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A Human-in-the-Loop Method for Annotation of
Events in Biomedical Signals
Nick Seeuws , Maarten De Vos , and Alexander Bertrand

Abstract— Objective: Building large-scale data bases
of biomedical signal recordings for training artificial-
intelligence systems involves substantial human effort in
data processing and annotation. In the case of event de-
tection, experts need to exhaustively scroll through the
recordings and highlight events of interest. Methods: We
propose an iterative annotation support algorithm with a
human in the loop to improve the efficiency of the anno-
tation process. Our algorithm generates proposal events
based on an event detection model trained on incomplete
annotations. The human only needs to verify candidate
events proposed by the tool instead of scrolling through
the entire data set. Our algorithm iterates between proposal
generation and verification to leverage the human-in-the-
loop feedback to obtain a growing set of event annotations.
Results: Our algorithm finds a substantial amount of events
at a fraction of the human time spent when comparing with
a benchmark method and the normal manual process, find-
ing all events in one data set and 70% of events in another
with the human-in-the-loop only viewing 20% of the data.
Conclusion: Our results show that combining human and
computer effort can substantially speed up the annotation
process for events in biomedical signal processing. Signifi-

cance: Due to its simplicity and minimal reliance on task-
specific information, our algorithm is broadly applicable,
unlocking substantial improvements in the scalability and
efficiency of biomedical signal annotation.

Index Terms— Biomedical Signal Processing, Deep
Learning, Neural Network, Human-Computer Interaction

I. INTRODUCTION

A. Problem statement

Large-scale data sets underpin many contemporary works in
biomedical data processing [1]–[3]. Massive data sets are pro-
cessed using machine learning to automatically find patterns
of interest. Traditionally, the field relied on statistical models
and hand-crafted features [4]–[10]. Deep learning models are
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increasingly used to automatically learn task-specific features
in an end-to-end manner [11]–[16], leveraging large data sets
to train larger and better models. Building large data sets
for biomedical data processing, and push the state of the
art further, requires a massive effort from human experts to
annotate data. These experts annotate training sets to develop
machine learning algorithms. To scale the range and size
of current data sets, improving the efficiency of the data
annotation process is crucial, allowing experts to process more
data with less effort. This paper looks at the problem of making
the data annotation process more efficient for the case of event
detection in biomedical signals.

Events in biomedical signal processing are specific patterns
of interest appearing in the background signal at specific points
in time. The scope of events is broad, and difficult to describe
a priori. Examples include epileptic seizures [4], [5], [13],
[14], sleep events[11], [12], [17], and signal artefacts [6], [7],
[18]–[22]. The annotation process for these tasks produces a
list of (tstart, tstop) tuples corresponding to the start and stop
time of events. This form is different from classical machine
learning data, which come in the form of (data point, target)
tuples, making direct application of existing machine learning
solutions difficult [16].

The low prevalence of events in biomedical signal record-
ings makes annotation challenging. For example, in a recent
study testing seizure detection in wearables [23], the authors
found, on average, 1 seizure event per 3 days of signal
recordings. Manual exhaustive annotation requires experts to
scroll through all signal recordings, interpreting the signal’s
behavior before and after potential patterns of interest. This
process requires years of experience and is time-consuming
and expensive, stressing the need for efficiency.

Improving efficiency of the annotation process is chal-
lenging due to a chicken-and-egg problem: machine learning
solutions for annotation support require annotations to be built,
but the lack of annotations is the reason for designing such
algorithms. A well-performing annotation support algorithm
needs to work in a low-annotation regime, while at the same
time also respecting the full breadth and depth of event
characteristics present in a data set.

We propose a generic iterative annotation support algorithm
for events in biomedical signals with a human in the loop.
We consider an event to be fully specified by a (start time,
stop time) tuple, and leave the specification of the "pattern
of interest" to an end user, adding to the genericity of our
algorithm. The algorithm generates proposal events based on
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an event detection model trained on incomplete annotations.
The human-in-the-loop verifies candidate events proposed by
the algorithm instead of scrolling through the entire data set.
Our algorithm is conceptually simple and does not rely on
domain-specific knowledge.

B. Related work

Annotation support algorithms commonly use an iterative
propose-verify process with a human in the loop [24]–[32].
These algorithms can be broadly categorized by: a) the object
of interest, b) proposal generation, and c) the verification
process. Most existing algorithms focus on classifying single
data points. In contrast, our approach aims to localize low-
prevalence events within biomedical signal backgrounds, a
fundamentally different and more complex problem than mere
classification [16], [25], [26].

The prior works of [25], [26] involve predefined segmen-
tation and feature extraction steps to localize events, which
typically require domain-specific adaptations. In general, ex-
isting methods involve complex, task-specific techniques to
generate proposals [24], [26], [27], limiting their adaptability.
Verification processes also vary. Some require human experts
to verify every annotation to ensure reliability [24], [25],
while others only review a subset, potentially leading to lower
annotation quality [26], [27].

Our method contrasts itself by leveraging a simpler, more
generic proposal generation process that does not rely on
predefined segmentation or extensive feature extraction, en-
hancing flexibility and reducing the need for domain-specific
knowledge. This simplicity allows for a broader application
across various biomedical contexts. Additionally, our verifica-
tion process ensures all proposed annotations are reviewed by
a human experts, combining the rigor of full verification with
the efficiency of algorithmic pre-selection.

Our algorithm leverages key principles from machine learn-
ing and human-computer interaction to achieve efficient event
annotation. The proposal generation mechanism draws in-
spiration from uncertainty sampling in active learning [33],
directing human effort towards the most informative samples.
The iterative nature of our approach parallels expectation-
maximization algorithms [34], gradually refining annotations
and model performance. Finally, our method reflects the
idea of incremental learning [35], continuously updating its
knowledge base with newly verified annotations.

Problems in the field of active learning are closely related
to interactive annotation[33]. While active learning seeks to
minimize human effort in training models, our annotation
support algorithm focuses on exhaustively annotating the
dataset at hand with minimal effort, instead of just optimizing
model training. This focus on data coverage is crucial for
constructing high-quality, reliable biomedical event annota-
tions and differentiates our work from typical active learning
settings. However, active learning strategies can be integrated
in annotation support algorithms [24], [27].

C. Summary and contributions

We introduce a generic, easy-to-implement annotation sup-
port algorithm for event annotation in biomedical signals,

using an iterative propose-verify loop driven by deep learning,
illustrated in Figure 1. Our approach does not rely on task-
specific features, segmentation schemes, or post-processing.
It draws inspiration from "pseudo-labels" in semi-supervised
learning to generate proposal annotations for human verifica-
tion. Our approach improves the efficiency of the annotation
process and, at the same time, ensures trustworthiness of the
results.

To summarize, our contributions are as follows:
• We introduce a scalable and flexible algorithm that is par-

ticularly effective in scenarios with low event prevalence,
• By leveraging a deep learning backbone, our algorithm

does not rely on domain-specific features (as opposed to
[25], [26]), making it broadly applicable across various
biomedical signal processing tasks,

• The simplicity of our algorithm’s design allows for easy
implementation and promotes adaptability, enabling re-
searchers to deploy it in novel settings without extensive
modification.

Section II explains the algorithm. Section III covers our
experiments and results. Section IV discusses the lessons
learned from these experiments and broader aspects of the
algorithm. Section V concludes the paper.

II. METHODS

Our annotation support algorithm involves iterative steps
of computer-based proposal generation and human-centric
proposal verification. The proposal generation step is split up
into a learning phase and the actual proposal generation phase.
Algorithm 1 shows a high-level summary in pseudocode.

The algorithm starts with a small set of annotations pre-
viously obtained by a human ("positive" event annotations
Astart). These can be obtained through browsing signal
recordings or exhaustively annotating a few recordings. How
much human effort should be invested prior to the iterative
process is a trade-off between how difficult one expects "blind
annotations" to be, and how difficult confirming and correcting
proposals is expected to be. As our experiments show, the
approach can get started with very few annotations, but may
require more iterations in such cases. We discuss the learning,
proposal generation, and human verification steps in detail
below.

A. Learning from incomplete annotations

This step learns event patterns from the current (potentially
small) set of annotations A. Events are short "bursts" of a
pattern of interest standing out from the background signal,
with large variability in duration. Traditionally, detection algo-
rithms require intricate, task-specific design decisions [1]. Our
annotation support algorithm relies on an underlying machine
learning model for event detection. Ideally, the underlying
model is a generic one, making the annotation support al-
gorithm broadly applicable.

We use the work of [16] as the underlying event detection
model, although in principle any machine learning algorithm
can be used. Nevertheless, the underlying event detection
model has to be able to learn in the presence of many

HTTPS://DOI.ORG/10.1109/JBHI.2024.3460533


SEEUWS et al.: INTERACTIVE ANNOTATION FOR BIOMEDICAL SIGNALS 3

Start
Recordings without 

annotations

Obtain small 
set of initial 
annotations

Stopping 
criterion 

met?

Train 
detection 

model

Generate 
proposals

Verify
proposals

Stop
Annotated 
recordings

YesNo

Human in the loop Human in the loopComputer

Fig. 1: Flowchart of our annotation support algorithm. The process begins with a small set of initial annotations and iterates between
computer-driven steps (model training and proposal generation) and human-in-the-loop verification. This cycle continues until a pre-defined
stopping criterion is met, resulting in an annotated dataset.

Algorithm 1: High-level summary of our annotation
support algorithm in pseudocode
Data: Data set of signal recordings D, initial set of

event annotations Astart, initial set of
background (negative) annotations B (note that
B can be empty)

Result: Full set of annotations A
A  Astart;
while not MetStoppingCriterion() do

model  LearnFromAnnotations(A,D);
Aproposal  GenerateProposals(model,A,

D, B) /* Alg. GenerateProposals
for details */

;
Averified  VerifyProposals(Aproposal);
A  A [ Averified;
B  B [ (Aproposal \ Averified) ;

end

false negatives, since false negatives dominate true positives
in the first iterations of the algorithm (many events present
in the signal are not yet annotated, and thus considered as
“background” for the learner). The model of [16] can train
in such a setting. It is an end-to-end deep learning model
for the detection of signal events which does not require the
splitting of the data in input segments of equal length, thereby
avoiding post-processing to find event boundaries. Crucially,
the model relies on deep learning, avoiding the crafting of task-
specific features. The model takes a signal as input and, using
a sequence-to-sequence architecture, predicts a center point
and duration "signal". Peaks in the predicted center signal
represent an event identified by the model, and the value of the
duration signal at the corresponding time point represents this
event’s duration. The model is encouraged to fully capture
characteristics of target events by jointly learning events’
center points and durations. For the experiments explained in
Section III, the specific backbone architectures are discussed
in Appendix B.

We train at every iteration with the working set of anno-
tations A using the full data set (i.e., also including all non-

Function GenerateProposals
Data: Event detection model model, set of existing

event annotations A, data set of signal
recordings D, set of background (negative)
annotations B

Result: Set of proposal annotations Aproposal

Aproposal  ; ;
P  GeneratePredictions(model, D) ;
while count(Aproposal) < N do

a  FindMostConfident(P) ;
if a /2 A ^ a /2 B then

Aproposal  Aproposal [ a;
end
P  P \ a;

end

annotated events), aiming to learn event patterns while having
the model recognize actual background but struggle unanno-
tated events (and are thus initially considered as background
for the sake of training a model). After training, we exploit the
model’s potential confusion on un-annotated events to generate
proposals (note that we do not rely on annotated background
segments, we only require A for training the model). To
limit reinforcement of bias, we start the learning step from
a randomly initialized network at every iteration.

B. Proposal generation

Proposal generation is based on the idea of pseudo-labels
from semi-supervised learning [36]. Pseudo-labels are high-
confidence predictions on unlabeled data based on a model
trained on labeled data. We locate high-confidence event
predictions in the data that are not annotated (i.e., not in A
and not in B, the confirmed background segments), relying
on "confusion" during model training regarding the currently
un-annotated events. To measure model confidence in an event
prediction, we take the value of the center point signal corre-
sponding to a predicted event[16]. The N highest-confidence
event predictions that are not in A or B become the set of event
proposals. Setting N is an important hyper-parameter of our
approach which introduces a trade-off between the annotation
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budget per iteration and the amount of new information that
can be leveraged from iteration to iteration. We elaborate on
this trade-off in an ablation study in Section III-E.

We track confirmed background segments B to avoid
proposing the same background segment in multiple iterations.
In the first iteration, B is either empty or contains confirmed
background examples obtained when constructing Astart.

C. Human verification

For each event, the human verifies whether the proposal
corresponds to an actual, desired event. For confirmed events
the human can adjust the proposed start and stop times to
better correspond to the use case or correct small errors. If
the proposal is wrong, the proposal is added to B.

Verified events are added to the set of event annotations A.
Next, the process restarts with this updated set of annotations,
or stops because of a stopping criterion. In practice, the
stopping criterion will likely be tied to a "human time budget"
(the human annotator can only verify X proposals in total), or
tied to the "true positive rate" of proposal events (if 99% of
proposals are consistently wrong a human annotator will stop
annotating).

Our experiments simulate the human-in-the-loop by relying
on ground-truth annotations for the verification step. Because
of this simulation, our stopping criterion is determined by
algorithm runtime. For the ECG data set we run the algorithm
for 20 iterations. For the EEG data set we run the algorithm for
12 iterations (reflecting the substantial increase in data set size
and training time for the underlying event detection model).
Data sets are discussed in detail below in Section III-B.

III. EXPERIMENTS AND RESULTS

A. Evaluating performance

The primary measure of performance is the human effort
required to annotate a certain number of events or an entire
dataset[24], [25], [37]. Direct measurement of this effort is
challenging and costly, as it requires experts with substantial
domain-specific knowledge and can be influenced by individ-
ual expertise levels. To ensure a consistent, objective measure
of human effort, we use two proxy metrics: the total duration
of data segments viewed by a simulated human-in-the-loop,
and the number of decisions the (simulated) annotator makes.
These proxies reflect the primary dimensions of the human
effort involved in event annotation: visual examination of
signal segments and decision-making. The actual human effort
is expected to be strongly related to the aggregated duration
of reviewed segments and the total amount of proposals,
although time taken to process each segment may vary based
on segment content, and some proposals may be easier to
verify than others. Using such proxies is common in the field
of interactive labeling [37], providing a reliable estimate of the
effort reduction achieved by our annotation support algorithm.

We measure total duration of signal segments seen by a sim-
ulated human-in-the-loop by tracking the proposal durations
and potential offsets due to start and stop time corrections
(we thus keep track of the union of proposal and ground-truth
annotation). To estimate the amount of time samples seen to

obtain our starting set of annotations Astart, we assume that
in order to obtain, for example, annotations for 10% of the
total amount of events, our simulated human has looked at
10% of the total data set duration, which implicitly assumes
that events are uniformly distributed across the entire data
set. Our experiments work with the assumption that Astart

is constructed by scrolling through recordings and "zooming
in" to annotate obvious events, leading to an empty set B,
i.e., we do not require the initial annotator to explicitly label
background segments as non-events.

B. Data

We use two datasets of two common biomedical signal
modalities, electrocardiography (ECG) and electroencephalog-
raphy (EEG), chosen for their different signal characteristics.
ECG is structured and EEG is very chaotic and noisy. The
ECG data set consists of lead I ECG recordings, sourced from
the Computing in Cardiology 2017 Challenge [38]. We only
use the (clean) sinus rhythm and atrial fibrillation recordings
and superimpose artefact events on these signals, where the
artefact events are taken from the Physionet MIT-BIH Noise
Stress Test Database [39]. The artefacts vary in duration and
are added to the background signal at different signal-to-noise
ratios. The artefact events are elementwise multiplied with a
Tukey window of the same size as the artefact events to ensure
smooth transitions. Full details are discussed in Appendix A.

The EEG dataset consists of the Temple University Seizure
Corpus [40], which contains multi-channel EEG recordings
of epileptic seizures, characterized by substantial background
heterogeneity and non-stationarity. The ambiguity in defining
seizure start and stop times, combined with their potential
confusion with signal artefacts, places this data set at the
difficult end of the annotation spectrum. We use general level
annotations of this data set (only annotating at which point
in time a seizure occurs, not on which channel(s)), following
the training and test split of [41]. We use this training set as
our "to be annotated" data set. It contains 2058 seizures in
3986 recordings, spanning 713 hours of EEG. We use the test
set as held-out test set for the experiment of Section III-D. It
contains 673 seizures in 1013 recordings, spanning 170 hours
of EEG.

Both data sets are chosen to highlight our algorithm’s
capabilities across varying levels of event detection com-
plexity, from the relatively straigthforward ECG data to the
highly challenging EEG data. All ground-truth annotations
are available for our experiments and are used to validate our
algorithm’s annotation performance, ensuring a comprehensive
assessment across the two extremes. Ground-truth annotations
for our ECG data set indicate the actual signal events since the
events are simulated. Ground-truth annotations for our EEG
data are generated by the human annotators of [40] and thus
might contain some amount of mistakes and inconsistencies.

C. Benchmarking

Annotation support has to save time for a human user. To
evaluate the time-saving potential of our annotation support
tool, we start from a randomly selected set of annotations of
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about 10% of total events. We use random Bernoulli samples
for every event to decide on inclusion in Astart (setting
the distribution parameter to 10%). This approach mimics a
scenario where an annotator randomly selects and annotates
events from the dataset. We deliberately keep this initial se-
lection mechanism simple and generic in order to focus on the
algorithm’s runtime aspects, effectively ’abstracting away’ the
initial selection process. The algorithm uses an "automated"
human-in-the-loop, comparing the proposal annotations with
ground-truth annotations of the data set in question. Unless
stated otherwise, we produce N = 200 proposals per iteration
for the ECG data, and N = 500 proposals per iteration for
the EEG data (to reflect the increased difficulty of annotating
epileptic seizures.)

We benchmark against the approach of [25], which despite
its focus on audio processing, represents the most closely re-
lated interactive annotation system available in the literature. It
identifies events in time series data and generates proposals for
human verification. Unlike our method, it relies on predefined
segmentation and feature extraction, limiting its adaptability
to variable-duration events. Every annotated event is verified
by a human, in contrast to approaches such as [26], [27]. The
method of [25] segments signal recordings into short intervals,
extracting hand-crafted domain-specific features from each to
distinguish between event-related ("positive") and non-event
("negative") segments, similar to our sets A and B. It utilizes
a feature relevance scoring system to prioritize segments based
on their proximity to positive features and distance from
negative ones.

We run [25] for 100 iterations on ECG data and 50 on
EEG data, leading to a similar computational budget as our
method. For ECG artefacts, we use features sensitive to ECG
artefacts: kurtosis [7], [42]–[45], skewness [7], [43], in-band
to out-band power ratio [45], [46], relative power in the QRS
complex [7], [44], and relative baseline power [7], together
with signal power and sample entropy, extracted for 1 second
windows. For EEG data, we use the state-of-the-art features
of [4], covering signal statistics, spectral content, and entropy
information, extracted for 2 second windows.

We count the preceding and succeeding segments when
tracking signal duration seen by the human expert for the
single-segment proposals of [25]. Verifying a proposal requires
the signal context beyond the short single-segment boundaries.
Proposed segments that match with a ground-truth event are
counted as explained in Section III-A (by looking at the union
of proposal and ground-truth event).

We also compare our method to exhaustive chronological
search and a hypothetical ideal proposal generator to establish
performance bounds.

Our annotation support algorithm finds nearly all simulated
ECG events (Fig. 2a), staying close to ideal proposal genera-
tion in terms of data observed and total proposals seen by the
human. Our algorithm outperfoms the method of [25], finding
more events for less human effort. In terms of decisions made,
we achieve around a factor four speed-up. Our algorithm and
the method of [25] show a clear improvement over exhaustive
chronological search.

Our annotation algorithm gives different results for epileptic

(a)

(b)

Fig. 2: Benchmark results for annotation performance. We report
fraction of events found as a function of data observed by the human
and the total number of proposals seen by a human. We report
mean performance, with the transparent band indicating one standard
deviation across 5 runs.

seizures in EEG (Fig. 2b). The algorithm finds around 70% of
the total seizure events. There seems to be a slight upwards
trend left at the end. However, the algorithm generates many
faulty proposals at the end, making it impractical to continue
the process. We slightly outperform the method of [25] in
terms of data observed and substantially in terms of total
proposals. Even though both methods fail to find all events,
they save human effort compared to exhaustive chronological
search.

D. Event detection performance

We investigate how the performance of an event detection
model changes with proposal-verification iterations. In prac-
tice, one might indeed be more interested in improving the
performance of an event detection model by adding more
labels, rather than aiming for a fully-annotated data set in
itself. If an annotation support algorithm fixates on only
specific subtypes of events, it can introduce bias in the set of
annotations used for training. The marginal value of a single
annotation can be low when a substantial portion of a data
set is already annotated, or the most "informative" examples
are already annotated. A human might not have to verify (or
annotate) a full data set to obtain a model performing no worse
than one trained on the fully annotated data set.

We evaluate generalization performance by applying the un-
derlying event detection model (used to generate proposals) to
a held-out test set. For the simulated ECG artefacts, the test set
is generated from signal and noise segments not used for the
training set. For EEG seizures, we use the test set of [41] as our
downstream test set. At every iteration, we evaluate detection
performance, reporting the area under the precision-curve with
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(a)

(b)

Fig. 3: Event detection performance of the ECG and EEG annotation
process, showing area under the precision-recall curve (AUC-PR) for
event detection on a held-out test set as a function of data observed
during the annotation support process, with event detection perfor-
mance evaluated at every iteration. We report mean performance, with
the transparent band indicating one standard deviation across 5 runs.
The grey dashed line shows mean performance of a model trained
on the fully-annotated training set, with the band representing one
standard deviation across 5 runs.

hits and misses of the event detection models computed as in
the work of [16], using 0.5 Intersection-over-Union (IoU) as
overlap threshold. Performance is compared to the detection
performance of five training runs on fully-annotated data sets
(using our backbone event detection model). The annotation
algorithm is kept as described in the experiment above.

With 16% of the ECG data observed, a machine learning
model performs on par with a model trained on the fully-
annotated data set, corresponding to around 2000 proposals
seen by the human-in-the-loop (Fig. 3a). Note that at 16% of
data observed, the training set in question does not yet contain
all training event annotations (only around 80% of events are
annotated at that point). Even though the algorithm does not
find all events in the EEG data (Fig. 2), test set performance
is similar to using the fully-annotated data set when only
observing 17% of the data set for annotation purposes (Fig.
3b). At this point, the human has been shown around 4000
proposals. Note that the base seizure detection model [16]
was shown to perform similar to [13], a state-of-the-art seizure
detector for the Temple University Seizure Corpus.

Crucially, for both data sets, annotating every event is not
necessary to achieve event detection performance comparable
to using a fully-annotated data set. Of course, this should not
be viewed as a general claim, as the results depend on the

specific event detection backbone used in our experiments.

E. Ablation study

We investigate three key parts of the algorithm: a) the
human-in-the-loop, b) the amount of starting annotations, and
c) the number of proposals per iteration.

1) Human interaction: The verification step is a substantial
time investment, and should thus contribute meaningfully to
the algorithm’s performance. We compare the algorithm with
human interaction to a version of the algorithm without human
interaction. To do so, we take the algorithm setup of the previ-
ous experiments and remove the human in the loop, i.e., skip
the proposal verification step. Instead, the proposal annotations
Aproposal are treated as verified annotations Averified, still
starting the algorithm from a small set of human-provided
annotations. When this modified algorithm has met its stop-
ping criterion, a human annotator goes through the final set of
annotations A to discard false-positive annotations.

We measure the number of events found for similar human
effort (a human either has to investigate N proposals per
iteration in the human-in-the-loop setting, or investigate all
proposed events when the version without human interaction
finishes) and the fraction of true positives in proposals over
iterations. If the algorithm properly leverages the addition of
verified annotations to the set of annotations A, we expect this
true positive rate to be higher with a human in the loop, i.e.,
the underlying event detection model gets better at generating
proposals with a human in the loop.

For ECG data, human interaction substantially improves
performance, with higher true positives rates and faster event
discovery. EEG data shows analogous benefits, particularly in
early iterations (Fig. 4).

2) Starting number of annotations: The experiments so far
all start from 10% (in expectation) of data already annotated.
This entails a substantial human time cost. At the same time,
if a lot of events are already annotated, finding more proposal
events should become easier for the event detection model.
Finding new proposal events is expected to become more
difficult with fewer events annotated.

We evaluate changes to the starting annotation count (for 5
runs in each data set). We look at annotation support perfor-
mance as a function of data observed, annotation performance
as a function of total proposals, annotation performance as a
function of iteration count, and the proposal true positive rate
as a function of iterations (the latter reflects how many propos-
als are correct proposals). We cover a wide range of starting
counts, looking at the cases where 1%, 5%, 10% (the default
case), 25%, and 50 % of total events are annotated before
starting our annotation support algorithm. For ECG events, the
algorithm’s final performance is not sensitive to the starting
amount of annotations (Fig. 5a.) Even starting with 1% of
events annotated, it finds nearly all events in the data set. Not
surprisingly, starting with a lower amount of events increases
the number of iterations until the algorithm "converges". When
starting with 50% of the data annotated, the algorithm takes
less than 10 iterations to find the remaining events whereas this
takes 20 iterations when starting with 1% of events annotated.
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(a) (b)

Fig. 4: Impact of human interaction when using the annotation support algorithm. Grey dashed line for the proposal true positive plots shows
the behavior of the hypothetical perfect case where every proposal is correct (proposal positives fall to zero when all events are annotated).
We report mean performance, with the transparent band indicating one standard deviation across 5 runs.

(a) (b)

Fig. 5: Impact of varying the amount of starting annotations for the annotation support algorithm. Different colors indicate the fraction
of events that are annotated at the start of the algorithm. We report mean performance, with the transparent band indicating one standard
deviation across 5 runs.

While the latter takes more iterations (thereby increasing the
compute time), the accumulated amount of data that has to be
annotated by the human expert is much lower (<10% versus
>55%). For the 1% case, however, it should be noted that
for two runs out of the five, it took almost 5 iterations for
the algorithm to reliably generate relevant proposals. Another
interesting insight is that the slopes of these curves are similar
for the different cases. The different curves are very alike,
only translated depending on the number of starting events.
Events as a function of data observed, number of proposals,
and iterations show a similar slope for all settings, indicating
that, just like the result in Fig. 2a, the algorithm is quite close
to the ideal case even when starting from a low amount of
events (the 1% case starts with around 20 events annotated.)

For EEG events, varying the number of starting annotations
has more impact. The algorithm can get started with only
1% of events annotated, but progress is slower than when
more starting annotations are available (Fig. 6b.) When less
starting annotations are available, the algorithm takes longer

to find more events. The different curves are not translated
versions of each other anymore, as the slopes are different.
Where the ECG annotation task does not benefit from more
starting annotations, starting annotation count matters for the
EEG annotation task.

3) Number of proposal events: Choosing the number of pro-
posals per iteration is another hyperparameter of our algorithm.
A large amount of proposals could allow a user to cover a lot
of events quickly, risking a high number of "false positive"
proposals and wasted effort (i.e., investigating and rejecting
proposals.) A small amount, on the other hand, should result
in less false positives per iteration, at the risk of a higher
number of iterations to reach satisfactory performance. The
total number of proposal-verification iterations has to be kept
in mind when deciding on the number of proposals, as every
iteration step involves training a full model on the given data
set (which can be become expensive in terms of computational
resources and/or compute time in between iterations).

We vary the number of proposals per iteration: 100, 200,
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and 500 for ECG; 200, 500, and 1000 for EEG. Over the
iteration process, we report annotation performance (expressed
as annotations produced as a function of data observed and
number of proposals) and how the proposal true positive rate
changes with iterations.

For both data sets, the algorithm follows similar trajectories
independent from the number of proposals (as seen in terms
of found events as a function of expended effort) (Fig. 6.)
Since the number of proposals varies, the difference lies
in the number of iterations to reach the same number of
annotated events, not the amount of data observed by the
human. For the EEG data set the algorithm does not reach the
same amount of annotations for 200 proposals as compared
to the other settings. We hypothesize that this is due to the
stopping criterion since all settings follow a similar trajectory.
The proposal true positive rate after 12 iterations still lies
around 20%, indicating that this setting can benefit from
more iterations. The number of iterations has an effect on the
compute time: for the same number of accumulated annotation
proposals, a lower number of iterations is better as it requires
less "breaks" in the human annotation process in order to
recompute the model.

For ECG events, there are barely any true positive proposals
past 5 iterations for 500 proposals, while around half of
the proposals are still true positives for 100 proposals at 20
iterations. Note, however, that at 20 iterations when using
100 proposals, not all events are found. For EEG, a similar
steep drop in true positives can be observed when using 1000
proposals, with a slower descent seen for 200 proposals. When
using 200 proposals it takes many more iterations to find as
many events as using 1000 proposals.

F. Multiple types of events

We investigate the impact of different types of events and
their relative proportions on our algorithm’s performance. So
far, the experiments take an "agnostic" approach to the type
of event found, in the sense that tasks only focus on distin-
guishing between events and background. Now, we consider
the impact of different types of events present in a data set.
Staying within the realm of our previous experiments, data
sets can for example contain different types of artefacts and
seizures with different (relative) proportions.

First, we investigate the impact of relative proportions. Our
algorithm relies on patterns found in the available annotations,
so we risk over-relying on a majority type. We generate ECG
data sets with varying proportions of electrode motion artefacts
versus muscle artefacts (both types are present in the Noise
Stress Test Database[39]): 50-50, 25-75, and 10-90 splits, with
the starting set of annotations reflecting these split proportions,
and measure the fraction of each artefact type found by the
algorithm.

Second, we investigate what happens when one is only
interested in one specific type of event while other events
should be ignored. We compare our base case (of Section III-
C) to a setting with "distraction events", where we add an equal
amount of muscle artefacts (not to be annotated) to the target
electrode motion artefacts. We examine the total events found

and the proposal true positive rate, with the latter expected to
be impacted by the distractions (the algorithm might propose
distraction events instead of the desired type).

An event type imbalance slows convergence for the minority
type (in this case the electrode artefacts), but didn’t prevent
finding almost all events (Fig. 7.) The 90-10 split required
more iterations for electrode artefacts, with a slight "ramp
up" effect in earlier iterations. We observe faster convergence
for the majority type (being the muscle artefacts). Distraction
events had minimal impact on algorithm performance for ECG
data (Fig. 8.) The number of target events found was similar
to the distraction-free case, with only a sligth decrease in true
positives during the first 1-2 iterations.

IV. DISCUSSION

A. Experimental results

Our annotation support algorithm shows substantial effiency
gains for ECG event detection. Starting with 1% of events
annotated, we can find nearly all events by reviewing only
about 10% of the data set (Fig. 6a), substantially reducing
human effort compared to reviewing the entire data set (Fig.
2a). In contrast, the EEG data, characterized by its heteroge-
neous and non-stationary nature, presents a more challenging
scenario. Here, our algorithm does not find all events (Fig.
2b), at least not without substantial effort. When we cut off the
algorithm, there was still a non-zero fraction of the proposals
that were actual events. Realistically speaking, however, a
human annotator will likely stop annotating when 99% of
proposals are wrong.

Often, the goal of annotating events is the development
of event detection models. Our results indicate that, over
proposal-verification iterations, we approach the performance
of a model trained on a fully-annotated data set for both data
sets (Fig. 3). This shows that a complete annotation is not
necessary to match performance with training a model on
fully-annotated data. Note, however, that in our experiments,
the same model architecture was used both for annotation
support and downstream event detection. Performance may
vary if different models are used.

The human-in-the-loop component is crucial to our al-
gorithm’s performance, as illustrated in Fig. 4. Removing
this component substantially reduces effectiveness, even in a
simpler task like ECG event detection. While fully automating
our annotation support algorithm (by removing the human-
in-the-loop) is not impossible, it does present considerable
challenges. Without human verification, the algorithm tends
to generate numerous events, including many false positives,
across both simple (ECG) and complex (EEG) data sets.
Therefore, it is advised to involve a human expert for verifying
intermediate rounds of proposals, as intended in our algorithm
design.

To use our annotation support algorithm, initial starting an-
notations are required. The algorithm performs well with only
a few starting events for a more simple task, but more complex
events benefit from more initial annotations. Nonetheless, even
for challenging events the algorithm can also start from few
annotations (Fig. 5), but achieving statisfactory performance
may take more iterations in this case.

HTTPS://DOI.ORG/10.1109/JBHI.2024.3460533
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(a)

(b)

Fig. 6: Impact of the number of proposals when using the annotation support algorithm. Dashed lines for the proposal true positives shows
the behavior of the hypothetical perfect case where every proposal for the corresponding number of proposals is correct. We report mean
performance, with the transparent band indicating one standard deviation across 5 runs.

Fig. 7: Impact of event type proportions on algorithm performance.
Data sets consist of both types of events with the shown proportion
splits. We report mean performance, with the transparent band
indicating one standard deviation across 5 runs.

Fig. 8: Impact of "distraction" events on algorithm performance. We
report mean performance, with the transparent band indicating one
standard deviation across 5 runs.

The number of proposals per iteration mainly impacts the
required number of iterations to achieve desired performance
levels, but it does not impact the total human effort nor the
performance of the algorithm (Fig. 6). However, the perceived
effort can differ substantially between verifying 100 proposals
versus 1000 proposals per iteration (even if the total number
of proposals remains the same across all iterations). We also
made abstraction of the fact that every iteration involves

a pause for training a new model, which can affect the
total annotation time. The numbers we tested are substantial
fractions of the total number of events. Both data sets contain
around 2000 events, and we use 200 proposals (10% of total
events) for the simpler ECG events and 500 proposals (25%
of total events) for the more difficult EEG events. For new
tasks, expert knowledge can help decide on a good number of
proposals to control the number of iterations.

Our algorithm is robust to handling different types of events,
performing well both in mixed settings (Fig. 7) and when
focusing on one event type while another is also present (Fig.
8). However, extreme imbalances between event types require
caution. In our ECG data set, a 90-10 split does not lead to
breakdown of the algorithm, but more substantial imbalances
or tougher conditions could lead to different results. Indeed,
detecting the minority event type in our 90-10 split starts out
more slowly. Greater imbalances might lead to worse results.

B. Using and extending the annotation support algorithm

For our experiments, we use of a generic underlying event
detection algorithm [16], albeit with a task-specific backbone
model. Using our full annotation support algorithm would
involve deciding on an underlying event detection model. It is
possible to use the model of [16] for new tasks with minimal
effort, as it is fairly generic and removes the need for post-
processing-based event detection algorithms. Nonetheless, it
is reasonable to expect that the performance of our annota-
tion support algorithm will depend on the underlying event
detector. If good models exist for the task at hand, it can be
worthwhile to incorporate them if they are robust against "false

negative" event annotations (events that are not yet annotated.)
It is key that the event detection model can still train in the
presence of false negatives, otherwise the proposal generation
process will not work. The model of [16] exhibits this property.
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For other event detection models in the literature, it is unknown
whether they can train in this false-negative setting.

Our annotation support algorithm is optimized for datasets
where the number of events is manageable by human experts,
which is not necessarily related to the raw size of the dataset. It
performs well even with low event prevalence, as demonstrated
in our experiments on EEG seizure data. However, it is less
suitable for extremely large datasets where the volume of
events surpasses what human verifiers can realistically handle.
In such cases, the human verification process could become
impractical, limiting the applicability of our method.

Novel applications of our annotation support algorithm
will likely fall somewhere between the two settings inves-
tigated in our experiments. The ECG and EEG data sets
are representative for the two extreme cases. Finding new
annotations in the basic ECG data set is a relatively easy
task, as evidenced by the close adherence to the "ideal case"
during our experiments (Fig. 2a). On the other hand, learning
to detect seizure events is by itself a very difficult task, as
evidenced by the relatively poor performance of state-of-the-
art seizure detection algorithms, even if they are tailored to the
specific data set used in our study [13], [47]–[49]. Depending
on the complexity of a novel task, the algorithm’s behavior is
expected to be more like the ECG case or the EEG case.

Despite its simple design, our proposed algorithm shows
good results. A priori, it might seem unlikely that our proposal
generation process inspired by pseudo-labeling can achieve
such strong results. And yet, for simple events we show that
our proposal generation process is close to optimal (Fig. 2a.)
Nonetheless, there is room for improvement when annotating
more difficult events. The proposal generation process can
be changed, which is something we do not investigate in
this paper but can be interesting as future work. Proposal
generation will, however, be limited by state-of-the-art perfor-
mance for the underlying event detection task. For example,
seizure detection is a task where state-of-the-art algorithms are
not perfect [41]. Improving the proposal generation process
is mainly relevant for known difficult events. Our simple
proposal generation process performs well for simpler events.

One limitation of the presented study is our proxy for human
effort. As explained before, there will be a strong relation
between the amount of data seen or number of decision made
by the annotator, and actual time spent on the annotation,
but this relation is not perfect. Nonetheless, we stand by
the conclusion that the proposed annotation support algorithm
can be a serious time saver for annotating data sets. Even
if our proxy for human effort is too optimistic, there is
substantial margin compared to exhaustively going through
our experiment data sets (as seen in Fig. 2).

Our algorithm lacks mechanisms to handle false positive
annotations by the human annotator, assuming all verified
proposals are true events. This limitation can impact proposal
generation effectiveness. While multiple expert annotators
could mitigate risks, our implementation doesn’t detect or
correct false positives during annotation. The impact of an-
notation mistakes is difficult to determine, as mistakes can be
understandable (annotating spurious patterns that are similar
to an event) or severe (confusing a clear background segment

for an event), which will differently impact the result. As this
paper represents an initial step towards flexible annotation
support in biomedical signals, addressing false positives is
considered to be future work to enhance the algorithm’s
reliability and practical applicability.

Future work in annotation support for biomedical signals
should focus on these two critical enhancements: evaluating
the algorithm with actual human annotators to gain real-world
insights into effectiveness and usability, and developing robust
methods to handle false-positive annotations. These advance-
ments will address current limitations, improving reliability
and practical applicability across various biomedical signal
processing tasks.

Our experiments as presented assume an unambiguous
ground truth. Unfortunately, expert disagreement is common
in biomedical signal annotation [50], [51]. Care should be
taken when multiple experts are employed for the verification
step. Modifications will depend on how the human experts
will cooperate. Our algorithm requires a singular decision for
every proposal, whether to accept or reject it. Experts can
split proposals among themselves, all review the full set of
proposals, or pick a setup in between. Disagreement can be
settled by majority voting, or by consensus. Each of these
decisions will, most likely, impact the patterns and biases our
algorithm picks up over the annotation process.

We evaluate and discuss our algorithm mainly in terms of
human effort, but the computational aspect is important to
mention. The time spent for our experiments is mainly driven
by the proposal generation process, since we simulate the
human-in-the-loop. For every iteration, the proposal generation
process involves training a deep learning model on the entire
data set, which is expensive in terms of computing resources.
For most biomedical signal processing tasks, the human ex-
perts will be the key limiting factor. At the same time, compute
cost should not be ignored. The total investment will be the
combination of human time spent and computational time. A
single training run for proposal generation in the case of our
EEG data takes four hours on an NVIDIA RTX 2080 GPU.
If proposals can be verified in comparable or less time, the
compute time does become an important factor.

V. CONCLUSION

In this paper, we propose an annotation support algorithm.
The algorithm keeps a human in the loop by iterating between
proposal generation and verification steps. We demonstrate
on two data sets that the algorithm allows for substantial
savings in terms of human effort when annotating events in
biomedical signals. Task-specific design aspects are limited
to an underlying event detection model. Changes to this
underlying model allow for straightforward extensions for
annotating other data set with other modalities and/or event
types than those used in this study.
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TABLE I: ECG event detection architecture. Decoder stages are
indicated as ()’. All stages consist of ConvNeXt [52] convolution
blocks, with the exception of stage 0 which is a single convolution
operation. Upsampling is performed with a normal upsampling oper-
ation. Downsampling is performed using a strided convolution with
kernel size and stride equal to the downsampling factor. Encoder and
decoder stages are merged in a U-Net-like fashion.

Stage # Filters Kernel size # Blocks Downsampling factor
0 32 15 N/A 1
1 32 15 3 4
2 64 15 3 16
3 128 7 3 64
4 128 5 5 256
5 128 3 3 1024
4’ 128 5 5 256
3’ 128 7 3 64
2’ 64 15 3 16

Output 2 7 N/A 16

APPENDIX

A. Simulated data generation

ECG events are generated using the approach of [16]. Signal
segments of 20 s duration are drawn from the Computing
in Cardiology 2017 Challenge data set [38] with strides of
5 s. We only use the recordings from the normal rhythm or
atrial fibrillation classes to avoid artefact events that are not
introduced by our data generation process.

1) Base ECG data set: For our base ECG data set, artefact
events from the Noise Stress Test data set [39] are added in
randomly into the ECG segments with 20% chance. The event
generation process happens once for every ECG segment, and
the resulting data (signals with events mixed in, combined
with annotation targets) are then used as finite data sets for
our experiments. When artefact events are mixed in, one or
two artefact segments of random duration are taken from the
database. Durations of the artefact segments are randomly
distributed between 1 s and 6.7 s. These artefact events are
added to the ECG signal with a signal-to-noise ratio (where
artefact events are considered as noise) chosen uniformly
random between -6 and 6.

2) Mix of event types: The ECG data set consisting of mixes
of event types follows the same process. Every artefact event is
randomly drawn from the electrode motion artefacts or muscle
artefacts. This decision is a Bernoulli process, with "success
probability" set to the desired mix proportion.

B. Model architectures

1) ECG Events: The ECG detection architecture is a U-Net-
like architecture built for event-based modeling [16] (produc-
ing a center and duration signal.) Table I shows the backbone
architecture. For training, the model uses the Adam optimizer
with 0.0001 as learning rate for 50 epochs. During training
and testing, the model uses 20 s segments as input.

2) EEG Events: The EEG detection architecture follows the
EEG model of [16], with an additional downsampling step to
account for more signal context. Table II shows the backbone
architecture. For training, the model uses the Adam optimizer
with 0.0001 as learning rate for 50 epochs. During training, the
model uses input segments of 200 s. During testing, the model
uses full recordings (by convolving over the full recording.)

TABLE II: Seizure detection architecture. Stage 4 and 4’ are con-
nected in a U-Net-like fashion, concatenating features of stage 4 and
upsampled features of stage 5’. Stages 5 and 5’ are connected using
upsampled features of stage 6. Stages use convolution layers with
the given hyper-parameters. The ()’ stages have two convolution-
normalization-nonlinearity blocks. Decoder stages merge channel-
level information using Attention Gating [53]. Encoder stages are
channel-independent (using the same convolution filters on every
channel). Stage 6 consists of one channel-independent convolution
block, max-pooling over the EEG channels, and two convolution
blocks with dropout.

Stage # Filters Kernel size Downsampling factor
0 16 15 1
1 32 15 4
2 64 15 16
3 64 7 64
4 128 5 256
5 128 5 1024
6 128 5 4096
5’ 64 5 1024
4’ 64 5 256

Output 2 1 256

C. Implementation details

The annotation support algorithm was implemented using
PyTorch. All experiments were run on an NVIDIA RTX 2080
GPU. For the ECG task, each iteration of proposal generation
took approximately half an hour, while for the EEG task, it
took approximately four hours.
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