed network starts to
show a noticeable performance gap with the centralized upper
bound in this scenario. This can be attributed to the fact that,
under these stronger constraints, the network needs to make
more intelligent decisions to ensure that the rate of every
node stays below the threshold. Being able to coordinate the
different node decisions (as in the centralized model) thus
offers more opportunities for better performance than when
the nodes need to make independent decisions (as in the
distributed model). This gap can be overcome by allowing only
a very limited amount of communication, as evidenced by the
distributed-feedback model which performs very similarly to
the centralized upper model.

D. Impact of dynamic spatial filtering

Next, we analyze the importance of the presence of the
DSF module by comparing it with the networks where it
has not been added. The results are illustrated in Fig. 8. As
mentioned in section III-D, the main purpose of the DSF
module is to increase the capability of the classifier to cope
with the different channel subsets it is presented with. In this
small, 4-node network, the amount of channel subsets 2M

is still manageable and the DSF thus offers only marginal
improvement. When moving to 8- and 16-node networks, the
amount of subsets quickly grows and the performance gains
afforded by DSF become more and more salient.

E. Impact of noisy environments

Up until now, we have discussed situations where we per-
form a trade-off between the amount of channels we reject and
the accuracy of the classifier. In some cases however, working
with only a subset of the channels can actually be beneficial
for the accuracy as well. In environments where sudden noise
bursts can occur, these unexpected inputs, even when limited
to a single channel, can heavily disturb the activations of
the entire neural network and lead to misclassifications. To
make it easier for the network weights to be robust against
these noise bursts, it can be beneficial to detect when these
happen and zero the corresponding input instead. To test this
hypothesis, we repeated our previous experiments with the
dynamic selection method, but in this case, each channel of
each input window had a 25% chance to be replaced by Gaus-
sian noise with zero mean and standard deviation uniformly

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2025.3533154

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KU Leuven Libraries. Downloaded on January 27,2025 at 13:50:39 UTC from IEEE Xplore. Restrictions apply.

(a) M = 4: accuracy (b) M = 8: accuracy (c) M = 16: accuracy

(d) M = 4: load imbalance (e) M = 8: load imbalance (f) M = 16: load imbalance

Figure 6: Rate-accuracy trade-off for the proposed dynamic channel selection method for networks of 4,8 and 16 nodes ((a)-(c)) and corresponding load
imbalance ((d)-(f)) for the unbalanced transmission load scenario. Mean test accuracies are plotted against the average node transmission rate. Each data point
is an average of 5 runs for a given maximal target rate T (see Eqs. 8 and 10). Baseline performance indicates accuracy without dynamic selection involved,
i.e. each node transmits at a rate R of 100%. Dynamic selection consistently outperforms greedy CMI, since it is able to base its decision on all channels
jointly, while CMI only sees the channel once it has already added it to the selection. Both methods however, will force one or a few nodes to transmit all
the time, leading to a large discrepancy between the critical node and the node average.

sampled between 0 and 3 instead, leaving no more relevant
information on this channel. Fig. 9 compares the performance
of the distributed-feedback dynamic selection with a baseline
network, which directly takes the perturbed data as input. The
noise is added during both training and testing to enable a
fair comparison, i.e., the network without dynamic channel
selection can in principle learn how to cope with these noise
bursts. Firstly, it can be observed that the dynamic selection
never transmits more information than absolutely necessary:
only 75% of the channels actually contain information, so the
resulting rate is automatically capped around 75%. Secondly,
the automatic rejection of noisy channels does indeed lead to
an increased accuracy compared to the baseline accepting this
noise as input. A probable reason is that it will be easier for the
classifier to find weights that process normal inputs normally
and minimize the impact on the activations of disturbances
when these disturbances are zero inputs rather than noise
bursts.

VI. CONCLUSION AND FUTURE OUTLOOK

We have proposed a dynamic channel or sensor selection
method in order to reduce the communication cost and
improve the battery lifetime of WSNs. For each input
window, the method selects the optimal subset of sensors to
be used by a neural network classifier, while optimizing a
trade-off between the amount of channels selected and the
accuracy of the given task. The dynamic selection and the
classifier are jointly trained in an end-to-end way through
backpropagation. The dynamic selection module consists of
three major parts: a channel scoring function assigning a
relevance score to each channel, a binary Gumbel-Softmax
trick converting these scores to discrete decisions and the
dynamic spatial filtering module of Banville et al. [10] to
make the classifier more robust against the resulting absence
of channels. The main advantage of this dynamic selection is
that it can incorporate all available node data in its selection,
while being computed in a distributed way, requiring minimal
communication overhead between the nodes.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2025.3533154

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KU Leuven Libraries. Downloaded on January 27,2025 at 13:50:39 UTC from IEEE Xplore. Restrictions apply.

(a) M = 4: accuracy (b) M = 8: accuracy (c) M = 16: accuracy

(d) M = 4: load imbalance (e) M = 8: load imbalance (f) M = 16: load imbalance

Figure 7: Rate-accuracy trade-off for the proposed dynamic channel selection method for networks of 4,8 and 16 nodes ((a)-(c)) and corresponding load
imbalance ((d)-(f)) for the balanced transmission load scenario. Mean test accuracies are plotted against the percentage of samples for which the critical node
of the network needs to transmit, i.e. the node with the highest percentage of transmission. Each data point is an average of 5 runs for a given maximal target
rate T (see Eqs. 9 and 10). Baseline performance indicates accuracy without dynamic selection involved, i.e. each node transmits at a rate R of 100%. The
distribution of the rates between the nodes is far more balanced in this case, with the rate difference between the critical node and the node average rarely
exceeding 10%. The more stringent constraints on the balanced load scenario requires more coordination between the nodes to reach an optimal solution,
causing a gap to emerge between the distributed implementation and the centralized upper bound. However, sharing a small amount of information between
the nodes in the distributed-feedback setting largely overcomes this and performs about as well as the centralized upper bound.

(a) M = 4 nodes (b) M = 8 nodes (c) M = 16 nodes

Figure 8: Rate-accuracy trade-off for the proposed balanced dynamic channel selection method for networks of 4,8 and 16 nodes, with and without inclusion
of the DSF module. Baseline performance indicates accuracy without dynamic selection involved, i.e. each node transmits at a rate R of 100%. While the
impact of DSF on the 4-node network is limited, it becomes more important as the size of the network increases and the amount of node subsets the classifier
must be capable of processing increases. For 8- and 16-node networks, DSF delivers a consistent performance gain across all settings.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2025.3533154

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KU Leuven Libraries. Downloaded on January 27,2025 at 13:50:39 UTC from IEEE Xplore. Restrictions apply.

40 50 60 70 80 90 100

50

55

60

65

70

75

80

85
M

e
a
n
 T

e
s
t
A

c
c
u
ra

c
y
 [
%

]

M=4

M=8

M=16

Baseline

Figure 9: Rate-accuracy trade-off for the proposed balanced dynamic channel
selection method in the distributed-feedback setting for networks of 4, 8 and
16 nodes in a simulation of a noisy environment where each channel has a
25% probability to be replaced by Gaussian noise. When the model is trained
with a target rate above this threshold, it automatically rejects the transmission
of the noisy and the resulting rate is capped at 75%. Rejecting these noisy
channels yields higher accuracies than the baseline network which accepts
the noisy channels as input, demonstrating the network is now more robust
against this noise.

We have demonstrated the use of this method to perform
a trade-off between the transmission rate of the nodes in an
emulated wireless EEG sensor network and the accuracy of a
motor execution task. More importantly, we have shown how
our approach can elegantly ensure a fair, balanced distribution
of the transmission load across the nodes, an aspect that is not
present in traditional dynamic feature selection approaches.
Additionally, we have presented a use case where the dynamic
selection can even improve the accuracy of the model, by
automatically rejecting inputs that might harm performance,
such as heavy bursts of noise.

In all of the cases above though, there is no point on the
accuracy-rate tradeoff curve that can be considered dominant
in a Pareto-optimal sense. In other words, improvements in
either the model accuracy or transmission load imply a certain
drop in the other. The optimal operating point in real-world
scenario’s will thus depend on the specific constraints of
the application. Given that a maximal transmission load
can be tolerated due to energy constraints (e.g., related
to the battery lifetime of the sensors), the network can
be trained with an accordingly set Rmax to optimize the
accuracy under this constraint. If, conversely, a minimum
accuracy must be maintained, but the aim is to minimize the
transmission energy required to make this happen, a range of
possible Rmax can be explored to find the minimal amount
of transmission that satisfies the a-priori imposed accuracy
constraints.

Though we have focused on the application use case of

wireless EEG sensor networks, our methodology is generic
and can be applied to sensor networks with any kind of
modalities. An important next step is the application of our
approach to real-time, streaming applications. In the context
of this work, the data windows that needed to be transmitted
were independent of each other. In many applications however,
temporal correlations will exist between subsequent windows.
Thus, it stands to reason that the selection at the current time
step can be further improved by re-using data windows or
decisions from previous time steps, as in [27]. In future work,
we will explore such real-time extensions and applications of
this method in other distributed platforms than WESNs.

REFERENCES

[1] P. K. Donta, I. Murturi, V. Casamayor Pujol, B. Sedlak, and S. Dustdar,
“Exploring the potential of distributed computing continuum systems,”
Computers, vol. 12, no. 10, p. 198, 2023.

[2] A. Bertrand, “Distributed signal processing for wireless EEG sensor
networks,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 23, no. 6, pp. 923–935, 2015.

[3] T. Strypsteen and A. Bertrand, “Bandwidth-efficient distributed neural
network architectures with application to neuro-sensor networks,” IEEE
Journal of Biomedical and Health Informatics, vol. 27, no. 2, pp. 933–
943, 2022.

[4] A. H. Ansari, P. J. Cherian, A. Caicedo, G. Naulaers, M. De Vos, and
S. Van Huffel, “Neonatal seizure detection using deep convolutional
neural networks,” International journal of neural systems, vol. 29,
no. 04, p. 1850011, 2019.

[5] O. De Wel, M. Lavanga, A. C. Dorado, K. Jansen, A. Dereymaeker,
G. Naulaers, and S. Van Huffel, “Complexity analysis of neonatal EEG
using multiscale entropy: applications in brain maturation and sleep
stage classification,” Entropy, vol. 19, no. 10, p. 516, 2017.

[6] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung,
and B. J. Lance, “EEGNet: a compact convolutional neural network for
EEG-based brain–computer interfaces,” Journal of neural engineering,
vol. 15, no. 5, p. 056013, 2018.

[7] D. P. Kumar, T. Amgoth, and C. S. R. Annavarapu, “Machine learning
algorithms for wireless sensor networks: A survey,” Information Fusion,
vol. 49, pp. 1–25, 2019.

[8] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[9] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution:
A continuous relaxation of discrete random variables,” arXiv preprint
arXiv:1611.00712, 2016.

[10] H. Banville, S. U. Wood, C. Aimone, D.-A. Engemann, and A. Gramfort,
“Robust learning from corrupted EEG with dynamic spatial filtering,”
NeuroImage, vol. 251, p. 118994, 2022.

[11] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in neural information processing systems, 2019, pp. 8026–8037.

[12] T. Lan, D. Erdogmus, A. Adami, M. Pavel, and S. Mathan, “Salient EEG
channel selection in brain computer interfaces by mutual information
maximization,” in 2005 IEEE Engineering in Medicine and Biology 27th
Annual Conference. IEEE, 2006, pp. 7064–7067.

[13] A. M. Narayanan and A. Bertrand, “Analysis of miniaturization effects
and channel selection strategies for EEG sensor networks with applica-
tion to auditory attention detection,” IEEE Transactions on Biomedical
Engineering, vol. 67, no. 1, pp. 234–244, 2019.

[14] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini, “Group
sparse regularization for deep neural networks,” Neurocomputing, vol.
241, pp. 81–89, 2017.

[15] A. Abid, M. F. Balin, and J. Zou, “Concrete autoencoders for
differentiable feature selection and reconstruction,” arXiv preprint
arXiv:1901.09346, 2019.

[16] T. Strypsteen and A. Bertrand, “End-to-end learnable EEG channel
selection for deep neural networks with gumbel-softmax,” Journal of
Neural Engineering, vol. 18, no. 4, p. 0460a9, 2021.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2025.3533154

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KU Leuven Libraries. Downloaded on January 27,2025 at 13:50:39 UTC from IEEE Xplore. Restrictions apply.

[17] J. Chen, L. Song, M. Wainwright, and M. Jordan, “Learning to explain:
An information-theoretic perspective on model interpretation,” in Inter-
national Conference on Machine Learning. PMLR, 2018, pp. 883–892.

[18] Y. Li and J. Oliva, “Active feature acquisition with generative surrogate
models,” in International Conference on Machine Learning. PMLR,
2021, pp. 6450–6459.

[19] I. Covert, W. Qiu, M. Lu, N. Kim, N. White, and S.-I. Lee, “Learning
to maximize mutual information for dynamic feature selection,” arXiv
preprint arXiv:2301.00557, 2023.

[20] T. Verelst and T. Tuytelaars, “Dynamic convolutions: Exploiting spatial
sparsity for faster inference,” in Proceedings of the ieee/cvf conference
on computer vision and pattern recognition, 2020, pp. 2320–2329.

[21] E. J. Gumbel, Statistical theory of extreme values and some practical
applications: a series of lectures. US Government Printing Office,
1948, vol. 33.

[22] M. Figurnov, M. D. Collins, Y. Zhu, L. Zhang, J. Huang, D. Vetrov,
and R. Salakhutdinov, “Spatially adaptive computation time for residual
networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 1039–1048.

[23] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter,
K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball,
“Deep learning with convolutional neural networks for EEG decoding
and visualization,” Human brain mapping, vol. 38, no. 11, pp. 5391–
5420, 2017.

[24] H. Wu, F. Li, Y. Li, B. Fu, G. Shi, M. Dong, and Y. Niu, “A parallel
multiscale filter bank convolutional neural networks for motor imagery
EEG classification,” Frontiers in Neuroscience, vol. 13, p. 1275, 2019.

[25] K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, “Filter bank common
spatial pattern (fbcsp) in brain-computer interface,” in 2008 IEEE Inter-
national Joint Conference on Neural Networks (IEEE World Congress
on Computational Intelligence). IEEE, 2008, pp. 2390–2397.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[27] P. K. Donta, S. N. Srirama, T. Amgoth, and C. S. R. Annavarapu,
“icocoa: Intelligent congestion control algorithm for coap using deep
reinforcement learning,” Journal of Ambient Intelligence and Humanized
Computing, vol. 14, no. 3, pp. 2951–2966, 2023.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2025.3533154

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KU Leuven Libraries. Downloaded on January 27,2025 at 13:50:39 UTC from IEEE Xplore. Restrictions apply.

APPENDIX A
MSFBCNN ARCHITECTURE

Layer # Filters Kernel Stride # Params Output Activation Padding
Input (M,L)
Reshape (1, L,M)
Timeconv1 FT (64, 1) (1, 1) 64FT (FT , L,M) Linear Same
Timeconv2 FT (40, 1) (1, 1) 40FT (FT , L,M) Linear Same
Timeconv3 FT (26, 1) (1, 1) 26FT (FT , L,M) Linear Same
Timeconv4 FT (16, 1) (1, 1) 16FT (FT , L,M) Linear Same
Concatenate (4FT , L,M)
BatchNorm 2FT (4FT , L,M)
Spatialconv FS (1,M) (1, 1) 4MFTFS (FS , L, 1) Linear Valid
BatchNorm 2FS (FS , L, 1)
Non-linear (FS , L, 1) Square
AveragePool (75, 1) (15, 1) (FS , L/15, 1) Valid
Non-linear (FS , L/15, 1) Log
Dropout (FS , L/15, 1)
Dense NC FT (L/15, 1) (1, 1) FS(L/15)NC NC Linear None

Table I: Architecture of the MSFBCNN classifier fθ used for motor execution classification. This table is cited from [24]. In our experiments, M is the
amount of nodes in the sensor networks, window length L = 1125, FT = 10, FS = 10 and the number of classes NC = 4. The total amount of parameters
is 6100, 7700 and 10900 for M = 4, M = 8 and M = 16 respectively.

APPENDIX B
CENTRALIZED CHANNEL SCORING MODULE ARCHITECTURE

Layer # Filters Kernel Stride # Params Output Activation Padding
Input (M,L)
Reshape (1, L,M)
Timeconv FT (16, 1) (1, 1) 16FT (FT , L,M) Linear Same
BatchNorm 2FT (FT , L,M)
Spatialconv FS (1,M) (1, 1) MFTFS (FS , L, 1) Linear Valid
BatchNorm 2FS (FS , L, 1)
Non-linear (FS , L, 1) Square
AveragePool (75, 1) (15, 1) (FS , L/15, 1) Valid
Non-linear (FS , L/15, 1) Log
Dropout (FS , L/15, 1)
Dense M FT (L/15, 1) (1, 1) FS(L/15)M M Linear None

Table II: Architecture of the centralized channel scoring module hφ, based on the MSFBCNN architecture. In our experiments, M is the amount of nodes
in the sensor network, window length L = 1125, FT = 10, and FS = 10. The total amount of parameters is 3600, 4000 and 4800 for M = 4, M = 8 and
M = 16 respectively.

APPENDIX C
DISTRIBUTED CHANNEL SCORING MODULE ARCHITECTURE

Layer # Filters Kernel Stride # Params Output Activation Padding
Input (1, L)
Reshape (1, L, 1)
Timeconv FT (16, 1) (1, 1) 16FT (FT , L, 1) Linear Same
Non-linear (FT , L, 1) Square
AveragePool (75, 1) (15, 1) (FS , L/15, 1) Valid
Non-linear (FS , L/15, 1) Log
Dense C FT (L/15, 1) (1, 1) FT (L/15)C C Linear None

Table III: Architecture of the distributed channel scoring modules hφ,m, based on the MSFBCNN architecture. Each node m contains one of these, with the
output fused in the fusion center with an MLP (see Section IV-C). In our experiments, window length L = 1125 and FT = 10. In the distributed setting,
each output is simply the binary decision, i.e. C = 1. In the distributed-feedback setting, the output is the summary βm, i.e., C = 10. The total amount of
parameters is 911 in the distributed setting and 7670 in the distributed-feedback setting.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2025.3533154

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KU Leuven Libraries. Downloaded on January 27,2025 at 13:50:39 UTC from IEEE Xplore. Restrictions apply.

