
Objective evaluation of stimulation artefact removal techniques in the
context of neural spike sorting

Maarten Schelles1, Jasper Wouters2, Boateng Asamoah3 Myles Mc Laughlin3 and Alexander Bertrand2,4

Abstract—
Objective We present a framework to objectively test and

compare stimulation artefact removal techniques in the context
of neural spike sorting.

Approach To this end, we used realistic hybrid ground-truth
spiking data, with superimposed artefacts from in vivo record-
ings. We used the framework to evaluate and compare several
techniques: blanking, template subtraction by averaging, linear
regression, and a multi-channel Wiener filter (MWF).

Main results Our study demonstrates that blanking and tem-
plate subtraction result in a poorer spike sorting performance
than linear regression and MWF, while the latter two perform
similarly. Finally, to validate the conclusions found from the
hybrid evaluation framework, we also performed a qualitative
analysis on in vivo recordings without artificial manipulations.

Significance Our framework allows direct quantification
of the impact of the residual artefact on the spike sorting
accuracy, thereby allowing for a more objective and more
relevant comparison compared to indirect signal quality metrics
that are estimated from the signal statistics. Furthermore, the
availability of a ground truth in the form of single-unit spiking
activity also facilitates a better estimation of such signal quality
metrics.

Key terms Artefact removal; Neural spike sorting; Linear
filter design

I. INTRODUCTION

Simultaneous neural stimulation and recording are re-
quired to gather electrophysiological evidence on the effect
of neural stimulation on cortical microcircuits [1], [2]. When
the stimulation and recording take place in the same brain
region, the recording will typically be obscured by large
stimulation artefacts [1]. One example where such artefacts
are a major nuisance is the study of physiological effects
of direct cortical stimulation (DCS), in which stimulation
electrodes are placed on the cortical surface to send a small
current through the brain tissue [3]. DCS has numerous clin-
ical applications, such as the treatment of neuropathic pain
and Parkinson’s disease, and the recovery from stroke [4]. Al-
though behavioural evidence for the effect of DCS has been
provided, the exact underlying physiological mechanisms
remain unidentified [5]. Collecting such electrophysiological
evidence is difficult, as it requires studying the single-unit
activity, i.e., spiking patterns of individual neurons, and in
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particular the differences between inhibitory and excitatory
neurons [6], [7], [8], [9].

In order to extract single-unit activity from neural record-
ings, each neural spike has to be assigned to a putative
neuron. This process is generally referred to as ’spike sort-
ing’, for which several automatic algorithms and software
packages have been developed [10], [11]. However, in the
presence of a stimulation artefact, the latter heavily domi-
nates the signal, in which case the spike sorting process fails
to assign these waveforms to their putative neurons, thereby
failing to identify the spike times of individual neurons [12],
[13], [14]. Therefore, an artefact removal step is necessary
prior to spike sorting.

Stimulation artefact removal techniques can be divided
into three categories [12]. The first category are the artefact
prevention techniques (e.g. by performing bipolar record-
ings [15]). These techniques mitigate the artefacts during
the recording itself, but rarely succeed in fully preventing
them [12]. The second category are techniques for front-
end artefact immunity. This category is situated on the
hardware side, and mostly contains techniques to ensure the
artefacts are recorded undistorted and thus usable for later
data processing. The third category are back-end signal pro-
cessing techniques, which can be implemented either offline
or online. In this paper, we focus on (the evaluation of)
such back-end signal processing techniques for stimulation
artefact removal.

Current state-of-the-art stimulation artefact removal tech-
niques may largely succeed in removing artefacts and recog-
nizing underlying neural data, but lack a suitable framework
to quantify how much of the underlying neural data can
exactly be retrieved, in particular in a context of spike
sorting. This failure rises from either the absence of ground-
truth data at all [16], or the use of incomplete ground-
truth data, e.g. only ground-truth data for the stimulation
artefact itself, based on simulated artefacts, but no ground-
truth data for the neural information [13]. With these types
of quantification, the effect of artefact removal on the spike
sorting accuracy remains unclear and subjective.

In this paper, we propose a framework to objectively
evaluate stimulation artefact removal techniques in a context
of neural spike sorting. The strength of our framework lies
in the use of in vivo recorded neural data and stimulation
artefacts, which are used to create so-called hybrid ground
truth data. The term hybrid here refers to the fact that the
evaluation data are artificially constructed by manipulating
real in vivo recordings such that the underlying ground truth
is known (both for the underlying spiking data as well as the



artefact component). The ground-truth spiking data allow an
accurate and direct quantification of the effect of artefact
removal on the spike sorting, and therefore an objective
evaluation between different state-of-the-art artefact removal
techniques in terms of the obtained spike sorting accuracy
and for various signal-to-noise ratio (SNR) levels. Moreover,
the artefact ground truth can be used to investigate and
quantify the suppression of the artefact.

We investigated four different artefact removal techniques:

1) Blanking is a frequently used method, as it is easy to
implement, also in hardware [13].

2) Template subtraction, for the same reasons as blanking
[17].

3) Linear regression is currently seen as the state-of-the-
art in artefact removal, both offline and online [14],
[15].

4) Lastly, the multi-channel Wiener filter (MWF) was also
evaluated, which is a rather recent, but very promising
artefact removal method borrowed from the field of
electroencephalography (EEG) signal processing [18],
[19].

All investigated techniques are semi-supervised, meaning
they incorporate extra information in addition to the record-
ing. These typically perform better than fully unsupervised
(blind) techniques, like independent component analysis
(ICA) [18]. Here, the extra information that is assumed to be
available are the timestamps that denote when each artefact
starts and ends. Since the stimulation pulses are generated by
the system, such information is typically readily available.

The outline of this paper is as follows. In section II, we
discuss the origin of the ground-truth data, and how the
objective evaluation framework is constructed. In section III,
we briefly review the four artefact removal methods and their
relevant properties. Section IV shows the quantitative results
of our objective evaluation framework, based on hybrid
ground-truth data, as well as a qualitative evaluation on our
own in vivo recordings. Finally, in section V we briefly
discuss the results and the advantages and limitations of our
evaluation framework.

II. HYBRID-DATA BENCHMARKING FRAMEWORK

The main contribution of this study is the use of hybrid
ground-truth spiking data in order to facilitate an objective
evaluation of artefact removal methods. To this end, we
started from an actual neural recording without stimulation
and performed an automatic (but manually curated) spike
sorting. From these spike sorting results, we generated hybrid
ground-truth data using the method in [20]. Lastly, we
linearly superimposed actual artefacts measured during in
vivo experiments on top of these hybrid neural recordings,
in which the signal-to-noise ratio (SNR) could be varied. In
the remainder of this section, we provide the details on how
we obtained this hybrid benchmark data set. An overview of
our evaluation procedure can be found in figure 1.

A. Neural recordings

To evaluate the impact of stimulation artefact (removal),
we employ two different neural recordings, originating from
[21]. Note that these recordings do not include stimulation,
hence they are artefact-free. The signals were recorded in
vivo with two completely different probes, with 32, respec-
tively 128, channels. This demonstrates that the framework
can be applied regardless of the probe or number of elec-
trodes that are being used. The neural recordings are then
processed by the SpyKING CIRCUS spike sorting package
[22], in combination with the SpikeInterface framework
[23], which results in information about the spike times of
individual neurons, also referred to as single-unit spike trains,
after manual curation [24]. The first recording is 9 minutes
and 17 seconds long and contains 8 high-quality neuron
clusters, for a total of 14329 spikes. The second recording is
5 minutes long and contains 7 high-quality neuron clusters,
for a total of 4525 spikes.

B. Generation of hybrid ground truth data

As previously mentioned, the use of an accurate and
realistic ground truth spiking data is the basis for a reliable
and objective evaluation of different stimulation artefact
removal techniques. These ground-truth data must thus re-
semble real neural data as much as possible. In figure 2,
we explain the spike hybridization procedure that is used in
this paper to make such ground-truth data based on in vivo
recordings of spikes and artefacts. The basic idea behind
spike hybridization is to first capture the spikes from a
spike-sorted single-unit cluster and to remove them from
the recording [20]. This spike train is then shifted in time
and injected at another location on the probe. This location
shift is crucial to get reliable ground-truth recordings. Indeed,
spikes at the original location that would not have been
identified during the initial sorting, could be identified during
a second spike sorting process, but would then be classified
as false positives, meaning they are not recognized as correct
spikes, while they actually are. The relocation of the spike
train, and thus of the neuron, resolves this issue as it prevents
the attribution of potential leftover spikes to the cluster of
interest, while preserving probe-dependent spatio-temporal
characteristics of the neural spiking data. This relocation
process also preserves spike amplitude variations within a
single-unit cluster [20].

We used the open-source software tool SHYBRID [20] to
generate the hybrid ground-truth spiking data from the neural
recording. The result was a new recording, with the spikes of
the original recording, but on different locations on the probe
and at different times. The full recordings are used, including
all the original spike templates and their relative timings, to
create a new, ground-truth, recording. This has the advantage
that it is more realistic than ground-truth recordings that rely
on artificial spike models or simulations [20]. The recording
is accompanied by ground-truth labels, which indicate for
each single-unit cluster when there is a spike. As we moved
each spike, we could also control its amplitude, and therefore
change the SNR of the recording. This is a feature we used to



Fig. 1: Flowchart of the used framework. The two green boxes at the end show the used performance metrics for a quantitative evaluation
of the artefact removal methods.

assess the effect of artefact removal in low-SNR conditions
(see Subsection IV-C).

As mentioned before, all 15 different neuron spike trains
(each with a different spatio-temporal signature spike wave-
form) are included in the framework and the analysis of the
different artefact removal techniques. The results are always
averaged over all spike trains from a recording. Moreover,
the SHYBRID software also includes realistic spike overlaps,
leading to a realistic neural ground truth.

C. Artefact model

The next step is to superimpose stimulation artefacts onto
the spiking data. In the ‘hybrid’ philosophy, we do not use a
simulated artefact, but instead extract it from a real recording.
All procedures were approved by the KU Leuven animal
ethics committee for laboratory experiments under project
number P201/2018. The stimulation pulses were recorded
from an in vivo experiment with DCS, using a similar pro-
cedure as in [3]. Here, a 32-channel silicon probe from Cam-
bridge NeuroTech (A554-37H6b-sharp) [25] was inserted
into a burr-hole craniotomy which was drilled above the
motor cortex of a rat. The reference for this recording probe
was a metal wire placed on the brain, in the proximity of
the recording probe. Two stimulation electrodes were placed
on the cortex approximately 2 mm from the craniotomy; one
in the anterior and the other in the posterior direction. The
electrodes were attached to a current source stimulator (AM
2200 Analog) which received a voltage input from an NI-card
(NI USB-6216) which received a waveform signal generated
in a custom Matlab 2014a software. The signal consisted of
biphasic pulses with phase widths of 200 µs. All techniques
considered in this paper are linear techniques, which assume
a linear superposition of the undistorted artefacts on top of
the spikes. Therefore, it is important that the artefacts are
not clipped against the maximum amplitude of the analog-
to-digital converter during the recording.

In this work, we used a continuous stimulation, with a
frequency of 800 Hz, which is a clinically relevant frequency
in DCS [5]. There was a total artefact length, per pulse, of
about 700 µs: 2 biphasic pulses with 200 µs per phase and
a small artefact tail after the stimulation stopped, shown in
figure 3. With a continuous stimulation of 800 Hz almost
60% of the total signal length was corrupted by artefacts.
The artefact recordings were high-pass filtered with a cut-off

frequency of 300 Hz (same filter as for the neural recording),
and then added to the hybrid data from subsection II-B. As
the artefacts were recorded with a different probe than the
neural data (and thus of the hybrid ground-truth data), the
following mapping was used. The top channel of the probe
with which we recorded the artefacts corresponded to the top
channel of the hybrid probe, and so on, going downwards
on the probe. Channels on the hybrid probe whose location
fell in between two electrodes on the artefact probe, were
interpolated linearly based on the distance to these two
electrodes. Finally, artefacts on two different electrodes at
the same depth of the hybrid probe would have exactly the
same artefacts according to this linear scaling, so a very small
amount of Gaussian noise was introduced. This noise was in
the order of magnitude of the variations between two original
adjacent channels for the artefacts. This was done to ensure
that all hybrid artefacts were a little bit different, as this
could otherwise favour certain artefact removal methods.

The timestamps to denote the start and end of an artefact
(the semi-supervised information for our techniques) were
provided by the data acquisition system, coupled to the
stimulator system. The observed amplitude of the artefacts
is about one order of magnitude larger than the spikes (as
later also shown in figure 6). If the timestamps would not be
available in another experimental context, this property can
be used to design a simple threshold operation to detect the
onsets of the artefacts [26].

D. Performance metrics

Using the spiking ground-truth data, we can define three
performance metrics to accurately capture the performance
of a certain spike sorting process: the precision, the sensi-
tivity, and the F1-score. The spike times of all spikes in a
retrieved cluster, are compared to the true spike times of
the corresponding neuron. The precision is defined as the
ratio of correctly identified spikes (true positives) over all
identified spikes within a particular cluster (true positives
and false positives). The sensitivity, also called sensitivity,
is defined as the ratio of the correctly identified spikes (true
positives) over all ground-truth spikes of the corresponding
neuron. Finally, the F1-score captures the two previous
metrics into one: F1 = 2× precision×sensitivity

precision+sensitivity . These three
are able to capture sufficient information on the spike sorting
performance, and give very detailed information on single



Fig. 2: Detailed schematic description of the generation of hybrid ground-truth data.

clusters [27].
Apart from the spike sorting performance, we also used

another performance metric solely based on the artefacts: the
Artefact-to-Residue ratio (ARR), or artefact-rejection ratio.
This measures how much the artefact is suppressed on each
channel. The ARR at channel k is defined as [19]:

ARRk = 10 log10

E
{
a2k[t]

}∣∣∣
t∈A

E
{
(ak[t]− âk[t])2

}∣∣∣
t∈A

(1)

where A is the set of time samples in which the artefact is
present, E{.}|t∈A denotes the expectation operator over the
samples in A, ak[t] is the ground truth artefact signal, and
âk[t] is the estimated artefact signal that is subtracted by the
artefact removal method.

The total ARR of the signal is the weighted average of
the ARRs of the channels: ARR =

∑K
k=1 pk × ARRk,

with the normalized weights pk defined as the proportion
of the artefact power of that channel, over the total artefact
power. The artefact power of a channel can be estimated by
subtracting the signal power during a clean period from the
signal power during an artefact.
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The whole framework, including the performance metrics
and how they are calculated based on ground-truth data, is
schematically summarized in figure 1.

III. EVALUATED ARTEFACT REMOVAL METHODS

In this section, we briefly review the four stimulation
artefact removal methods that are evaluated in this paper.

A. Blanking

Blanking is the most straightforward artefact removal
technique, as it doesn’t assume an underlying model on the
artefacts or the neural signal. It only requires the knowledge
of the artefact timestamps, which are known in the exper-
imental context of interest for this work (but can also be
easily detected in another experimental context [26]).

For each artefact, a linear interpolation is performed
between the last sample before, and the first sample after
the artefact. By replacing the artefact samples instead of

just cutting them out of the signal, the timing information is
preserved, and so is the true time distance between consec-
utive spikes. This is important for the spike sorting, where
the refractory period plays a role in determining whether a
waveform is indeed a true spike.

B. Template subtraction (averaging)

This technique aims to estimate a template of the recorded
artefact pulse waveform, by averaging the time-aligned arte-
fact pulses across the recording [13], [17], [26], [28], [29].
In this template, the neural signal will be averaged out.
Two different methods are considered to construct such an
average template. In the first method, we average over all
artefacts per channel, leading to 1 template per channel. In
the second method, we average over all channels per artefact
pulse, leading to 1 template per stimulation pulse (event).
The first method thus assumes that the artefact waveform
is approximately the same across the time axis (but can be
different across channels), whereas the second assumes the
artefact waveform is approximately equal across all channels
(but can change over time).

C. Multi-channel filtering

Instead of simple spatial averaging, where the same weight
is given to each channel, multi-channel filtering techniques
aim to construct an optimal linear filter for the artefact
removal, using signals from other channels. Two specific
techniques are described and investigated: the linear regres-
sion filter which directly uses the other channels (but leaving
out the adjacent ones to preserve neural information) and the
MWF, which is the stochastic variant, where all channels are
combined based on their underlying second-order statistics.
We only give a high-level description here to highlight the
non-standard features relevant for the interpretation of the
results, and we refer to appendix A for a more detailed
mathematical description of the method.

1) Linear regression: Linear regression assumes that the
relationship between the stimulation artefacts at different
channels can be described by linear time-invariant filters.
Figure 3 clearly shows that artefacts among all channels are
indeed very similar over the entire range of the probe, even
on channels several 100 µm away. On the other hand, the
spatial similarity of the neural signal is much smaller. The
amplitude of spikes quickly decreases for channels further



Fig. 3: Artefacts from the same stimulation pulse, but from different
channels. The black dots mark the start and end of the artefact,
as given by the acquisition system. Waveforms of two adjacent
channels (channels 1 and 2, 25 µm apart) are very similar, and
even show a great similarity to waveforms from distant channels
(channel 32, 400 µm apart). The difference in amplitude of the
artefacts is caused by a different depth of the channels on the probe.

away from the neuron. Thus, while adjacent channels will
show similar artefacts and similar spike waveforms, channels
about 100 µm further away, will still show similar artefacts,
but no more similarity in spikes. This observation is the basis
for the linear regression, where the artefact component of
each channel is estimated from the recorded data at non-
adjacent channels [14].

When constructing an optimal spatio-temporal filter wk

for channel k, we only take channels that are sufficiently
far away from this channel of interest into account, in an
attempt to preserve the neural information, an approach first
explored on a depth probe with 1 column in [16]. To this
end, we define the vector x̄−k[t] as the vector stacking the
L most recent samples (up to the current sample time t) from
all channels, except those that are located within a distance
ϵ from channel k on the probe (including channel k itself).

The spatio-temporal filter wk which estimates the artefact
component âk[t] = w⊺

k x̄−k[t] at channel k by filtering the
data in x̄−k[t], is optimized to estimate the artefact signal in
channel k in minimum mean squared error (MMSE-)sense,
by using the far-away channels as reference signals, i.e.,

ŵk = (Rx−kx−k
+ λI)−1rx−kxk

. (3)

Here, Rx−kx−k
and rx−kxk

respectively represent the spatio-
temporal covariance matrix and cross-correlation vector,
where a diagonal loading is added to the former in order
to perform Ridge regression with L2-norm regularization.
The estimated artefact signal âk[t] = ŵ⊺

k x̄−k[t] can then be
subtracted from the k-th channel xk[t]. We refer to appendix
A for further details.

Note that the distance ϵ to determine which channels to
take into account should be non-zero. Indeed, in the trivial
case of using the channel of interest to construct an optimal
template for its own, the filter would only use that channel,
as it would result in a perfect representation. If the distance

is chosen to be almost zero, all other channels are taken into
account. If the distance is chosen a bit larger than the inter-
electrode distance, only non-adjacent channels are taken into
account, etc. The larger this distance is, the less accurate
the template estimate will become, yet the lower the risk of
removing spikes in channel k due to leakage of correlated
neural activity. The goal is to determine an optimal distance
ϵ such that the template only contains the true artefact and
no neural information. In our study, we have determined the
optimal ϵ by using the F1-score as performance metric.

Important to note is that this method only applies linear
regression between the different recorded channels. Another
kind of linear regression could be to map the input stim-
ulation block pulses onto the recorded artefacts. However,
the mapping of the stimulation pulse through the stimulation
electrode, brain tissue, and recording electrode, is highly
non-linear, and therefore difficult to model with a linear filter
[13], [30].

2) Multi-channel Wiener Filter: The MWF is an existing
artefact removal method for EEG, where it has been suc-
cessfully applied to remove eye blinking and muscle artefacts
[18], [19]. To our best knowledge, this technique has not been
used for stimulation artefact removal in the context of neural
spike sorting. Let x[t] = a[t] + n[t] denote the recorded
multi-channel signal containing and artefact component a[t]
and a neural component n[t]. The MWF exploits the differ-
ences in the spatio-temporal statistics of the unwanted signal
component (the artefact) and the wanted signal component
(the neural signal) to suppress this unwanted component
as much as possible within the recorded signal x[t] [19].
Similar to the previous method, the MWF takes the recorded
multi-channel probe signal as an input, and produces at its
output an estimate of the artefact component at each channel,
which can then be subtracted from the signal. However, the
MWF uses all channels, including the target channel and its
neighbourhood. Here, we again give a high-level description
and refer to appendix A for the mathematical details. We use
the MWF framework as proposed in [19].

The MWF is represented by a matrix W of which the k-th
column contains the spatio-temporal filter wk that estimates
the artefact signal ak[t] at channel k. As opposed to the
previous method, the MWF computes this matrix in a single
shot, i.e., all filters for all channels are computed at once. The
optimization criterion for this spatio-temporal linear filter W
is again the linear minimum mean squared error (MMSE).
The MWF can be computed as:

Ŵ = R−1
xxRaa (4)

where Rxx and Raa represent the spatio-temporal covariance
matrices for the signals x[t] and a[t], respectively. Note
that the signal a[t] is not directly observable, such that
Raa cannot be directly estimated through temporal averaging
of the observations. However, when the stimulation is not
active, x[t] = n[t], which allows to estimate Rnn (i.e.
the covariance matrix of n[t]) from the recorded data. To
retrieve a reliable estimate for Raa, and to prevent it to
become ill-conditioned or even indefinite, we compute a



Fig. 4: Magnitude of the diagonal entries of Σa of the artefact
model for the 32-channel probe. Out of 352, only 9 (see red dot)
are kept to build the artefact signal with.

generalized eigenvalue decomposition (GEVD) of the matrix
pencil (Rxx,Rnn), with as end result [19]:

Raa = V −⊺ΣaV
−1 (5)

with Σa = Σx −Σn

with Σx and Σn both diagonal matrices and V containing
the corresponding generalized eigenvectors in its columns.
The strength of the GEVD now lies in the manipulation of
Σa, for which two alternatives have been described in [19]:

1) All negative entries of Σa are set to zero, leading to
a covariance matrix that is certainly (semi)-positive
definite.

2) Only the first Q (largest) diagonal entries of Σa are
retained. This explicitly exploits the low-rank structure
of the artefacts.

The largest entries of Σa represent the largest part of
the artefact power, where the artefact power is defined as
the trace of the matrix Σa, i.e., the cumulative sum of
its diagonal entries. The parameter to be optimized is then
the power fraction, being the share of all included diagonal
entries divided by the total artefact power. In our research,
we tested both the normal MWF (without setting any of the
diagonal entries of Σa to zero, thus a power fraction of 1),
and the GEVD-based MWF, where we only preserve a subset
of Q diagonal entries of Σa, thus a power fraction smaller
than 1. In this case, only the Q largest entries are used,
to enforce the artefact model to be low-rank. In subsection
IV-A, we explain how the value of Q was selected in our
experiments.

IV. RESULTS

A. Spike sorting performance

Our hybrid ground-truth framework allows us to accurately
compare the performance of different artefact removal meth-
ods. We will use the previously explained metrics: precision,
sensitivity, F1-score, and ARR. For the ease of comparison,
the metrics for each removal method will be averaged over
all available neurons (clusters), since the performance was

TABLE I: Comparison of the different techniques for artefact
removal. The spike sorting performance (F1-score, precision, sen-
sitivity) is averaged over all clusters. To evaluate the robustness,
the standard error on the mean across all single-unit clusters from
that recording is shown between parentheses. As precision and
sensitivity can be interchangeable (depending on the threshold
during spike sorting), the optimal point is chosen as the point where
the (unrounded) F1-score was the highest.

32-channel probe
F1-score Precision Sensitivity ARR (dB)

Clean recording 1.00 (<0.01) 1.00 (<0.01) 1.00 (<0.01) /
Blanking 0.77 (0.02) 0.89 (0.03) 0.69 (0.02) 35.01

Channelwise <0.01 (<0.01) <0.01 (<0.01) 0.04 (0.01) 9.82
Eventwise <0.01 (<0.01) <0.01 (<0.01) 0.32 (0.07) 20.68

Spatial lin. reg. 0.98 (<0.01) 0.98 (<0.01) 0.98 (<0.01) 36.40
Lin. reg. 0.98 (<0.01) 0.98 (<0.01) 0.98 (<0.01) 35.12

MWF 0.81 (0.10) 0.83 (0.10) 0.82 (0.08) 31.36
Spatial GEVD-MWF 0.98 (0.01) 0.98 (<0.01) 0.97 (0.02) 26.28

GEVD-MWF 0.99 (<0.01) 0.99 (<0.01) 0.98 (0.01) 34.36

128-channel probe
F1-score Precision sensitivity ARR (dB)

Clean recording 1.00 (<0.01) 1.00 (<0.01) 1.00 (<0.01) /
Blanking 0.71 (0.05) 0.93 (0.02) 0.59 (0.06) 42.18

Channelwise 0.01 (<0.01) 0.01 (<0.01) 0.04 (<0.01) 17.39
Eventwise 0.32 (0.13) 0.31 (0.14) 0.38 (0.13) 25.00

Spatial lin. reg. 0.97 (<0.01) 0.97 (<0.01) 0.97 (<0.01) 39.68
Lin. reg. 0.98 (<0.01) 0.98 (<0.01) 0.97 (<0.01) 39.59

MWF 0.96 (<0.01) 0.97 (<0.01) 0.95 (0.01) 40.17
Spatial GEVD-MWF 0.97 (<0.01) 0.97 (<0.01) 0.96 (<0.01) 42.37

GEVD-MWF 0.98 (<0.01) 0.98 (0.01) 0.96 (0.01) 33.89

found to be largely the same across different neurons for a
given method.

Table I shows results for the different artefact removal
techniques. All parameters were determined in function of
the optimal F1-score. The ϵ for the linear regression was
tuned in steps of 10 µm and the distance giving the highest
F1-score, was determined to be 30 µm in this case . The
optimal regularization constant λ was found to be around
0.001 times the maximum entry (in absolute value) of the
covariance matrix. The number of time lags L for the spatio-
temporal linear regression filter was found to be 7, with only
a very small dependency on the number of time lags. For the
MWF, the number of time lags was 10. The fraction of the
cumulative sum of the diagonal entries in Σa was set to 99%
for the 32-channel probe, and 99.9% for the 128-channel
probe, leading to values Q = 9 and Q = 11, respectively.
However, this fraction is not dependent on the number of
channels, but rather on the amplitude of the artefacts, which
was higher for the 128-channel probe.

As can be seen from table I, for the 32-channel probe,
there is a large difference in using the normal MWF, and
using the GEVD-MWF. This difference is explained when
looking at the diagonal elements of Σa, as calculated in (25).
Indeed, figure 4 shows that only Q = 9 values are actually
sufficient to retain 99% of the trace of the matrix. In the 128-
channel probe, the difference in spike sorting performance
between MWF and GEVD-MWF is less pronounced.

B. Visual assessment

Because of the hybrid framework, we have access to
the ground-truth neural signal. We can thus make a visual
comparison between the ground-truth signal, and the recov-
ered neural signal after artefact removal. Figure 5 gives a
visual assessment of how the different techniques remove



(a) Blanking. (b) Channelwise average template subtraction. (c) Eventwise average template subtraction.

(d) Purely spatial linear regression.
(e) Spatio-temporal linear regression.

(f) Purely spatial GEVD-MWF. (g) Spatio-temporal GEVD-MWF.

Fig. 5: Visual assessment of the different artefact removal techniques, shown over the same period of time for the same recording. The
blue signal shows the ground-truth neural data without artefact, the green signal is the recording with artefacts, and the red signal is the
recording after artefact removal.

the artefacts and handle spikes. The signals after blanking
(figure 5a) and both types of averaging (figures 5b and 5c)

clearly lead to a poorer reconstruction of the underlying
signal, relative to the multi-channel filtering techniques.

TABLE II: Comparison of the linear regression and a GEVD-MWF for a neural recording with low PSNR (15 dB). In the first three
columns, the spike sorting performance (F1-score, precision, sensitivity), Artefact-to-Residue Ratio, and PSNR after artefact removal are
averaged over all clusters. The two last columns show the PSNR of the cluster with the lowest, respectively highest, PSNR after artefact
removal. The spike sorting performance of the neural signal (without artefacts) is also shown as a reference.

F1-score Prec. Sensitivity ARR Avg. PSNR Min. PSNR Max. PSNR
Clean recording 0.90 0.94 0.89 / 15.00 dB 15.00 dB 15.00 dB

Lin. reg. 0.58 0.69 0.58 40.45 11.96 dB 10.57 dB 13.35 dB
GEVD-MWF 0.56 0.64 0.59 37.42 11.38 dB 7.75 dB 14.16 dB



When comparing the recovered signal after a purely spatial
filter (figures 5d and 5f) with the ones after a spatio-temporal
filter (figures 5e and 5g), it can be seen that the largest
part of the filtering exists out of spatial filtering, while
the temporal filtering only has a small extra effect. This is
also in line with the spike sorting performance from table
I. In general, when looking at the results from the linear
regression filter and the GEVD-MWF (figures 5e and 5g),
it is clear that both methods lead to a good reconstruction
of the underlying neural signal, thereby still allowing for a
reliable spike sorting performance. Nonetheless, we observed
that each technique irrevocably leads to a decrease in SNR,
compared to the ground-truth signal.

C. Low-SNR regime

In the results shown in table I, all spike clusters had
a peak-signal-to-noise-ratio (PSNR = 10 log10

Ppeak

Pnoise
[20])

going from 18 dB up to over 30 dB, before adding the
stimulation artefacts. Spikes with such a high PSNR, will still
keep a sufficiently high PSNR for a reliable spike sorting,
even after artefact removal. In reality, there will also be
clusters with a lower PSNR. To simulate this situation, we
scaled all spikes down to a PSNR of 15 dB (for every
cluster) within the SHYBRID software, and performed the
same steps as described earlier. Table II shows the spike
sorting performance results for the linear regression and the
GEVD-MWF.

In the low-SNR regime, the ARR is still high. However, for
clusters with a lower PSNR, the inherent decrease in PSNR
has an impact on the spike sorting performance. We can
also look at the PSNR of the clusters after artefact removal,
instead of the pure performance metrics. The average PSNR
over all clusters is very similar for linear regression and
MWF. However, there is a small inter-cluster difference in
PSNR for the linear regression. For the MWF on the other
hand, there is a much larger variation between different
clusters.

D. In vivo validation

To validate the framework used in this paper, and therefore
the obtained results, we also performed artefact removal
on unmanipulated in vivo data. The data are recorded with
a protocol similar to [3], with one very long burst of
stimulation pulses. Figure 6 shows the signal before and after
artefact removal. These signals closely resemble the signals
simulated by our hybrid framework. The left plot shows the
output of the linear regression and the GEVD-MWF method
in overlay. It can be observed that spikes are retrieved, even
in the part that is heavily affected by a stimulation artefact. A
closer inspection on the zoom box (middle figure) illustrates
that the spike which is buried under an artefact pulse is
indeed recovered by both methods, while the artefact pulse
is mitigated. To compare, the result of the blanking and
template matching method is shown in the rightmost plot.
Here, a clear artefact residual is visible for the template
matching method, which could be wrongly detected as a
spike and which dominates the actual spike that coincides

with the first artefact pulse. The blanking method removes
the spike due to the linear interpolation.

V. DISCUSSION

A. Study design choices and limitations

When determining the use and focus of our framework,
we made a number of choices that influenced the choice
of the evaluated techniques. For example, when electrodes
are sparsely divided throughout the brain, neural information
is not shared by adjacent electrodes, and other techniques
should be used to exploit the shared behaviour of artefacts
over electrodes [31]. However, due to advancements in
neuroscience and microfabrication technologies, there is a
trend towards large-scale, high-density electrode arrays [10],
[32]. Therefore, in our study, we have chosen to focus on the
context of spike sorting and artefact removal through multi-
channel filters for such arrays, where neural information is
shared among several electrodes.

Furthermore, we have chosen to compare a subset of
commonly used linear techniques. Non-linear techniques for
artefact removal have also been investigated in the past, such
as artefact estimation based on nonlinear adaptive models
with self-oscillations [33]. Furthermore, there have been even
studies that used information from the artefact removal in
the subsequent spike sorting process [34]. While we have
only focused on commonly used linear techniques, in further
research, the developed framework with ground-truth data
could also be used to test such non-linear artefact removal
techniques. It must be noted, however, that the framework in
its current form, is only representative in the context of spike
sorting. Indeed, the spike sorting is an inherent part to our
framework, and different performances might be expected
in another context, such as artefact removal for EEG or
local field potentials [19], [29], [35]. This also means that
our framework requires stimulation frequencies that are not
too high (<2kHz). For a higher stimulation frequency (or
a higher pulse width with the same frequency), it will be
impossible to observe clean neural spikes in between the
stimulation pulses, and thus to train the filters such as MWF
with this neural information. On the other hand, we don’t
expect a lower limit on the stimulation frequencies for the
framework to remain valid. The reason we have chosen
this range of frequencies is therefore purely practical: a
lower frequency would show more undistorted neural signal,
leading to better a-priori spike sorting performance, such
that the performance difference between techniques would
be more difficult to see.

Lastly, it must be noted that recent research has also
explored cancelling or mitigating the artefacts by dedicated
circuit or experiment design [15], [32], or sometimes even
succeeds in completely circumventing the necessary stimu-
lation artefact removal. This can be done by using different
physiological ways to record and stimulate the brain. Recent
examples are calcium imaging with microstimulation [36],
electrophysiology together with microLED optoelectrodes
[37], or the combination of calcium imaging, optogenetic



Fig. 6: Top: In vivo recording before and after artefact removal, with linear regression and a GEVD-MWF. After artefact removal, spikes
can be seen and retrieved throughout the whole recording, also when stimulation takes place. Bottom: a zoom of the black window
indicated in the left figure. For comparison, the results with blanking and template subtraction are also shown on the right.

stimulation and electrophysiology [38]. Nonetheless, electri-
cal recording and stimulation remain the most widely used
combined strategy to interfere with brain circuits, especially
with techniques aiming for clinical translation [1].

All techniques discussed in this paper are linear techniques
and thus assume a linear addition of the artefacts and the
spikes. The same holds for the proposed hybrid framework,
i.e., it assumes that the artefact waveform is linearly super-
imposed to the neural signal. In practice, this means that the
amplitude of the artefacts may not go up to the non-linear
saturation regime of the ADC. If that happens, non-linear
artefact removal techniques should be used, in combination
with an evaluation framework that also models such non-
linearities in the creation of hybrid ground-truth data. Such
non-linear cases are beyond the scope of this study, and are
also preferably avoided in practice. Indeed, with increasing
artefact amplitude, the ADC will eventually saturate, thereby
preventing retrieval of the underlying neural information.

B. Discussion of results

Based on our proposed framework, we have performed
a benchmark study comparing several electrical stimulation
artefact removal methods in the context of neural spike
sorting. By using hybrid spiking data with a superimposed
artefact from an in vivo recording, we have access to both the
ground-truth spiking data, as well as the ground-truth arte-
fact. This allowed us to perform an objective evaluation, both

in terms of spike sorting performance and artefact rejection,
while still working with highly realistic and representative
data (note that both the spiking activity and artefacts were
generated from actual in vivo recordings). To the best of our
knowledge, this is the first study that introduces such a hybrid
framework for objective benchmarking of different state-
of-the-art stimulation artefact removal techniques for spike
sorting. Previous studies typically estimated their artefact
removal and spike sorting performance either directly from
the in vivo recordings without a ground truth [16] or only
used ground-truth data for the artefact itself, typically based
on simulated instead of recorded artefact data [13]. Because
of a lack of ground-truth data for the neural spiking data,
it is impossible to objectively assess the effect of artefact
removal on spike sorting performance.

Blanking leads to reasonable results, even though all infor-
mation during an artefact is thrown away, which accounts for
over half of the total signal. However, spikes that are partly
cut off, are only partly thrown away. In combination with the
fact that linear interpolation is used, the remaining waveform
sometimes still looks enough like a spike to be recognized
by the spike sorting algorithm. Template subtraction based
on both types of simple averaging leads to poor results.
Although popular because easy to implement in hardware,
it is clear that a template through averaging results in a very
poor reconstruction of the artefact. In particular when the
template is computed by averaging multiple instances of the



artefact pulse across time, subtraction of the template leads
to very large residual artefacts (figure 5b). Purely spatial
averaging (also called Common Average Referencing) leads
to better results, but the residual artefact is still too large
(figure 5c), leading to many spike sorting errors. Although
the artefacts on all channels are similar, their large amplitude
makes that even small relative differences result in relatively
large residuals compared to the neural spiking activity [14].
Spatial averaging over the adjacent channels (also called
a Laplacian spatial filter, and commonly used for EEG
recordings [39])) could lead to a better artefact template,
but neural information would also partly be lost, due to the
spatial correlation across nearby channels [14]. More spiking
data that is correlated to the spiking activity of the target
channel, would leak into the template (as this is also partly
seen on the adjacent channels). This problem is solved by
constructing an optimized filter based on linear regression,
where the weight of the included channels is automatically
chosen, but the nearby channels are left out. The filter
constructs an instantaneous estimate of the artefact, which
can lead to different estimates (i.e. filter outputs) for each
pulse, while automatically weighting the channels to (1) have
a good fit to the artefact, and (2) capture as little correlated
spiking data as possible. This leads to a decent spike sorting
performance after artefact removal. Furthermore, the GEVD-
MWF, another technique to construct such an optimal spatio-
temporal filter, obtains similar results. For both of these
optimal spatio-temporal filters, the largest part of the artefact
reconstruction is performed by means of spatial filtering,
while the temporal filtering has a small extra effect.

Furthermore, the in vivo validation offers anecdotal evi-
dence which is in accordance with these findings that both
linear regression and GEVD-MWF succeed in removing the
artefact and reveal underlying spikes, while blanking and
template subtraction either removes spikes, or leave a strong
residual artefact. In the case of linear regression and GEVD-
MWF, spikes are visible throughout the whole recording. We
also spike sorted the in vivo data. Both the linear regression
and the GEVD-MWF resulted in similar sortings and allowed
to find spikes both during and outside stimulation belonging
to the same neuron.

The proposed benchmarking framework allows an accurate
comparison in performance between different techniques,
and therefore also allows a direct comparison between
the linear regression and GEVD-MWF as artefact removal
techniques. Mathematically, they are very similar: both are
optimal in a linear MMSE-sense, and use a weighted version
of the other channels. The most important difference lies
in the channels used for the computation of the filter and
the type of regularization employed. In the linear regression,
the most close-by channels are removed, while further away
channels are used as filter inputs. After tuning the radius ϵ, it
was observed that only the direct neighbours of the channel
were removed, while electrodes that are only two steps away
were preserved. The fact that only a few channels were
discarded is probably because the linear regression aims to
construct a signal that is as similar as possible to the channel

of interest, and nearby channels are more similar than distant
channels. This implies a trade-off: channels close-by are
a better reference for the artefact, but also have a higher
correlation in the neural data, thereby risking to remove some
of the spiking information as well. The MWF, on the other
hand, doesn’t have this trade-off. All channels are used, and
the largest power is automatically given to the channels that
contain the least neural signal power, as they can be used to
create an accurate artefact signal.

This also implies a difference in the computational com-
plexity of the filter. The MWF uses the same covariance
matrix (Rxx) to compute the filter for all channels, such
that it only has to be inverted once. In the case of the
linear regression, each filter (one for every channel) uses a
different subset of the channels, and therefore has to compute
a different matrix inverse for each channel. This causes the
linear regression filter to be more computationally intensive,
especially for probes with high-channel counts. Recently,
there is a move towards the use of high-channel count probes
in electrophysiology and spike sorting. In this context, the
much lower computational cost of the MWF is a strong
advantage over the computationally intensive state-of-the-art
linear regression filter, given that both methods achieve a
similar spike sorting performance.

Using a GEVD to improve a MWF, has previously been
proposed in a context of EEG artefact removal [19]. How-
ever, there it was mainly used to correct for an oversub-
traction by removing negative entries in Σa, as explicitly
setting a low-rank did not influence the results in artefact
removal for EEG [19]. Our study has shown that for artefact
removal in the context of spike sorting, explicitly choosing
a low rank using the GEVD-MWF instead of the full-rank
MWF can make an important difference. This is due to
the underlying nature of the stimulation artefacts, which are
highly structured across space and time, thereby resulting
in a covariance matrix with a low-rank structure. Using
a GEVD-MWF then ensures that the artefact model will
always be low-rank, also in cases when a normal MWF
(without GEVD) would not automatically lead to a low-rank
model. Imposing such low-rank structure also has an implicit
regularization effect as it effectively reduces the number of
degrees of freedom in the model.

VI. CONCLUSION

Stimulation artefact removal methods are necessary as
a pre-processing step to retrieve neural information when
recording and stimulation simultaneously take place in the
same brain region. We developed a hybrid framework, using
ground-truth data, to compare and evaluate different arte-
fact removal methods. This hybrid framework allows us to
acquire accurate, ground-truth based results on the spike
sorting performance after artefact removal, allowing for an
objective comparison of different methods. It further allows
to test methods for recordings with an artificially chosen
SNR, to get useful insight in how methods will behave in
recordings of varying SNR values, and how the SNR changes
after artefact removal. We have compared several existing



stimulus artefact removal methods with each other, including
a recent method (MWF) from the EEG literature that was
never tested before for stimulation artefact removal in neural
probe data. The GEVD-MWF and linear regression methods
performed similarly and they both outperformed the blanking
and template subtraction methods. However, in the context
of high-channel count probes, MWF has an advantage over
linear regression on the computational complexity.

A similar hybrid benchmark framework can be used in
future research, e.g., when developing new artefact removal
methods, to objectively evaluate and compare them with the
state-of-the-art methods.
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APPENDIX

A. Mathematical description of spatio-temporal filtering

1) Linear regression: Let xk[t] denote the signal on
channel k at sample time t. In order to construct a temporal
filter, the time stacked vector x̄k[t] is defined as follows:

x̄k[t] =
[
xk[t] xk[t− 1] ... xk[t− L+ 1]

]⊺
. (6)

Here, L is the number of time lags of the filter that will be
estimated. To further expand this to a spatio-temporal filter,
all K channels are stacked together:

x̄[t] =
[
x̄1[t]

⊺ x̄2[t]
⊺ ... x̄K [t]⊺

]⊺
. (7)

Finally, when constructing an optimal filter for channel k,
we only take channels that are sufficiently far away from this
channel of interest into account, in an attempt to preserve the
neural information, an approach first explored on a depth
probe with 1 column in [16]. To this end, we define the
vector x̄−k[t], which is defined as in (7), but all channels
that are located within a distance ϵ from channel k on the
probe (including channel k itself) are removed. The goal is
to design a spatio-temporal filter wk which estimates the
artefact component âk[t] at channel k by filtering the data in
x̄−k[t].

âk[t] = w⊺
k x̄−k[t]. (8)

Finally, the clean data yk[t] are defined as:

yk[t] = xk[t]− âk[t] ∀ t ∈ A (9)
yk[t] = xk[t] ∀ t /∈ A

The filter wk is optimized to estimate the artefact signal in
channel k in minimum mean squared error (MMSE-)sense,
by using the far-away channels as reference signals, i.e.,

ŵk = min
wk

E

{(
ak[t]−w⊺

k x̄−k[t]
)2

}∣∣∣
t∈A

(10)

where E{.} denotes the expectation operator. Note that ak
is not known in practice. However, assuming the channels in
x̄−k[t] are sufficiently far away from channel k, the neural
(spiking) data will be uncorrelated between xk[t] and x̄−k[t],
such that ak[t] can be replaced with xk[t]:

ŵk = min
wk

E

{(
xk[t]−w⊺

k x̄−k[t]
)2

}∣∣∣
t∈A

. (11)

Solving (11) after adding an L2-norm regularization term
with weight λ results in the Ridge regression solution:

ŵk = (Rx−kx−k
+ λI)−1rx−kxk

. (12)

In (12), Rx−kx−k
and rx−kxk

respectively represent the
spatio-temporal covariance matrix and vector:

Rx−kx−k
= E

{
x̄−k[t]x̄

⊺
−k[t]

}∣∣∣
t∈A

(13)

rx−kxk
= E

{
x̄−k[t]x

⊺
k[t]

}∣∣∣
t∈A

(14)

2) Multi-channel Wiener Filter: The MWF exploits the
differences in the spatio-temporal statistics of the unwanted
signal component (the artefact a[t]) and the wanted signal
component (the neural signal n[t]) to suppress this unwanted
component as much as possible [18]. The recording x[t] =
[x1[t]...xK [t]]⊺ can thus be written as:

x[t] = n[t] + a[t]. (15)

The MWF takes the recorded multi-channel probe signal as
an input, and produces at its output an estimate of the artefact
component at each channel, which can then be subtracted
from the signal:

y[t] = n̂[t] = x[t]−W ⊺x̄[t]. (16)

Here, x̄[t] is defined the same as in (7). The optimization
criterion for this spatio-temporal linear filter W is again the
linear minimum mean squared error (MMSE) with as cost
function:

Ŵ = min
W

E

{∥∥a[t]−W ⊺x̄[t]
∥∥2 }∣∣∣

t∈A
. (17)

Note the differences with the linear regression: the MWF
takes all channels into account, and aims to estimate the
artefact component of all channels at once. The optimal
estimate for the filter W (a matrix containing the filters for
all channels) then becomes:

Ŵ = R−1
xxRaa. (18)

Note that we have not introduced a regularization constant
as in (12), as we will later introduce a subspace-based



regularization (see (22)-(25)). Again, R represents the spatio-
temporal covariance matrix respectively for the signal, the
artefact component and the neural data:

Rxx = E{x̄[t]x̄[t]⊺}|t∈A (19)
Raa = E{ā[t]ā[t]⊺}|t∈A (20)
Rnn = E{n̄[t]n̄[t]⊺}|t/∈A (21)

Rxx can be directly estimated from the data, i.e. over all
samples in A. On the other hand, the covariance matrix
of the artefact component Raa is of course not known in
practice (we can not use the ground-truth artefact in the
design of the filter). However, the covariance matrix of the
neural data Rnn can also be directly estimated from the data,
by selecting parts of the recording where the stimulation is
not active, i.e. all samples /∈ A. Note again that in most
settings, including ours, the timestamps of the stimulation
are known.

Since the artefact signal and the neural signal are uncor-
related, we have that Rxx = Rnn + Raa, which would in
principle allow to estimate Raa as Raa = Rxx − Rnn.
However, this might lead to an ill-conditioned matrix and/or
it might result in an indefinite matrix (note that covariance
matrices are by definition positive (semi-)definite). To re-
trieve a reliable estimate for Raa, a generalized eigenvalue
decomposition (GEVD) from Rxx and Rnn is constructed
[19], resulting in a joint diagonalization of Rxx and Rnn:

V ⊺RxxV = Σx (22)
V ⊺RnnV = Σn (23)

where Σx and Σn are both diagonal matrices. Equations
(22)-(23) result in a generalized eigenvalue problem:

RxxV = RnnV Σ (24)

where the matrix Σ = Σ−1
n Σx contains the generalized

eigenvalues, sorted in descending order, and V contains the
corresponding generalized eigenvectors in its columns. Using
the fact that Rxx = Rnn + Raa, and combining (22) and
(23), the following estimate of Raa is found [19]:

Raa = V −⊺ΣaV
−1 (25)

with Σa = Σx −Σn.
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