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Abstract—In this paper, we describe a conceptual design
methodology to design distributed neural network architectures
that can perform efficient inference within sensor networks
with communication bandwidth constraints. The different sensor
channels are distributed across multiple sensor devices, which
have to exchange data over bandwidth-limited communication
channels to solve a classification task. Our design methodology
starts from a user-defined centralized neural network and trans-
forms it into a distributed architecture in which the channels
are distributed over different nodes. The distributed network
consists of two parallel branches, whose outputs are fused at the
fusion center. The first branch collects classification results from
local, node-specific classifiers while the second branch compresses
each node’s signal and then reconstructs the multi-channel time
series for classification at the fusion center. We further improve
bandwidth gains by dynamically activating the compression path
when the local classifications do not suffice. We validate this
method on a motor execution task in an emulated EEG sensor
network and analyze the resulting bandwidth-accuracy trade-
offs. Our experiments show that the proposed framework enables
up to a factor 20 in bandwidth reduction and factor 9 in power
reduction with minimal loss (up to 2%) in classification accuracy
compared to the centralized baseline on the demonstrated task.
The proposed method offers a way to smoothly transform
a centralized architecture to a distributed, bandwidth-efficient
network amenable for low-power sensor networks. While the
application focus of this paper is on wearable brain-computer
interfaces, the proposed methodology can be applied in other
sensor network-like applications as well.

Index Terms—Deep neural networks, Distributed deep neural
networks, EEG, Wireless EEG sensor networks, Body sensor
Networks

I. INTRODUCTION
A. Context and contributions

In the last few years, technological advances such as
miniaturization of microprocessors and energy-efficient
batteries have increasingly enabled the usage of wearable,
physiological sensors for ambulant health monitoring. Many
applications however, will require recording of different
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data modalities or multiple channels of the same data type
at different locations to extract meaningful patterns. This
naturally leads to the concept of a body-sensor network
(BSN), where the different sensors wirelessly share their data
and solve a given task in a distributed fashion. Well-known
applications include microphone arrays to detect heart and
lung body sounds [1], electroencephalography (EEG) sensor
networks [2,3] and other distributed or modular neuro-sensor
platforms [4]. A major constraint in the design of these
networks is that they should be energy-efficient, enabling
a maximal battery lifetime. In BSNs, the typical energy
bottleneck will be the wireless transmission of the data
between the sensors and/or a fusion center [2,5,6]. Simply
offloading all the recorded data to the cloud where they can
be jointly processed will thus severely hamper the battery
lifetime, presenting the need for different, bandwidth-efficient
solutions [2,7]. In this paper, we will present a framework
to design deep neural network (DNN) architectures that deal
with such bandwidth constraints. The framework is generic,
in the sense that we make no prior assumptions on the DNN
architecture itself. We start from a user-defined centralized
neural network model for inference from multi-sensor
input, and explain how this initial model can be used to
build a distributed model that solves the same inference
task. This conceptual methodology is then illustrated and
analyzed in an EEG-based brain-computer interface task,
which acts as a driver application driver throughout this paper.

EEG is a widely used, noninvasive way to measure the
electrical activity of the brain. These signals can be harnessed
for various purposes, including the monitoring and analysis
of sleeping patterns [8], epileptic seizure detection [9], the
study of brain disorders after injuries [10] and brain-computer
interfaces (BCI), which allows for direct communication
between the human brain and external machines [11]-[13].
Traditional EEG requires patients to wear a bulky EEG cap
with many wires that are connected to the acquisition device.
This means that monitoring the patient’s EEG can typically
only be done in a hospital or laboratory environment. These
limitations of classical EEG have led to a growing desire for
ambulatory EEG, allowing for continuous neuromonitoring
in daily life [14]. A major enabler for these purposes is the
development of mini-EEG devices: concealable, lightweight,
miniaturized devices that are deployed behind or in the ear
[15]-[17] or attached to the scalp [18,19]. A single device



would only be able to record one or a few EEG channels
from its local area, hampering the performance in many of the
previously mentioned applications. To mitigate this, multiple
mini-EEG devices at different locations can be organized in
a so-called wireless EEG sensor network (WESN) [2,19,20].
Each device can then perform some local processing on its
own channels, before sharing its information with the other
devices to perform the original, centralized EEG tasks in a
distributed manner. This shift from one EEG cap towards a
network of wireless, miniaturized devices affects the design
of the machine learning models we use to perform these
tasks in two major ways. Firstly, to guarantee a comfortable
user experience, we are only able to use a limited number
of devices. We thus first need to solve an EEG channel
selection task, determining how many and where these
devices should be placed, minimizing the amount of devices,
while maximizing the performance of the desired EEG task
[20,21]. Secondly, the recorded channels are now stored on
separate devices, meaning we cannot perform multi-channel
processing without sharing the recorded data across the
devices first. Simply transmitting the full, raw channels to a
fusion center would incur enormous energy costs and severely
hamper the battery life of the mini-EEG devices [2,5]. To
achieve a viable battery life, we will thus need to limit the
amount of data each device in the WESN can share and
take this bandwidth constraint into account during the model
design.

Recently, deep learning or DNN models have become
more and more popular in the processing and analysis of
physiological signals, including EEG [22]. This trend in
combination with the shift towards low-power wearables
cultivates a need to redesign such DNNs towards distributed
architectures that can operate in modular sensor platforms,
such as WESNs and other body-sensor networks. While
a generic methodology for the first problem (i.e., channel
selection and sensor placement for DNN-based inference)
has been proposed in [21], generic methodologies for the
second problem (i.e. translating DNNs to bandwidth-efficient
modular architectures) are still largely lacking. In this paper,
we study how we can adapt existing centralized DNN
architectures to make them amenable for use in distributed
settings with communication bandwidth constraints such as
in body-sensor networks (and WESNs in particular). In the
resulting distributed architecture, the sensor nodes learn to
locally process the data, compress them to a desired degree
and transmit them and finally fuse the compressed data to
solve the desired task. To validate the applicability of this
method, we study its performance on a motor execution EEG
task and analyze the bandwidth-versus-performance tradeoff.

The main contributions of this paper are:

e We introduce a design framework that maps a given
centralized neural network architecture to a distributed
architecture that is able to run efficiently on a bandwidth-
constrained sensor network.

e We combine this framework with the early exit mech-
anism of [23] to further decrease the bandwidth by
deciding on a per-sample basis how much data needs to
be transmitted to the fusion center.

o We demonstrate the usage of our method by taking a cen-
tralized neural network architecture solving a given motor
execution EEG classification task and decentralizing it.
We analyze the resulting bandwidth-accuracy trade-offs
of the resulting distributed architecture and demonstrate
that with only small performance losses compared to the
centralized baseline, substantial bandwidth gains can be
achieved.

B. Distributed deep learning: related work

The literature of distributed deep learning is diverse
and covers many different topics. A first class of methods
distributes networks across multiple compute nodes, either
to enable training of a single very large network that would
otherwise not fit in memory on multiple standard CPU’s or
GPU’s [24] or to accelerate training by training a network
on multiple devices in parallel and aggregating the gradient
updates on each device [25]. A second line of research aims
to map centralized models to a number of hardware devices
to perform efficient inference. For instance, Bhardwaj et al.
[26] employ multiple model compression techniques to map
a single network to a number of smaller student networks
with a limited memory footprint, while also minimizing the
inter-device communication cost. Stahl et al. [27] have a
similar goal, but instead employs layer partitioning to perform
the exact same operations as in the original network, but
spread these out across devices.

All the previous work has one major factor in common,
which makes them not applicable to our problem statement.
They share the assumption that either all devices have access
to all the input data or all the input data are generated in a
central location and the energy of communicating this data to
the worker nodes is not a constraint. The literature on deep
learning where different channels or modalities of the input
data itself is split across different devices is quite limited. The
closest work to ours in this regard is the distributed deep neural
network (DDNN) framework of Teerapittayanon et al. [23].
Similarly to our setting, the input data is distributed across
devices. The local classifications of each device are aggregated
and the confidence in this prediction is estimated with the
normalized entropy of the resulting class probability distri-
bution. If the confidence is high enough, this result - which
only required the transmission of a classification vector of
each node - is taken as the final result. Otherwise, a processed
version of the data of each local device is forwarded to the
cloud, thereby requiring a larger bandwidth. The main idea is
thus to reduce bandwidth by only forwarding difficult samples
that can’t be correctly classified locally. Designing the optimal
bandwidth-performance trade-off for a given application is
then done by setting the desired confidence threshold of the
local classification, with higher required confidence resulting



in more data streamed to the cloud, but fewer misclassifi-
cations. In contrast, the main focus of this work will be to
reduce bandwidth by designing an efficient architecture that
compresses the data on our nodes to the desired degree, as will
be described in the next section. However, both approaches are
orthogonal to each other and we will ultimately combine them
to gain even greater bandwidth gains without losing too much
accuracy.

C. Paper Outline

The paper is organized as follows. In section II we introduce
our framework and show how to combine it with the early
exiting mechanism of [23]. Section III presents the WESN
use case, providing an overview of the used EEG dataset, how
we emulate the environment of a WESN and design the neural
network architecture for this specific use case. We then present
our experimental results in section IV and finish with some
conclusion in section V.

II. PROPOSED METHOD

In this section, we will conceptually describe the proposed
bandwidth-efficient distributed architecture. We will first give
a conceptual overview of the proposed architecture in Subsec-
tion II-A, while in Subsection II-B, we will explain in more
detail how a centralized neural network can be cast to this
distributed architecture and how it is trained. In Section III
and IV, we will then apply this architecture design framework
to a specific EEG inference task.

A. Proposed architecture

To build an architecture that minimizes the communication
cost in a wireless sensor network, we propose a scheme
where each local sensor (henceforth referred to as a node)
compresses its recorded data as much as possible before
sending it to a fusion center, where the final processing and
inference will take place. The idea is to design an archi-
tecture that is able to interpolate between the two extreme
cases of minimal and maximal communication, which also
corresponds to minimal and maximal task accuracy. As the
point of minimal communication, we take the setting where
each node only transmits its local classification, as this would
reasonably be the most condensed task-relevant information
it could share. This setting, represented by the ClassFuse
branch (orange path in Figure 1), will serve as the basis
of our architecture, with the other modules serving to trade
extra bandwidth for an improved performance compared to
this minimum-communication baseline. The point of maximal
communication corresponds to each node simply transmitting
its full recorded data. This would allow the fusion center to
perform the same multi-channel processing as in the central-
ized case and achieve maximal accuracy. However, to achieve
a trade-off between bandwidth and performance, we compress
each signal at the local node, after which they are reconstructed
at the fusion center. This is the task of the CompressFuse
branch (blue path in Figure 1). This CompressFuse branch
essentially mimics the original centralized network, although

it operates on data that is distorted through the compression-
reconstruction scheme. Finally, the results of the two branches
are fused to provide a final output. A high-level schematic of
such an architecture is illustrated in Figure 1. Another way
to look at this architecture is as a combination of early and
late fusion, respectively represented by the CompressFuse and
ClassFuse branches. We will now delve deeper into the design
of these modules for our WESN case and how they are trained.

B. Design of the modules

In this subsection, we will delve deeper into how we can use
this framework to transform a given centralized architecture
that has access to all input channels simultaneously, into a
decentralized version that performs the same task.

1) ClassFuse: The task of the ClassFuse branch (orange
path in Figure 1 is to let each node perform local classification
and optimally fuse them together at the fusion center. The
local classifications are performed with the original centralized
architecture,where the input dimensions are reduced with
respect to the number of local channels at each node. Each
node then outputs the class scores as a log-probability vector
(i.e. the classification output before applying softmax) to the
fusion center. At the fusion center, these probability vectors
are fused into a final class probability vector. This fusion is
performed with a simple multilayer perceptron (MLP) with 1
hidden layer and Rectified Linear Unit (ReLU) nonlinearities
on the concatenated outputs of the nodes. We take advantage
of the modular nature of this network to train it in two stages.
First, the weights of the local classifiers are pre-trained with
a single-channel classification task. Then, the full ClassFuse
branch is trained end-to-end, with the weights of the local
classifiers having a lower learning rate due to previously
being pre-trained.

2) CompressFuse: The task of the CompressFuse branch
(blue path in Figure 1 is to compress each local recording,
reconstruct the full multi-channel signal at the fusion center
and classify this with the original, centralized neural network.
To compress the local sensor channels at each node, we
use two strided convolutional layers, with the value of the
strides together determining the amount of compression (e.g.
a stride of 2 and a stride of 3 resulting in a downsampling
with a factor 6). Note that the downsampling could also be
performed by a single strided convolutional layer, but we
empirically found that using two two layers resulted in more
stable training. We then upsample each channel separately
with two transposed, strided convolutional layers, mirroring
the strides of the compression layers. Another possibility
would be to omit the reconstruction step (i.e. upsampling)
alltogether and directly classify the compressed, downsampled
signal, since the reconstructed signal will not contain more
useful information than the compressed signal. However,
when employing an existing neural network for classification,
hyperparameters such as the length of the kernels have been
tuned assuming a specific length of the time window at the
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Fig. 1: Illustration of the distributed neural network architecture and its modules. The orange ClassFuse branch lets each node perform its own local classification
with a single-channel neural network (’Classifier’ block) and combines these at the fusion center with fully connected layers ("FC’). This branch only transmits
a class probability vector. The blue CompressFuse branch compresses each channel locally ("Compress’) and reconstructs the full multi-channel signal at
the fusion center ("Recon’), only having to transmit a downsampled version of the original signal. The full reconstructed signal is then classified by the
multi-channel neural network (’Classifier’). The purple FullFuse module combines these two branches and performs the final classification with another pair
of fully connected layers (CFC’). By tuning the compression rate in the CompressFuse branch, we can reduce the amount of data to be transmitted, while the

ClassFuse branch helps boost the accuray at very little cost in bandwidth.

input and a certain desired receptive field. Not employing
reconstruction would break these assumptions and force us
to redesign the original centralized classification network,
which we aim to avoid as much as possible. Similary to
the ClassFuse branch, it is possible to perform the training
of this branch in multiple stages. We could, for instance,
first pre-train the compression-reconstruction layers as an
auto-encoder by minimizing the mean squared error (MSE)
between the reconstructed output and the input and then train
the full CompressFuse end-to-end. Whether this two-step
training will be necessary, will largely depend on the size
of the compression network compared to the classification
network.

3) FullFuse: The FullFuse module combines the
classifications of the ClassFuse and the CompressFuse
branches to perform the final classification. Similarly to the
ClassFuse, we simply use an MLP with 1 hidden layer and
ReLU nonlinearity for this task. We train this module jointly
with the previously trained ClassFuse and CompressFuse,
once again employing a lower learning rate for the latter
two. In Section III, we will demonstrate that the output of
FullFuse obtains a higher accuracy than both the ClassFuse
and CompressFuse branch separately.

In summary, the training of the network is thus comprised
of the following steps:

1y
2)

Train the single-channel local classifiers of each node.

Train the full ClassFuse branch, combining the local
classifications and fine-tune the local classifier weights.
Train the CompressFuse branch, which compresses, re-
constructs and classifies the node signals jointly.

3)

4) Train the entire network end-to-end, including the Full-
Fuse module, which combines the two previous branches
to perform the final classification.

In Subsection IV-C, we will demonstrate the importance of

using this piece-wise pre-training scheme, by comparing it to
a direct end-to-end training from scratch.

C. Early exiting

The ClassFuse branch allows us to reach a certain, basis
classifcation accuracy with minimal communication, while the
CompressFuse allows us to send additional information to
boost this accuracy further. However, when the ClassFuse
is able to already correctly classify a substantial fraction of
the samples on its own, this implies that for many of these
samples, the extra information of the CompressFuse branch is
not necessary for a correct classification. Thus, we can save
additional bandwidth by only transmitting the data for the
CompressFuse when we are not confident that the ClassFuse
has already successfully predicted the label of the current
sample. This idea of allowing samples to exit the network
early has previously been employed to reduce inference time
[28] and in the Distributed Deep Neural Network (DDNN)
framework of [23] to decide whether a sample is processed
locally or in the cloud. A common metric for classification
confidence in this line of work, which we will employ here as
well, is the normalized entropy of the softmaxed classification
vector, defined as

|C|

Z x; log(x;).
i=1

with |C| the number of classes and x a probability vector,
which in this case is the softmaxed output vector of the
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Fig. 2: Illustration of the distributed neural network architecture extended with early exiting. First, the ClassFuse delivers a first prediction y1, requiring a
negligible amount of bandwidth. If the entropy of the class distribution of y; is low enough, i.e., the confidence of the ClassFuse is high, y1 is taken as the
final classification output. If the ClassFuse is insufficiently confident, the nodes are signaled to enable the CompressFuse branch as well, whose prediction is
fused with with y; to create a more accurate prediction y2, at the cost of more bandwidth being consumed.

ClassFuse branch. Similar to [23], we thus first perform
classification using the ClassFuse branch and measure the
entropy of the current sample’s output. If the entropy is lower
than a certain threshold, we keep this output. If the entropy
threshold is exceeded, we activate the CompressFuse and
combine this with the ClassFuse to perform inference on the
full network. The value of this threshold introduces a trade-off
which can easily be tuned after network training: the higher
we put this threshold, the less frequently the CompressFuse
branch will be activated, thereby saving more bandwidth at the
cost of a reduced classification performance. Figure 2 shows
a schematic overview of this mechanism in our distributed
architecture. A major advantage of combining early exiting
with our bandwidth-efficient architecture design is that, in
contrast to the compression factor of our CompressFuse
branch, the confidence threshold is a continuous parameter,
thus allowing us to perform the bandwidth-accuracy trade-off
in a continuous manner rather than a discrete one. The efficient
architecture design on the other hand, allows us to start this
trade-off from a more favorable point than we could otherwise.

III. CASE STUDY: WIRELESS EEG SENSOR NETWORKS

In this section, we investigate the use of our distributed
architecture in the context of a BCI task in a wireless EEG
sensor network. We use data from a motor execution classi-
fication task, which is a well-known EEG-BCI paradigm for
which large data sets as well as mature deep neural network
architectures are available.

A. Data set

Motor execution is a widely used paradigm in the field of
BCI. Real or intended body movement typically goes hand in

hand with neuronal activity in certain motorsensory areas of
the brain. The goal of motor execution is then to derive from
these signals which movement was performed. In this work,
we will employ the High Gamma Dataset [29], containing
a training set of 880 trials of executed movement following
a visual cue, for each of the 14 subjects. We employ 80%
of these for training and 20% as a validation set for early
stopping. The dataset also contains a separate test set of 160
trials per subject, which we use to validate our results. The
movements to be decoded are divided in 4 classes: left hand,
right hand, feet and rest. While originally 128 channels were
recorded for this dataset, we follow the approach of [29] and
perform our experiments using only the 44 channels covering
the motor cortex. The rest of our preprocessing procedure also
follows the work of [29]:

e Resampling to 250 Hz

o Highpass-filtering at 4 Hz

« Standardizing mean and variance per channel to 0 and 1

o Epoching in segments of 4.5 seconds, consisting of the 4
seconds after the visual cue and the 0.5 before.

The neural network architecture we employ for classification
- and the one we will convert to a distributed architecture
for our WESN - is the multiscale parallel filter bank
convolutional neural network (MSFBCNN) proposed in [30].
For completeness, a detailed summary of this network in
table format can be found in Appendix A.

B. WESN node emulation

In traditional EEG caps, a channel is usually measured as
the potential between an electrode at a given location and
a common reference, typically the mastoid or Cz electrode.
However, in the case of mini-EEG devices, we can only



measure a local potential between two proximate electrodes
belonging to the same device. To emulate this setting based
on a standard cap-EEG recording, we follow the approach
of [20]. In this setting, each pair of electrodes within a
preset maximum inter-electrode distance from each other is
a candidate electrode pair or node we could measure. The
signal this node records is then emulated by subtracting one
of the channels from the other, thus removing the common
(far-distance) reference in the process. We applied this method
with a distance threshold of 3 cm to our dataset, converting
the 44 channels in 286 candidate electrode pairs or nodes. The
resulting set of nodes had an average inter-electrode distance
of 1.98 cm with a standard deviation of 0.59 cm.

C. Node selection

Since we are only able to use a limited number of
mini-EEG devices, we will first perform a channel/node
selection step to select the most relevant sensor nodes from
the pool of 286 candidate nodes. To this end, we employ
the regularized Gumbel-softmax method described in [21].
This method allows us to learn the M optimal nodes for
a given task and neural network by training said network
jointly with a special selection layer that is able to learn
the discrete variables involved in feature selection through
simple backpropagation. The value of M will also be varied
throughout our experiments. We jointly train this selection
layer of size M with the centralized MSFBCNN architecture
using the training data from all subjects in the data set and
selecting the model weights and candidate nodes that reach
the best performance on the validation set. This results in
a subject-independent set of M mini-EEG nodes that are
optimally placed to solve the motor execution task. The M
selected nodes are then used to design a distributed version of
the MSFBCNN network as explained next. For more details
on the exact procedure of the channel selection step, we refer
the reader to [21], where the same procedure is applied to
channels instead of candidate nodes.

D. Distributed architecture design

We build our distributed network by taking the MSFBCNN
architecture as our centralized baseline. Thus, we employ a
single-channel version of the MSFBCNN as our classifier
on the local nodes and the multi-channel version as our
classifier in the fusion center in the CompressFuse branch
(this corresponds to all the blocks denoted as ’classifier’ in
Figure 1). The MLP that fuses our local classifications in
the ClassFuse branch (the first orange FC block in Figure
1), consists of a simple MLP with one hidden layer of
size 50 and ReLU nonlinearity in between. We use the
same MLP architecture to fuse the output of the ClassFuse
and CompressFuse (i.e. the purple FC block in Figure
1). The ’Compress’ block consists of two convolutional
layers, each consisting of a single kernel with strides to
match a desired compression factor (e.g. one stride of 2 and
one of 3 to achieve a compression factor 6). The ’Recon’

block is built symmetrically to the ’Compress’ block, with
transposed convolutions replacing the normal convolutions.
Since the reconstruction happens at the fusion center, it
would also be possible to jointly reconstruct the channels
using spatiotemporal filters instead, though our experiments
indicated no advantage in this approach for our application.

The distributed network is trained using the data of all
subjects jointly, using the procedure described in Section
II-B. Training is performed with the Adam optimzer [31], a
learning rate of 0.001 and a batchsize of 64 for 50 epochs.
Early stopping when the validation loss does not decrease for
5 epochs is employed to prevent overfitting. As soon as a
layer has been trained for the first time, all subsequent fine-
tuning of said layer will use a learning rate of only 1074, a
tenth of the original learning rate. When the full network has
been trained, subject-dependent decoders are obtained by fine-
tuning the full network end-to-end with subject-specific data.
The performance of each of these subject-dependent decoders
is then measured on the test set of the corresponding subject
and we report the average performance across the subjects.

IV. EXPERIMENTAL RESULTS
A. Impact of short-distance nodes

First, we take a look on how much using short-distance
nodes instead of channels built from far-distance electrodes
(with a common reference) impacts the accuracy of our motor
execution task in the centralized case. Figure 3 compares the
subject-dependent accuracy of training the centralized baseline
on the M optimal mini-EEG nodes and the M optimal Cz-
referenced channels. Clearly, using electrodes only 2 to 3
centimeters apart from each other significantly affects the
motor execution accuracy. These performance drops have also
previously been observed in the field of auditory attention
decoding [32], though only when the average distance between
the electrodes becomes smaller than 3 cm. As observed in
Figure 3, the difference between short-distance electrode pairs
(nodes) and the original cap-EEG data tends to decrease when
using more nodes, which is consistent with the observations
in [20,32]. We do not consider networks consisting of more
than 8 nodes because the model’s accuracy does not strongly
increase beyond this point and employing a neuro-sensor
network with more nodes would become impractical.

B. Distributed architecture

Next, we compare the performance of the proposed
distributed architecture using different compression factors
to the centralized baseline and investigate the individual
and combined contribution of both branches. The results are
summarized in Figure 4. A first observation is that, while
the ClassFuse is clearly less accurate than the centralized
baseline, it still achieves reasonable accuracy considering it
only requires the nodes to transmit a probability vector of size
4 (due to the 4-class task) compared to a full window of size
1125 (4.5 seconds sampled at 250Hz). A second observation is
that the fusion of the ClassFuse and CompressFuse branches
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Fig. 3: Comparison of the subject-dependent centralized motor execution
accuracy when using M short-distance nodes and M Cz-referenced channels.
Mean test accuracies across the subjects are plotted as a function the
number of channels/nodes. The displayed boxplots are computed over 10
runs and compared with independent samples t-test (no correction for multiple
comparison) after confirming the normality of the data with a Kolmogorov-
Smirnov test . x* indicates statistically significant difference with p < 0.005.

consistently and significantly outperforms the two separate
branches, resulting in a FullFuse that is competitive with
the centralized baseline despite its much lower bandwidth
usage. When moving to higher compression factors such as
16 however, the CompressFuse has more and more trouble
reconstructing the original EEG signal, especially at a lower
number of nodes. At this point, its performance even drops
below the ClassFuse performance, while consuming more
bandwidth. Remarkably, even at this stage it is still beneficial
to fuse the two branches, suggesting that the information
provided by the two branches is complementary. Thirdly,
using more nodes results in a slowly increasing gap between
the centralized baseline and the distributed architecture,
since the unconstrained baseline is naturally more able to
exploit the spatial correlations across the nodes. Finally, in
terms of actual bandwidth gains, the efficient architecture
design allows us to reach similar performance as the original
network at 11% of the original bandwidth and even with 6%
bandwidth, accuracy merely drops from 87% to 82% in the
worst-case scenario.

C. Impact of pre-training

To demonstrate the importance of the proposed training
scheme, we also compare the performance of our network
modules with and without this pre-training. As illustrated
in Figure 5, the network accuracy severely drops for the
ClassFuse and especially for the FullFuse when training from
scratch. This implies that the increased complexity of the
distributed architecture indeed necessitates a custom training
scheme taking advantage of its modular nature to train the
network piece-wise. Though not shown Figure 5, it should be

noted that the CompressFuse branch on the other hand, does
not require pre-training at all, due to the small amount of
parameters in the currently used compression-reconstruction
layers. However, it stands to reason that pre-training in this
branch might become necessary as well when deeper and more
complex architectures are used in this branch.

D. Early exiting

Now that we have a more bandwidth-efficient architecture,
we employ early exiting to let the network decide which
samples are processed by the bandwidth-friendly ClassFuse
only and which by the complete FullFuse network. By tuning
the required confidence threshold between O (all samples are
handled by the full network) and 1 (all samples are processed
by ClassFuse only) we can explore the accuracy-bandwidth
trade-off in a continuous manner (instead of being confined
to discrete non-prime compression factors) and find Pareto-
optimal points, i.e., points where we cannot improve band-
width or accuracy without sacrificing the other. We perform
this trade-off for our distributed architecture with varying
compression factors in Figure 6. Each point in this plot
corresponds to a network with M nodes, compression factor D
and local exit confidence threshold 7" (varied from 0 to 1 with
a step size of 0.01), which in turn corresponds to a percentage
of samples handled by the ClassFuse alone, denoted by A(T).
We compute the per-node bandwidth of this point, relative to
the bandwidth required to run the centralized network (i.e.
continuously transmitting the full recorded data window of
length L at each node). This relative per-node bandwidth B
can be computed as:

s = (lc+a-amg). o

with |C| the amount of classes, i.e. the size of the class
probability vector (in this case 4).

A first observation to be made from the bandwidth-accuracy
curves is that often, bandwidth can be reduced up to 50%
without any loss in accuracy. Interesting to note is that the
deflection point at which the accuracy starts decreasing tends
to shift more to the left, the more nodes we employ. This is
not surprising, since more nodes implies a higher accuracy
of the ClassFuse branch, thus less samples for which the full
network has to be activated. The advantage of using multiple
nodes is thus twofold: it increases accuracy due to the higher
amount of recorded data (see Figure 3), but also allows us to
save more bandwidth per node by requiring samples to pass
through the whole network less often. Thus, instead of using
nodes for increased accuracy, we can also employ them to save
per-node bandwidth for the same accuracy. For instance, while
using 3 nodes allows us to reach 80% accuracy at 11% of the
original bandwidth, using 6 nodes allows us to do so at 1.3%
of the original bandwidth. A second observation is that, when
requiring low bandwidths, starting from a more bandwidth-
efficient network with higher compression factors in the
CompressFuse branch and applying early exiting generally
outperforms applying early exiting to a network with smaller
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compression factors. This is especially salient when comparing
using CompressFuse branches with compression (yellow,green
and red in Figure 6) to the version without compression (in
blue), which corresponds to transmitting the raw sensor data
and using the centralized baseline when the ClassFuse is not
confident enough. It is noted that these gains tend to decrease
as we increase the compression factor,yet the non-compressive
version remains outperformed by the compressive versions of
CompressFuse. Finally, we can observe that the bandwidth
gains of combining the efficient architecture design and the
early exiting are substantial, allowing the network to operate
at only 5% of the original bandwidth, while never losing more
than 2% accuracy at that point. This demonstrates how the
gains obtained by our proposed distributed architecture and
those obtained by early exiting are complementary.

E. Impact on power consumption

Finally, we will analyze the impact of these bandwidth-
reduction schemes on the total power consumption on the

nodes, which will consist of the sum of two major parts.
Firstly, the reduced bandwidth results in a decreased transmis-
sion power Pr compared to simply offloading the raw data.
Secondly however, the presence of the per-node classifier and
the compression that enable this reduced bandwidth also re-
sults in an increase in on-node computing power consumption
Po. We estimate P as:

o Nops/Tw
N P

with N, the amount of floating point operations (FLOPs) to
perform inference on one input using the neural networks on
each node, T, the length of one window in seconds and P the
efficiency of the processor, a technology parameter expressed
in GOPS/W!. Py meanwhile is estimated as:

_ N,BLC
==

with N, the number of bits per sample, L the number of
samples within a single input window, B the relative per-node
bandwidth savings achieved by the distributed architecture
(defined in Eq. (2)) and C the efficiency of the transmitter, a
technology parameter expressed in nJ/bit. Table I summarizes
the values employed in our simulations.

Pc 3)

Pr “4)

TABLE I: Constants employed for the power estimation

Ny 32 bit

Nops | ~ 4.10° FLOPs
Tw 4.5s

L 1125

C 1.9 nJ/bit [33]

We fix the value of C' to 1.9 nJ/bit [33] and investigate
how efficient our on-node processing has to be to make
sure the reduced transmission power compensates for the
increased computing power. To do this, we compare the total
reduction in power compared to offloading all the raw data

INote that we follow the convention that FLOPs indicate the absolute
amount of floating point operations, while FLOPS (all capitals) indicate
floating point operations per second.
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(which is equivalent to Eq. (4) with B = 1) for different
bandwidth reductions (as shown in Eq. (2) and Figure 6) and
different processor efficiencies P in Figure 7. We see that
for very inefficient processors, the extra overhead of the on-
node computations outweigh the gains achieved by the reduced
bandwidth and no power reduction is achieved. Conversely,
in the case of efficient processors, the computing power is
negligible and the total power reduction in power is equal
to the reduction in bandwidth. The more bandwidth-efficient
a network is, the more efficient a processor needs to be
to fully realize these power savings, since transmission will
become less and less of a bottleneck. Realistic neural network
accelerator ASICs today are known to be capable of reaching
1 TOPS/W and higher [34]%. This means that for instance
in our use case, working with a bandwidth reduction of a
factor 20 (i.e, B = 1/20 in Eq. (2), corresponding to the
region of 5% relative bandwidth in Figure 6), corresponds to
a total power reduction factor of about 9 (see Figure 7 with
B = 1/20), showing that despite the computational overhead,
significant power gains can still be reached. Despite this strong
compression and power reduction, the accuracy drops with at
most 2% for any number of nodes (see Figure 6).
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Fig. 7: Total reduction in power consumption per node for FullFuse networks
with different bandwidth reductions as obtained by Eq. (2) and different
processor efficiencies P. A power reduction factor F' indicates each node in
the the network consumes + of the power a node consumes when it would
directly offload all the raw data. Dotted lines indicate power reduction when
on-node compute power is neglected and only power savings in transmission
costs are considered. The more efficient the processor, the lower the power
cost of the computational overhead and the closer the power gains are to the
bandwidth gains.

V. CONCLUSION AND FUTURE OUTLOOK

We have proposed a novel distributed neural network ar-
chitecture design framework that can straightforwardly be
mapped on a wireless sensor network and perform inference
in this setting in a bandwidth-efficient manner. While we have
applied it to the specific case of BCI in WESNSs, the nature

2Though they often require 8-bit precision to achieve this, neural networks
are also known to perform similarly in 8-bit precision as in full 32-bit precision
[35].

of this architecture is generic. The architecture consists of
two parallel branches. The ClassFuse branch lets each node
in the network perform its own local classification and then
aggregates these in a fusion center. The purpose of this late
fusion procedure is to produce reasonable classifications while
consuming the minimal amount of communication energy.
To then be able to perform a trade-off between bandwidth
and performance, the CompressFuse branch compresses the
recorded sensor signal of each node to a desired level and then
approximately reconstructs the full multi-channel signal at the
fusion center, where it can then be classified by a centralized
network. These outputs of these two branches are then fused
to perform the final classification.

The FullFuse requires two rather mild assumptions on the
settings to which it can be applied, which will generally be met
in a practical neuro-sensor network or WESN context. Firstly,
the individual nodes should be able to obtain some reasonable
classification above chance level when only using local data in
order for the ClassFuse branch to provide relevant data to the
fusion center. Secondly, some useful inter-node correlations
have to be present in order for the CompressFuse branch
to provide additional information compared to the ClassFuse
branch via the early fusion principle.

To train the FullFuse architecture, we have proposed a
step-by-step procedure, taking advantage of the modular
structure of the architecture to first pre-train every block
separately. We have experimentally demonstrated both the
need and the advantage of training the network in this way.
We have then combined the resulting network with the early
exiting mechanism of [23] to decide on a per-sample basis
whether to use the full network or the very bandwidth-friendly
ClassFuse to process the current input. We have shown that
the introduction of the CompressFuse branch allows to
substantially push the Pareto-front upwards, in particular in
low-bandwidth regimes.

We have validated the performance of our architecture on an
emulated WESN solving a motor execution EEG task. We have
used our architecture to obtain accuracy-bandwidth curves for
this task, showing that for a realistic amount of nodes, we
could save a factor 20 in bandwidth and a factor 9 in power
consumption at the cost of 2% mean test accuracy proving
that good motor execution performances can be reached with
both a low number of channels and a high reduction in the
amount of data that needs to be transmitted from the nodes.
An important observation in our experiments is the advantage
of using multiple nodes in the sensor network. Not only does
using more nodes increase accuracy, it also leads to a more
favorable bandwidth-vs-accuracy trade-off, which in the case
of WESNs implies an increased battery life. In the future,
we will explore ways to reach even higher reductions by
using more sophisticated architectures for the CompressFuse
branch, which is currently a very simple model consisting of
strided convolutions. We will also explore the generality of
our findings on other EEG tasks, such as epileptic seizure
detection [9] and other distributed platforms than WESNSs.
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APPENDIX A
MSFBCNN ARCHITECTURE

Layer # Filters  Kernel Stride  # Params Output Activation  Padding
Input (C,T)

Reshape 1,T,0)

Timeconvl Fr (64,1) (1,1) 64F1 (Fr,T,C) Linear Same
Timeconv2 Fr (40,1) (1,1) 40F (Fp,T,C) Linear Same
Timeconv3 Fr (26,1) (1,1) 26 Fp (Fp,T,C) Linear Same
Timeconv4 Fr (16,1) (1,1) 16 Fr (Fr,T,C) Linear Same
Concatenate (4Fr,T,C)

BatchNorm 2Fp (4Fp,T,C)

Spatialconv Fs (1,0) (1,1) 4ACFrFg (Fs,T,1) Linear Valid
BatchNorm 2Fg (Fs,T,1)

Non-linear (Fs,T,1) Square

AveragePool (75,1) (15,1) (Fs,T/15,1) Valid
Non-linear (Fs,T/15,1) Log

Dropout (Fs,T/15,1)

Dense N¢ (T/15,1) (1,1) Fs(T/15)Nc  N¢ Linear Valid

TABLE II: Architecture of the MSFBCNN used for motor execution classification (the *Classifier’ blocks in Figure 1). In the model we use 7" = 1125, Fpr =
10, Fs = 10 and N = 4. Each node operates a single-channel version version of this network where C' = 1 for the ClassFuse and the fusion center
contains a multi-channel version for the CompressFuse, where C' is the number of nodes. This table is cited from [30].



