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Avoiding Post-processing with Event-Based
Detection in Biomedical Signals

Nick Seeuws

Abstract— Objective: Finding events of interest is a com-
mon task in biomedical sighal processing. The detection
of epileptic seizures and signal artefacts are two key ex-
amples. Epoch-based classification is the typical machine
learning framework to detect such signal events because
of the straightforward application of classical machine
learning techniques. Usually, post-processing is required
to achieve good performance and enforce temporal de-
pendencies. Designing the right post-processing scheme
to convert these classification outputs into events is a
tedious, and labor-intensive element of this framework.
Methods: We propose an event-based modeling framework
that directly works with events as learning targets, stepping
away from ad-hoc post-processing schemes to turn model
outputs into events. We illustrate the practical power of
this framework on simulated data and real-world data, com-
paring it to epoch-based modeling approaches. Results:
We show that event-based modeling (without tailored post-
processing) performs on par with or better than epoch-
based modeling with extensive post-processing. Conclu-
sion: These results show the power of treating events
as direct learning targets, instead of using ad-hoc post-
processing to obtain them, severely reducing design effort.
Significance The event-based modeling framework can eas-
ily be applied to other event detection problems in signal
processing, removing the need for intensive task-specific
post-processing.

Index Terms— Biomedical
Learning, Neural Networks

Signal Processing, Deep

[. INTRODUCTION

Machine learning has become a popular approach to solve
biomedical signal processing problems, for example for epilep-
tic seizure detection [1]]-[4]], the detection of sleep events
[5-[12] and sleep stages [13]], and the detection of signal
disturbances, also known as signal artefacts [14]-[19].

A specific group of tasks in biomedical signal processing
can be said to deal with events. Conceptually, these tasks
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involve the detection of transitions to a signal event of interest
and back to the background signal. The detection of epileptic
seizures and signal artefacts are two such examples, where
the seizures and artefacts are the events of interest. The
manual event detection process involves scrolling through
signal recordings (potentially representing multiple hours of
signal) and logging the start and stop times of the events.
Designing tools to aid human annotators requires linking raw
signal recordings with a set of (¢sqrt, tstop) tuples.

The prototypical machine learning approach to detect such
events in biomedical signals involves segmenting a signal
recording into distinct epochs and predicting a label for each
individual epoch [20]]. Deciding on the epoch duration is part
of the design process, and also heavily relies on the machine
learning model that is used. An extreme case is where a
prediction is made on the level of individual time samples
(which could be viewed as single-sample epochs), as often
done in U-Net-like architectures [3]], [5].

Converting predictions for every individual epoch into a
(tstarts tstop) tuple spanning a continuous event, possibly
across multiple epochs, involves extensive post-processing
[11-[3)]. This post-processing is usually not learned from
data, but designed based on expert knowledge. If epochs are
fed to a machine learning model independently the post-
processing stage is also responsible for encoding temporal
dependencies inherent to time series processing into the final
output. This responsibility makes the post-processing stage a
crucial ingredient with a tedious design process.

In this work, we introduce event-based modeling as an
alternative paradigm (instead of epoch-based modeling). We
will illustrate how this method bypasses the need for a tedious
ad-hoc design of a proper post-processing stage. Inspired
by works in visual object detection, our method encodes
events of interest using the events’ center and duration. Both
are predicted jointly by a single deep learning model. We
consider this to be an event-based approach to biomedical
signal analysis.

Event-based modeling reduces many separate design tasks
to the design of a single neural network, without a need
to carefully tune pre- or post-processing steps (as both are
directly learned by the model). Encoding training events
involves mapping the different events to an event center and
duration signal, after which the model can be trained end-to-
end without post-processing. Explicitly modeling events, com-
bined with the end-to-end nature of deep learning, encourages
the model to properly learn the full character and diversity
of target events. Crucially, we can easily cope with a large
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variability in event duration.
To summarize, our key contributions are as follows:

o Introduction of a generic event-based modeling frame-
work for biomedical signal processing,

« An event-detection algorithm that does not require tai-
lored, task-specific post-processing (in contrast to most
epoch-based approaches),

e Due to its end-to-end nature, our algorithm learns the
full character and diversity of target events of variable
duration.

Section [[Il introduces our event-based framework. Section
discusses our experiments and illustrates the performance
of the proposed framework on synthetic and biophysical data.
Section [IV] discusses these results and explains benefits and
drawbacks of using an event-based framework. Section [V]
concludes the paper.

[I. METHODS
A. Event-based modeling

In this subsection, we describe the event-based framework
conceptually, and we refer to Figure [I] for a schematic illus-
tration of the different concepts introduced in this subsection.

1) Encoding and decoding events: Our event-based frame-
work represents events by their center point and duration.
A signal recording is used as input, and the goal is to
produce center and duration predictions across the length of
the recording. Both outputs (i.e., center and duration) are
treated as "signals", in the sense that they span the entire
input. This situates our approach in the area of "sequence to
sequence" learning, similar to the works of [3]], [5], [[13]]. The
center signal indicates whether a point in time corresponds to
the center of an event. The duration signal is used to represent
an event’s duration if that point in time would be a center
point. Note that this duration signal is meaningless at time
points far away from a center point. Our approach is inspired
by CenterNet [21] for object detection in images. This image
object detection model predicts centers of detected objects,
and predicts object sizes at those specific centers.

At inference time, the center and duration outputs are
decoded by searching for the peaks in the center signal. The
detected event centers are then represented by the different
peaks, and the confidence level for each event is displayed by
the specific signal values at the corresponding peaks. |'| For
each detected center, the predicted event duration can then be
found in the duration signal at that specific point.

In our experiments, we locate the center signal peaks by
listing all local maxima (that exceed a certain threshold) using
a peak finding routine of SciPy [22]. Only relying on local
maxima, however, can lead to center points that are close
to one another (and lead to overlapping event predictions.)
If this is the case, there might be a need for merging these

IThis confidence is expressed on a relative scale, and does not necessarily
represent detection probabilities like they do for classification problems. These
signal values should be interpreted as "confidence scores", e.g., a model is
more confident in its prediction for an event with score 0.8 than it is for an
event with 0.3 as score.

overlapping events, or non-maximum suppression (as is com-
mon in computer vision [21]], [23]-[26]). For our experiments
on epileptic seizures (explained in section [[II-C.0.b), we use
non-maximum suppression for events that have more than 0.5
Intersection-over-Union to avoid occasional double detections.
Note that these are generic post-processing schemes.

2) Losses:

a) Training targets: To train the center and duration pre-
dictions, training targets need to be defined. Center prediction
is treated as a sample-based classification task, similar to
the approaches of [3], [5]. In contrast to most sample-based
classification approaches, some slack should be allowed on the
center targets. Predicting a center that is just a few samples
off-target is better than, e.g., predicting a false event in an hour
of background signal, and thus should be penalized less. The
weighting method of [21]] for object detection is modified and
applied to event center prediction. For an event with ground
truth center ¢*, the target center signal is defined as

(t—t)?
202

e(t) = exp(~ ) (1)
with o depending on the target event’s duration. Following
[23]], this hyperparameter is set as ¢ = d/12, with d the
event’s actual duration, measured in terms of time points.
The hyperparameter can be adjusted for a specific use case to
specify how precise a model should be in its center predictions
during training (e.g, a larger value for o allows for more
"slack" on center predictions.) In this work, we use the values
of [23] as-is, and leave tuning of the hyperparameter as
future work. In the case of multiple events in a signal, these
center target signals as in Eq. [T] are defined for each event
independently, and are combined by taking the maximum
target value at every time point.

The duration targets only need to be defined at the target
centers t*, since only duration predictions at ground-truth
center points t* will be considered in the duration loss.
As presented, we chose to work with a maximum duration
that the model can predict. This can either be set to the
maximum duration in a given data set, or determined with
expert information (e.g.,"What can reasonably be expected
as an upper bound for these events?"). In principle, the
duration prediction can be unbounded (one will not always
know the maximal duration a priori), but constraining the
duration prediction leads to improved stability during training.
The duration predictions, similar to the center predictions, are
constrained to the range [0, 1] (the target durations are divided
by the predefined maximum duration.) For every target event
in a data set, the duration signal value at the event’s center
point is set to the event’s normalized duration.

b) Training losses: Center prediction is trained using focal
loss [24], in the modified form of [25]. The full center signal
prediction loss L. for an input signal containing N events,
center prediction ¢'(t), and target center signal c(t) is defined
as:

1 (I —ac)(l—=c)*log(d) ife=1
L,
N zt: ac(1

- N — )P log(1 — ') otherwise
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Fig. 1: Event-based modeling overview. The input EEG signal at the top contains a single artefact event, annotated in orange
(the event’s center and duration are highlighted in red). The neural backbone can be any sequence-to-sequence model. Two
independent convolutional layers output the center and duration signals (in blue). The training targets for both signals are
plotted in orange. Training the center signal involves comparing it to the entire target signal. The duration signal is only
trained and evaluated at event centers. Note that this example only spans 20s and contains a single, easy to detect event. With
the right backbone, the approach can process longer inputs and detect more events at once.

(with the dependence on ¢ of ¢/(t) and ¢(¢) dropped for legi-
bility). Hyperparameters are set as a, = 0.1,a =2 and =4
following [24], [23]. The original focal loss is a classification
loss where mistakes are adaptively penalized based on the
model’s confidence using the factors exponentiated with .
With the modification of [23], false alarms close in time to
the target center t* are penalized less than false alarms further
away (using the factor (1 — ¢)”) and the exponential in Eq.
[1). Fl

Duration predictions are trained using Intersection over
Union (IoU) as loss. IoU is a popular loss formulation in object
detection [@] Crucially, IoU is based on relative duration
errors, ensuring that the batch loss will not be dominated by
long events. Calculating the intersection and union of predicted
and target events can be simplified due to the use of the target
event’s center. The duration loss L4, for N events, set of
known target points 7, predicted duration signal d’(¢) and
target d(t), is formulated as

Ld:%Z

t*eT

min[d’ (t*), d(t*)]
max[d (t*), d(t*)]

3)

Note that the predicted duration signal d’(¢) is only evaluated

>This form of the focal loss can cause numerical instabilities when
performing gradient descent during training. To avoid instabilities, one needs
to rewrite the loss in terms of the logits instead of sigmoid inputs. Refer to
the Supplementary Material for more details.

at the center points, i.e., the value of d(¢) and d'(¢) has no
meaning at points which are not treated as center points, even
though the network will produce an output d’(¢) for every time
point .

The center prediction loss L. and duration loss L, are
combined into the full loss L as a weighted sum,

L=Lc+ AiLa

, Where \; is a hyperparameter to control the relative influence
of the two tasks (center and duration prediction). In our
experiments, both loss terms become approximately equal in
magnitude by setting Ay = 5. This value can be raised or
lowered to increase or decrease, respectively, the influence of
the duration prediction task.

3) Backbone model: Taking an event-based approach to
modeling events does not rely on a specific backbone architec-
ture. As discussed above, one can view it as a specific instance
of sequence-to-sequence modeling. Hence, any neural network
architecture that maps an input signal to an output signal
can be applied in an event-based context (one would need
to account for the center and duration signals by converting
the architecture to produce two outputs).

In our experiments, we use U-Net-like backbones (tailored
to a specific data set), ensuring we use the same backbone
architecture for the event-based and epoch-based approaches
for fair comparison. This type of architecture won two recent
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machine learning competitions in the context of event detec-
tion in biomedical signals[3]], [S]]. The architecture is capable
of mapping an input signal (uni- or multivariate) to the desired
center and duration output signals, and manages to combine
global and local information of the input. Due to differences in
scale of the target events in our experiments, discussed below,
specific implementations of the backbones are tailored to the
specific data sets. Details can be found in the Supplementary
Material.

Our model implementations, experiment code and Supple-
mentary Material can be found at https://github.com/
nseeuws/EventBasedModeling

[1l. EXPERIMENTS AND RESULTS
A. Measuring performance

Measuring performance of an algorithm in the context
of biomedical events is not straightforward. In the field of
epileptic seizure detection, for example, multiple measures are
in active use, and all focus on different aspects of "perfor-
mance" [27]]. Broadly speaking, there are two categories of
performance measures: epoch-based and event-based. Epoch-
based measures treat the evaluation of an algorithm similarly
to epoch-based solutions, i.e., as separate classification for
each epoch. In this case, one can rely on classical performance
measures for classification problems (accuracy, precision, re-
call, etc.).

In the context of this work, however, we elect to measure
performance using an event-based measure. Event-based mea-
sures take a more holistic approach to evaluation and focus
on the events in question, not on epoch-centric classification
results. Designing an event-based model is mainly relevant
if the final evaluation will also take an event-based point
of view, motivating our choice for this type of evaluation.
Event-based measures look at how well predictions overlap
with reference annotations, and match predicted events with
reference events. Different measures vary in how they quantify
overlap between predictions and references, and what they
consider as "enough overlap". For example, in [27] the authors
discuss, among others, the any-overlap and time-aligned event
scoring methods. Broadly speaking, the former considers a
prediction to be a correct prediction if there is any temporal
overlap with ground-truth events, while the latter also con-
siders the amount of overlap between predictions and ground
truth. Both measures can give different results for a single
set of predictions, and it is up to the user to decide what
measure best corresponds to the problem at hand. In object
detection for computer vision, object-based (the computer
vision equivalent of event-based) evaluation is also common
[21], [23[]-[26]], [28]. Matches between the set of predicted
objects and ground-truth objects are made based on maximal
overlap, measured using Intersection-over-Union (IoU). For
the prediction-ground-truth pairs obtained like this, if the
overlap is higher than a specific IoU threshold, the pair counts
as a correct detection.

Throughout this paper, we will use the IoU as the main
performance metric. Changing the IoU threshold for evaluation
allows us to elegantly make evaluation more or less strict,

depending on the problem at hand. As an illustration of
the power of event-based modeling, evaluation flexibility is
desirable in the context of this paper. For example, the any-
overlap scoring of [27]] (a lenient evaluation criterion) can be
seen as a limit case of the IoU threshold going to zero, and will
be applicable in use cases where the any-overlap scoring is
also relevant. On the other hand, setting a high IoU threshold
is suited to evaluate algorithms when there is a high standard
on the overlap between predicted and ground-truth events.

B. Simulated events

As a first test we simulate a data set by mixing realistic noise
events in electrocardiography (ECG) signals. This ensures
unambiguous annotations, which can be difficult to obtain in
real-life biomedical data (e.g., in epileptic seizure detection,
where the precise starting point of seizure is difficult to define).
As background signal, we use the Computing in Cardiology
2017 Challenge data set [29]. This data set contains lead I
ECG recordings of sinus rhythm ECG and atrial fibrillation.
We randomly generate electrode artefact events with varying
durations sourced from the Physionet MIT-BIH Noise Stress
Test Database [30]. The artefact events are added to the
background signal with varying SNR levels. To "smoothen"
the transition between background and artefact, the artefacts
are elementwise multiplied with a Tukey window of the same
size as the artefact event. To make the task more difficult,
we add short bursts of artefact signal throughout the data set
(which should be ignored by the models). Example events and
corresponding predictions are visualized in Figure [2] Full data
generation details are discussed in the Supplementary Material.

We compare our event-based approach to a generic epoch-
based approach. Using a U-Net-like backbone for event-
based modeling allows for direct comparison with epoch-based
modeling by training an actual U-Net (with a single output)
in an epoch-based manner, where it is trained to produce
predictions at 1/16 the original sampling rate (making it so
that the two settings use the same backbone architecture and
the addition of the center and duration output is the only
change). Network details are explained in the Supplementary
Material. The event-based model is used as-is, while the
epoch-based model is used in three different settings:

e No post-processing: To establish a baseline, we re-
port performance of the epoch-based approach without
post-processing to gauge the impact of post-processing
schemes.

e Median filtering: To compensate for potential (short)
false positives, which we know to be a risk due to the
short "distraction" events added into the data generation
process, we use median filtering after thresholding the
base-model output as a first post-processing scheme. The
filter length is equivalent to 1s, the shortest possible
duration of the target events.

e Morphological operations: As a more advanced post-
processing scheme, we take inspiration from morpholog-
ical operations popular in the field of computer vision
[31]. After training the base epoch-based model, we
observed more room for improving results than median
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Fig. 2: Examples of simulated events and corresponding predictions. The vertical orange lines in the signal plots indicate the
start and stop times of each target event. Signal amplitude is unitless in both subplots. Duration predictions and targets are

rescaled to reflect duration in seconds.

filtering. The U-Net would predict "holes" in target events
which are not always fixed with median filtering (espe-
cially if they occur close to event edges), in addition to
false positives. To further push post-processing, we use
binary closing (which closes holes in the foreground, i.e.,
a predicted event), followed by binary opening (which
removes short events, expected to be false positives) with
a binary structuring element of size equivalent to 1s,
applied after thresholding the base-model output.

To measure performance, we use two different IoU thresh-
olds, 0.25 and 0.75, to determine "hits" and "misses" of the
two approaches. These two thresholds represent two different
evaluation settings, one where the overlap between predictions
and ground truth is not that important (0.25 IoU) similar to
the any-overlap, and a setting where the precise overlap is
more important (0.75 IoU). We randomly generate 25 data
sets to control for variability. We report the test set F1-
score corresponding to the confidence threshold that gives
the highest Fl-score on the validation set. For the event-
based approach, we include events with a confidence score
higher than the threshold. Operating points for the epoch-
based approaches are set by thresholding the model output by a
certain value. We opt for the F1-score instead of looking at the
full precision-recall curves since the epoch-based approaches
are observed to only have a singular Pareto-optimal operating
point (illustrated in the Supplementary Material). The epoch-
based approaches would thus realistically only be used at
this singular threshold, making it unfair to evaluate them

over a full range of points. The flexibility of choosing a
detection threshold is an additional benefit of using our event-
based modeling approach, but will not be evaluated in this
experiment.

Results for the detection of simulated events are shown
in Figure @ For 0.25 IoU (a more lenient setting), the
event-based approach outperforms all epoch-based approaches.
Additionally, one can see the impact of post-processing in an
epoch-based setting. Both post-processing schemes improve
upon an approach without post-processing.

For 0.75 IoU (a more strict setting), a similar pattern
can be observed. The event-based approach outperforms the
epoch-based approaches, and post-processing improves results
for the epoch-based approaches. Post-processing based on
morphological operations, a more intensive and task-specific
scheme, further improves results in the sctricter setting.

C. Real-world data

Additionally, we show results on two real-world data sets,
one containing EEG artefacts and the other one containing
EEG with epileptic seizures.

a) EEG artefacts: The Temple University Artefact Corpus
consists of various EEG artefact events, described in [32]]. In
the full data set, many multi-channel EEG recordings with
channel-level annotations of artefact events are present. In
this paper we focus on the muscle and chewing artefacts
due to their large variability in duration. Both types are
joined into a single artefact class. We train models on the
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Fig. 3: Summary results of different training runs on simulated ECG artefacts. We evaluate performance using 0.25 and 0.75
IoU as the "threshold" to compute true/false positives and negatives to reflect a lenient and more strict evaluation setting.
"Epoch-based" is an epoch-based approach without post-processing, "Epoch-based, Filter" is an epoch-based approach with
median filtering, "Epoch-based, Morph" is an epoch-based approach combined with morphological operations, and "Event-
based" is our event-based approach. Based on the Wilcoxon rank-sum test, our event-based approach achieves a significantly
higher Fl-score compared to all epoch-based approaches at the p < 0.01 significance level.

individual channels of this data set to predict the channel-level
artefact annotations. The recordings are divided into training,
validation, and test sets, making sure that recordings of the
same individual are not split among the sets. Example artefact
events can be found in Figure [4]

The event-based and epoch-based model both use the same
backbone architecture. Post-processing for the epoch-based
model is done with a median filter with filter length of 0.1s.
Network details can be found in the Supplementary Material.

b) Epileptic seizures: The second real-world data set is
the Temple University Seizure Corpus containing epileptic
seizures [33]]. The data set is made up of multi-channel EEG
recordings, with epileptic seizures annotated at a general level
(only indicating at which point in time a seizure occurs, not
on which channel(s)). Example seizure events can be found in
Figure [3]

As comparison, we use the approach of [3], which won an
international seizure detection challenge on this specific data
set [34]. The approach consists of an epoch-based learning
task with a U-Net architecture combined with extensive post-
processing, tailored to seizure detection and the data set in
question. For the sake of a fair comparison, we use the same
backbone architecture as [3] in our event-based model, yet
without the post-processing stage. Using the same backbone
showcases the performance of our generic approach (without
post-processing) compared to an epoch-based algorithm with
heavily tailored post-processing. Network details can be found
in the Supplementary Material.

1) Detection performance: For the real-world data sets, we
use 0.5 IoU as a threshold as a meet-in-the-middle metric
between an any-overlap scoring and a time-aligned event
scoring [27]]. Instead of reporting an aggregate measure like
average precision, we compute precision at confidence thresh-
olds corresponding to specific recall values (since, in a real-
world setting, users would also need to decide on a confidence
threshold). Next to the precision using 0.5 IoU, we also
compute the proportion of predictions that still have positive

overlap with a corresponding ground-truth event, but less than
0.5 IoU. This allows for a deeper understanding of what sort
of predictions the two approaches produce.

Artefact and seizure detection precision is displayed in
Figure [6] for different recall levels (computed using the IoU-
based detection criterion, with 0.5 as threshold). Overlaps
over 0.5 IoU are counted as true positive detections. Detected
events having less than 0.5 IoU with a matched reference
event, but which still have positive overlap, are indicated as
<0.5 ToU. How well the approaches predict the duration of
a detected event is gauged by the comparison between the
true positive and <0.5 IoU detections. Predicted events that do
not correspond to a ground-truth event are counted as false
positives. A network that cannot detect events at a specific
recall level is indicated as No detection.

For most recall levels, the event-based approach is outper-
forming the epoch-based one. Additionally, more events are
found using the event-based approach compared to the epoch-
based case, shown by the former’s higher recall level. Note that
both approaches do not reach 100 % recall. Unlike for binary
classification, not all targets (events) get detected by moving
the decision threshold to zero because of the IoU threshold to
count predicted events as true positives.

The seemingly rising precision-recall curve for the epoch-
based approach in the artefact data set is an unintuitive finding.
Normal precision-recall curves are expected to show high
precision at low recall, and low precision at high recall. This
behavior is not shown in this case. The behavior can be
explained by the decoding process of the epoch-based pre-
dictions. To predict events at specific recall levels, confidence
thresholds need to be varied, which are set to correspond to
a specific cutoff of the output to distinguish between event
and background. Because of some noise in this output signal,
two events can easily be detected as a single long event if the
threshold is low. On the other side, a single event can easily be
split into multiple shorter ones if the threshold is rather high.
This sensitivity to a cutoff, and the fact that a 100 % recall
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Fig. 4: Examples of EEG artefact events. The orange lines
indicate the start and stop times of each event, as annotated
in the Temple University artefact data set. Signal amplitude is
unitless.

cannot be achieved, can result in an irregular precision-recall
curve with a single Pareto-optimal operating point. Similar
behavior is observed for the simulated events, as illustrated in
the Supplementary Material.

2) Center and duration estimation: Evaluating performance
solely based on IoU combines both "branches" of our event-
based approach (center and duration predictions). In addition,
we also evaluate the performance of both these aspects inde-
pendently. To do so, predicted events that have positive overlap
with their corresponding ground-truth events have their center
point offsets and duration differences evaluated. In the case of
the epoch-based approaches, the center point and duration are
extracted directly from the events that are outputted by the
post-processing stage, whereas for the event-based approach
the center point and duration are directly obtained from the
outputs of the neural network. We report relative errors for
center point offsets and duration errors.

Regarding the center points and duration evaluation, both
approaches are evaluated at the confidence threshold corre-
sponding to the maximum common recall level (0.4 for the
artefacts, and 0.33 for the seizures). Relative offsets between
ground-truth and predicted centers are shown in Figure [7]
for both data sets. For artefact detection, our event-based

Example seizure events
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Fig. 5: Example of seizure events. These examples are single
channels taken from multichannel EEG. Orange lines indicate
the start and stop times of each event, as annotated in the Tem-
ple University seizure data set. Signal amplitude is unitless.

approach shows less variability around ground-truth center
points compared to the epoch-based one. For seizure detection,
the event-based approach shows less variability, with the
median predicted center being closer to ground-truth.

For artefact detection center offsets, the event-based ap-
proach also shows no significant bias away from zero, while
the epoch-based approach again shows a significant under-
estimation (setting the center earlier in time than the actual
ground-truth center point), based on the t-test (p < 0.01). The
event-based offsets are also significantly lower in variability,
based on the Levene test (p < 0.01). For seizure detection
center offsets, both approaches show no significant bias away
from zero. The event-based offsets are significantly lower in
variability than the epoch-based offsets (p < 0.01).

Relative duration prediction errors are shown in Figure 8] for
both data sets. For artefact detection, the event-based median
duration prediction is closer to the ground truth. Additionally,
the event-based approach makes smaller errors in duration
predictions (indicated by the lower interquartile range).

For artefact detection duration errors, the event-based ap-
proach shows no significant bias away from zero, while
the epoch-based approach shows a significant overestimation,
based on the t-test (p < 0.01). The event-based errors are
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Artefact detection results
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Fig. 6: Detection results for real-world EEG artefact and seizure events at different recall levels. True positive detections
correspond to IoU > 0.5. The proportion of predictions that have IoU < 0.5 but still have positive overlap are indicated in
orange. False positive detections have no overlap with ground-truth events. No detections indicates that the algorithm cannot
detect events at that recall level.
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Fig. 7: Relative offsets between ground-truth and predicted centers (normalized by ground-truth duration). Positive values
indicate that the predicted event center lies later in time than the ground truth. We consider all matched ground-truth and
predicted events that show any overlap (green + orange class in Fig. |§[)
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Fig. 8: Relative errors between ground-truth and predicted durations (normalized by ground-truth duration). We consider all
matched ground-truth and predicted events that show any overlap (green + orange class in Fig. |§[)

also significantly lower in variability, based on the Levene
test (p < 0.01). For seizure detection duration errors, both
approaches show a significant bias away from zero (p < 0.01).
The event-based errors are significantly lower in variability
than the epoch-based errors (p < 0.01).

3) Impact of training set size: To better understand the
impact of training set size on event-based and epoch-based
approaches, we investigate performance "growth" with grow-
ing training set size. For varying sizes of both real-world data
sets, the two approaches are trained and later evaluated on
the respective test sets. To investigate the relation of perfor-
mance with training set size, a scalar performance measure is
required. To this end, the F1-score of both models is computed
at the optimal confidence threshold point (corresponding to the
maximum F1-score on the validation set for each training run),
and plotted as a function of training set size. For every training
run, we train the models with the same amount of batches as
training on the full training set would take (the number of
epochs is corrected for the smaller training set sizes).

Performance growth for both data sets is shown in Figure
O together with a logistic growth model fitted to the scat-
ter points. Crucially, fitting this growth model is done for
illustrative purposes only (to get a feeling for the asymptotic
behavior of the two methods). It is not meant as a confident ex-
trapolation (predicting the networks’ performance for specific
training set sizes). For artefact detection, asymptotic F1-scores
are estimated for the event-based approach at 0.35, and at 0.13
for the epoch-based approach by the logistic growth model.
For seizure detection, asymptotic Fl-scores are estimated for
the event-based approach at 0.42, and at 0.31 for the epoch-
based approach by the growth model. Visually, it can be
concluded that the EEG artefact data seems to contain enough
events to properly train an event-based network. Both the
scatter points and the growth model show asymptotic behavior.
The epoch-based approach, on the other hand, struggles for
artefact events. We believe these low Fl-scores reflect the
epoch-based approach’s high sensitivity to a decision threshold
(as shown by the singular operating points in Figure [63]

and the ECG results in the Supplementary Material). For
seizure detection, the training set is large enough to train an
epoch-based approach. The same asymptotic behavior is not
shown for the event-based approach. It seems that the event-
based approach would benefit from more training examples.
The actual performance measurements, however, are rather
scattered, making it difficult to draw hard conclusions for the
seizure detection task.

IV. DISCUSSION
A. Discussion of experimental results

Using the simulated event data set, we show the power of
event-based modeling. The event-based approach clearly out-
performs the epoch-based approaches. We want to emphasize
that we do not claim superior performance in general, only
strictly with these approaches. Our main goal is to show the
ease with which a performant model can be designed with
event-based modeling compared to epoch-based modeling.

On real-world data, the event-based approach outperforms
the epoch-based benchmarks. Looking at the EEG artefact
results, the event-based approach shows improved precision at
all recall levels (Note that this is a very challenging data set).
For the artefacts, additionally, our event-based approach shows
improved duration prediction, based on the higher proportion
of "True positives" relative to "<0.5IoU" in Figure [6a] and in
the prediction error evaluation of Figure [Sa]

Regarding EEG seizures, the event-based approach gener-
ally outperforms the epoch-based benchmark. Only for 0.1
recall, the epoch-based benchmark manages to find slightly
more events (as evidenced by the combination of the green and
orange part of Figure [6D). At the same time, the event-based
predictions are of slightly higher quality (as evidenced by the
higher proportion of "True positives”, i.e., higher proportion
of >0.5 IoU overlap). Note that this epoch-based benchmark
recently scored top place in a competition on this exact data
set, and is highly tuned. Our event-based approach uses the
base model of the benchmark and turned it into an event-based
model by the addition of a center and duration "head".
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Fig. 9: Performance growth for growing training set size. Scatter points represent the measured values for specific numbers of
training events. Dashed lines show a logistic growth model fitted to the scatter points.

Despite the potential benefit of performance due to an event-
based approach, we want to emphasize that the largest benefit
of our framework lies in removing the need for post-processing
in epoch-based approaches. This post-processing was different
for the three data sets, and will be different again for new data
sets.

B. Using an event-based framework

We have proposed an event-based deep learning framework
for time series, and have applied it to simulated ECG artefacts,
and real-world artefact and seizure detection in EEG. Due to
the end-to-end nature of our approach, and the neural network
backbone learning its own data representation, our framework
is more broadly applicable than these use cases.

The major difference, and benefit, of event-based modeling
compared to classical epoch-based approaches, is the lack
of case-specific post-processing. Using event-based modeling,
one can go directly from model output to events, whereas
epoch-based approaches will always need some kind of tai-
lored translation step before events can be listed. End-to-end
event-based models drop the requirement for domain-specific
post-processing rules. These can involve the expected event
duration, duration ranges, how quickly events can follow each
other, etc. While event-based models might also benefit from
such post-processing, it is not a crucial step as opposed to
existing approaches. Our framework can automatically learn
most of those patterns from data, as is evident from our
experiments. It should be noted that we do not claim that
an event-based approach will always learn all patterns and
will always outperform epoch-based approaches with well-
designed post-processing. When extensive domain expertise
is available, epoch-based approaches relying on features and
post-processing rules inspired by this expertise can potentially
outperform a generic event-based model, especially when
limited training data is available.

One of the major benefits of working within an event-based
framework, compared to segmenting signals into epochs, is
the more intuitive nature of labels. The way our framework
uses event labels matches closely to how human annotators
would work with these labels (defining a start and stop time,
which is equivalent to a center point and duration). This
close match allows for easier feedback from human experts
when developing a machine learning solution. This should be
compared to the classical epoch-based approach, where labeled
events need to be translated into a sequence of classification
targets (with potential ambiguity at event borders), and back
to events at inference time. This can add substantial friction
to the development process, and hinder expert feedback.

Our current framework is conceptually simple: learn to
predict a center point, and learn to predict a duration, which is
expected to be symmetric around this center point. These two
tasks are performed independently (albeit based on a common
feature map), and the two loss terms are computed and opti-
mized independently. If, at test time, the center point prediction
is off by some margin, the training process does not guarantee
meaningful duration predictions at this "offset" center point.
However, it is expected that small offsets would still lead
to meaningful duration predictions, given that the boundaries
of the events are quite ambiguous in the first place (i.e.,
also during training). In our experiments, we indeed observed
that the duration predictions around the (ground-truth) center
point positions were still close to the actual event duration.
However, our framework can be extended if robustness issues
are expected in a novel application. An interesting starting
point in that regard are the "asymmetric" size predictions of
[23]] in the context of computer vision, where the model is
explicitly trained to also predict a meaningful bounding box at
different points than the ground-truth center point, at the cost
of a more complex loss function and increased compute time.
In our time-series context, this would mean that for each time
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point within an event, we would predict 2 duration values: one
to the left and one to the right of the current point (indicating
the distance to the start and end of the event). It is noted
that we have also implemented such an asymmetric duration
prediction, but it did not lead to significant improvements on
the aforementioned data sets.

Applying our event-based framework in real-life applica-
tions requires setting a "threshold strategy" when decoding
events. For our experimental results, we attempt to show the
full range of outcomes (Precision-recall curves for simulated
data in the Supplementary Material, and Figs. [6a] and [6b)). De-
pending on the use case, different settings are relevant (higher
precision, tolerating low recall, and high recall, tolerating
lower precision). It should be noted that the decoding schemes
allows for a wide range of "threshold strategies" outside of the
traditional approach of fixing a threshold beforehand. If one
expects no more than /V events in a recording based on expert
information, one can select the top /N predictions, regardless
of actual model confidence. In another setting, one can devise
a scheme that dynamically searches for the decoding "noise
floor", i.e., what confidence values are associated to a large
number of probably-spurious detections and set a confidence
threshold above this dynamic noise floor.

Some event detection applications might require real-time
detection of the events. Herein lies another difference in
using an event-based or epoch-based approach. By design, our
event-based framework will require that (most of) the event
of interest has been observed. Then, because the model is
encouraged to model the full characteristics of an event, the
model might require more context after an event has occurred
to properly detect it. In contrast, an epoch-based approach
can be designed to detect an event occurrence before it has
been fully observed (by choosing epoch duration and post-
processing schemes in line with real-time limitations.) Real-
time detection can cover multiple use cases. For use cases
where the desired outcome is detecting an event directly after
it has been observed, one can potentially use our event-based
framework. For use cases where the desired outcome is a
detection as soon as possible, before the event has concluded,
epoch-based approaches might be more relevant.

A potential limitation or difficulty in using an event-based
framework is the need for training data. Relevant features and
event characteristics are learned jointly, relying on enough
training examples to do so. A key aspect about these training
examples is the diversity of durations. Our framework learns
to directly predict durations, so it requires a broad range of
example durations to learn from. The real-world artefact and
seizure data sets both cover a wide range of durations, but
are heavily skewed towards shorter events. The impact of
duration distribution on performance is unknown at present.
One can imagine, for example, that shorter durations are easier
to predict if shorter events are more consistent in nature
than longer events but this remains to be investigated. Aside
from the nature of example events, one should also consider
the amount of examples. As seen in the seizure detection
performance growth, there might be potential improvements
with more examples. The epoch-based approach, on the other
hand, shows "saturated" performance, with no clear indication

that it might benefit from more examples. Related to the
amount of examples is also the training time. Intuitively, one
can reason that learning a meaningful representation to predict
an event’s center and duration is more difficult than deciding
whether a particular epoch belongs to the "event" class of
"background" class. Our framework requires enough training
examples to do so, but also enough training time to learn the
relevant patterns.

V. CONCLUSION

In this paper, we have proposed and showcased an event-
based approach to a broad class of event detection problems
in biomedical signal processing. The model can directly de-
tect events of variable duration in long signal recordings.
In contrast to existing epoch-based methods, we require no
post-processing scheme to translate predictions into a set of
events. Our model can be extended to other biomedical event-
detection tasks and to other signal processing tasks where
signal events are involved.
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