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Abstract

Microphone arrays allow to exploit the spatial coherence between simultaneously recorded micro-

phone signals, e.g., to perform speech enhancement, i.e. to extract a speech signal and reduce background

noise. However, in systems where the microphones are not sampled in a synchronous fashion, as it is

often the case in wireless acoustic sensor networks, a sampling rate offset (SRO) exists between signals

recorded in different nodes, which severely affects the speech enhancement performance. To avoid this
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performance reduction, the SRO should be estimated and compensated for. In this paper, we propose

a new approach to blind SRO estimation for an asynchronous wireless acoustic sensor network, which

exploits the phase-drift of the coherence between the asynchronous microphones signals. We utilize the

fact that the SRO causes a linearly increasing time-delay between two signals and hence a linearly

increasing phase-shift in the short-time Fourier transform domain. The increasing phase-shift, observed

as a phase-drift of the coherence between the signals, is used in a weighted least-squares framework to

estimate the SRO. This method is referred to as least-squares coherence drift (LCD). Experimental results

in different real-world recording and simulated scenarios show the effectiveness of LCD compared to

different benchmark methods. The LCD is effective even for short signal segments. We finally demonstrate

that the use of the LCD within a conventional compensation approach eliminates the performance-loss

due to SRO in a speech enhancement algorithm based on the multi-channel Wiener filter.

I. INTRODUCTION

Technological advances in micro-electronics and communications have paved the way towards novel

acoustic sensing platforms, such as, e.g., wireless acoustic sensor networks (WASNs). WASNs consist of

a multitude of wireless microphone nodes — each containing a single microphone or a small microphone

array— distributed randomly over the environment. WASNs can be applied, e.g., for speech enhancement

or to localize sound sources and extract spatial properties of the acoustic scenario in many applications

such as teleconferencing, hands-free telephony, automatic speech recognition, monitoring and surveillance,

video games and hearing aids [2]–[7]. However, the design of signal processing algorithms is more

challenging for WASNs compared to traditional (wired) microphone arrays. It involves many different

aspects such as dealing with unknown array geometries, routing, topology selection, synchronization and

distributed processing [6], [8].

In a WASN, the fusion of microphone signals recorded in different nodes is a difficult task since

each node utilizes an individual clock. Due to small imperfections in each clock’s oscillator, sampling

rate offsets (SROs) between signals recorded in different nodes are unavoidable [9], [10]. It has been

shown that the existence of SROs severely degrades the performance of signal processing algorithms for

Direction-of-arrival (DOA) estimation, speech enhancement and blind source separation [9]–[14]. In this

paper, we only consider SRO estimation and compensation. However, it is noted that the use of a local

clock at each node also results in sampling phase offsets, i.e., differences in the sampling time points at

different nodes, or clock offsets, i.e., differences between the current time of the local clocks compared to

a reference clock. Obviously, both of these phenomena are also influenced by the SRO, but they should

be estimated in addition, e.g., to perform source localization.
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The first step toward compensating for the effect of SRO and re-gaining the performance-loss consists

of estimating the SRO. Two general approaches have been suggested to estimate the SRO. First, the SRO

can be estimated based on a broadcasting of specific reference signals [11], [14]–[19]. For example, [15]

addressed the time synchronization problem in wireless sensor networks (WSNs) by using a reference-

broadcast synchronization algorithm to synchronize the clocks. The SRO estimation problem for acoustic

beamforming in particular was tackled by [14], using a modulated radio frequency (RF) reference signal

that is broadcast to each device. [16] used a reference signal to estimate the SRO between input and

output channels in an echo cancellation system. However, SRO estimation based on a broadcasting of

reference signals requires dedicated hardware, protocols, and/or communication channels. An alternative

approach consists in using a reference-free (’blind’) technique, where the SRO is directly estimated from

the recorded microphone signals without using any reference signals. For example, [20] suggested a SRO

estimation technique based on independent component analysis (ICA). In this method, it is assumed that

ICA yields uncorrelated sources only when the SRO is perfectly compensated. However, to extract the

independent components, the number of sources and microphones should be the same in this method.

[10], [12] developed a method based on a maximum likelihood estimation of the SRO in the short-time

Fourier transform (STFT) domain. In this method, the SRO is assumed to cause a linear phase-shift

in the STFT domain and a likelihood function is derived to evaluate the compensation of the SRO.

Then an exhaustive search method is applied to maximize the likelihood function to extract the SRO.

This method is accurate and robust against environmental noise and can be applied in multiple source

scenarios. However, it requires a stationary time-difference-of-arrival (TDOA) over long signal segments

to yield an accurate SRO estimation, hence it is less applicable in turn-taking source scenarios. [13] used

the link between SRO and the Doppler effect and applied a wideband correlation processor for blind

SRO estimation. This method involves an exhaustive search over the SRO to maximize the wideband

correlation processor and for each SRO in the applied search algorithm the signals are re-sampled in the

time-domain.

[9] have also tackled the same problem using a voice activity detector (VAD) and phase-drift of the

coherence of the noise-only segments in the signals, assuming the availability of a coherent noise source.

The advantage of this method is its low computational complexity, i.e. the SRO is estimated without

exhaustive search. However, it has a limited accuracy, it suffers from robustness issues and requires a

VAD.

In this paper, we propose a new approach to blind SRO estimation without the need for a VAD and

exhaustive search. Similar to [9] the proposed approach exploits the coherence phase-drift of the signals
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and then applies a robust SRO estimation technique in a weighted least-squares (WLS) framework.

The combination of the WLS and an outlier removal procedure allows to estimate the SRO even over

signal segments with multiple active sources and scenarios with turn-taking sources. This paper extends

our preliminary work [1] by (1) proposing a novel weighting (WG) scheme to emphasize on useful

frequency bins, (2) evaluating the results over static and turn-taking source scenarios and (3) proving that

the proposed method yields more accurate results compared to [9] in an equal condition.

Once the SRO is estimated with sufficient accuracy, the estimate can be used to synchronize the

microphone signals. In [9], [13], after the estimation of the SRO, the signal is re-sampled in the

time-domain using the Lagrange polynomials interpolation method [21]. While effective, this method

is computationally expensive. In [10], [12] an explicit time-domain re-sampling is avoided, and instead

a compensation for the SRO in the STFT domain is applied, assuming further processing is also applied

in the STFT domain. We use a similar approach and validate our SRO estimation and compensation

approach in a multi-channel Wiener-filter (MWF) based speech enhancement algorithm, where STFT-

domain processing is used [22].

The rest of this paper is organized as follows. In Section II we formulate the SRO estimation problem.

In Section III, we describe the proposed SRO estimation approach. In Section IV we briefly describe

the applied SRO compensation approach. In Section V, we evaluate our approach in different real-world

scenarios, and benchmark it against existing methods. Conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

Without loss of generality (w.l.o.g.), we assume that each microphone belongs to a different node of

the WASN, and hence there is an SRO between any microphone signal pair. The sound pressure of the ith

microphone and its corresponding discrete-time signal are written as xi (t) and xi [n], respectively, where

t denotes the continuous time and n denotes the discrete time. The sampling rate of the ith microphone

is equal to

fs,i = (1 + εi)f
ref
s , (1)

where the parameter |εi| � 1 is the relative SRO with respect to the reference sampling rate f ref
s at

an arbitrarily chosen reference node. W.l.o.g. we assume that the first node is the reference node, i.e.

fs,1 = f ref
s and hence ε1 = 0. It is assumed that nodes i and node 1 are exchanging locally recorded

signals, e.g., to perform multi-channel speech enhancement using MWF.

The goal is to estimate εi for a given microphone signal xi [n], and to compensate for its effect, e.g.,

within the computation of the MWF-based speech enhancement. The MWF is typically conducted in
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the STFT domain to reduce the computational load, hence we aim for SRO compensation in the STFT

domain. The ιth segment Xι
i [k] of the STFT of xi [n] is obtained as follows:

Xι
i [k] =

K−1
∑

l=0

w[l]xi

[

ιP + l − K

2

]

exp

(

−2πkl

K
j

)

, (2)

where j =
√
−1, K is the STFT segment length, P is the STFT segment shift, w[l] is a user-defined

window function, and k is the discrete frequency index ranging from 0 to K − 1.

Assuming Sι
z[k] is the ιth segment of the zth source signal in the STFT domain, the ith microphone

signal Xι
i [k] can be modelled as

Xι
i [k] =

Z
∑

z=1

Hι
i,z[k]S

ι
z[k] + nι

i[k], (3)

where Hι
i,z[k] is the STFT domain transfer function from the zth source to the ith microphone in the

ιth segment, Z is the total number of coherent sources and nι
i[k] is the spatially uncorrelated noise

component with E
[

|nι
i[k]|2

]

= σ2
i . The coherent sources can be speech sources and/or (stationary) noise

sources.

III. LEAST-SQUARES COHERENCE DRIFT SRO ESTIMATION

In this section, we describe a new SRO estimation method, which is referred to as least-squares

coherence drift (LCD).

A. Coherence

Consider the reference microphone signal x1 [n] and the ith microphone signal xi [n]. The coherence

of these signals within frame1 m of length Γ > K is obtained as

Φm
1,i[k] =

Ψm
1,i[k]

√

Ψm
1,1[k]Ψ

m
i,i[k]

, (4)

where Ψm
1,i[k] is the cross-spectrum between the microphone signals 1 and i, Ψm

1,1[k] and Ψm
i,i[k] denote

the auto-spectrum of microphone signals 1 and i. We define m as the discrete time index of the mid-

frame sample of the frame that is used to compute Φm
1,i[k]. This means that Φm

1,i[k] and Φm+1
1,i [k] are

defined over frames of length Γ that are shifted by only 1 sample. This is merely for the sake of notational

convenience. In practice however, m will be incremented by Λ >> 1 samples to reduce the computational

complexity.

1It is noted that a coherence frame is not the same as an STFT segment in (2).
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The Ψm
q,p can be estimated using the Welch method [23], which is a common method to estimate power

spectral densities. To estimate Ψm
q,p, the Welch method chunks the mth frame of length Γ into several

overlapping segments of length K, and then takes the average of the cross-correlated STFT coefficients

over the different segments. More specifically,

Ψm
q,p[k] =

1

NKΓ

NKΓ
∑

ι=1

(Xι
q[m; k]Xι

p[m; k]∗), (5)

where Xι
i [m; k] is the STFT of the ιth segment of signal xi[n] in the mth frame, (·)∗ denotes the conjugate

transpose, and where NKΓ is the total number of overlapping segments of length K within a frame of

length Γ.

By inserting (3) into (5) and assuming all sources are independent, we can write Ψm
1,i[k] as

Ψm
1,i[k] =

∑

z

Ψm
1,i,z[k], (6)

where

Ψm
1,i,z[k] =

1

NKΓ

NKΓ
∑

ι=1

(H1,z[k])(Hi,z[k])
∗ |Sι

z[m; k]|2 , (7)

where Sι
z[m; k] is the ιth STFT segment of the zth source signal in the mth coherence frame and |·|

denotes absolute value.

It is noted that the acoustic transfer functions between the sources and the microphones are assumed

to remain fixed over at least Γ samples, i.e., over the frame over which the cross-spectrum is computed,

hence superscript ι is not used for Hz,1[k] in (7).

B. Least-squares estimation

We exploit the phase-drift of the coherence over different frames to estimate the SRO. For the sake

of an easy exposition, we first develop a least-squares (LS) estimation framework for a single source

scenario and later we extend it to a multiple source scenario through a WLS estimation.

1) Single source scenario: The coherence Φm
1,i[k] is calculated by inserting (6) in (4) as follows

Φm
1,i[k] =

∑

z Ψ
m
1,i,z[k]

√

∑

z Ψ
m
1,1,z[k] + σ2

1

√

∑

z Ψ
m
i,i,z[k] + σ2

i

, (8)

For a single source scenario, we can replace
∑

z Ψ
m
1,i,z[k] in (8) by Ψm

1,i,z[k], i.e.

Φm
1,i[k] =

Ψm
1,i,z[k]

√

Ψm
1,1,z[k] + σ2

1

√

Ψm
i,i,z[k] + σ2

i

. (9)
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by expanding (9) using (7) and assuming Ψm
i,i,z[k] >> σ2

i we obtain

Φm
1,i[k] =

H1,z[k](Hi,z[k])
∗
∑

ι |Sι
z[m; k]|2

|H1,z[k]| |Hi,z[k]|
∑

ι |Sι
z[m; k]|2

, (10)

or

Φm
1,i[k] =

H1,z[k](Hi,z[k])
∗

|H1,z[k]| |Hi,z[k]|
. (11)

Assuming the transfer functions between the source and microphones remain unchanged, a fixed delay

of %i samples to xi [n], affects the coherence phase as

Φm
1,i[k; %i] =

H1,z[k](Hi,z[k])
∗ exp

(

2πk%i

K
j
)

|H1,z[k]| |Hi,z[k]|
, (12)

or

Φm
1,i[k; %i] = Φm

1,i[k] exp

(

2πk%i
K

j

)

, (13)

where Φm
1,i[k; %i] is the coherence between x1 [n] and xi [n] after the latter is delayed by %i samples.

Such a fixed delay usually occurs due to acoustic propagation delays, e.g. when the microphones are not

equidistant from the source. However, note that these fixed delays are assumed to be unknown and are

in principle absorbed within the two transfer functions H1,z[k] and Hi,z[k].

An SRO between the microphone signals 1 and i also causes a linearly increasing delay in the

time-domain, and hence a linearly increasing phase-shift in the coherence. The sample delay of the

ith microphone signal in the mid-frame sample (m) caused by the SRO (εi << 1) w.r.t. microphone

signal 1 is denoted as ρmi , and can be computed as

ρmi = f ref
s

[

m
f ref
s

− m
(1+εi)f refs

]

≈ mεi. (14)

The SRO induced delay is equal to (14) for the mid-frame sample and equal to (m−1)εi and (m+1)εi

for the sample before and after, etc. Since this delay increases for each consecutive sample in a frame,

calculating the coherence Φm
1,i[k; ρ

m
i ] of the reference signal and the signal with SRO is difficult. However,

assuming the maximum drift caused by the SRO inside a single frame is much smaller than 1 sample,

i.e. |Γεi| � 1, the coherence Φm
1,i[k; ρ

m
i ] can be approximated as

Φm
1,i[k; ρ

m
i ] = Φm

1,i[k] exp

(

2πk (ρmi )

K
j

)

.

To remove the phase-shift due to acoustic propagation, we use the phase difference between the

coherence of two consecutive frames with frame-shift equal to Λ samples such that, relying on (11),

∠
Φm
1,i[k; ρ

m
i ]

Φm−Λ
1,i [k; ρm−Λi ]

≈ 2πk(ρm

i
−ρm−Λ

i )
K

= 2πkΛ
K

εi, (15)

December 25, 2016 DRAFT



8

where the ∠ denotes the phase (the last step follows from (14)). From (15), we observe that the phase

difference between the coherence of two different frames with frame shift Λ increases linearly with the

SRO.

Remark 1: The source signal |Sι
z[m; k]| is cancelled out from the numerator and denominator in (10)

and (11). Therefore, there is no stationarity assumption required on the source signal for (15) to hold.

To improve the estimation accuracy, we repeat the above procedure for Q+1 consecutive frames and

collect the results in matrix form, i.e.

A = Bεi (16)

where A is a matrix of size2
⌊

K
2

⌋

×Q with elements ak,q

ak,q = ∠
Φm−qΛ
1,i [k; ρm−qΛi ]

Φ
m−(q−1)Λ
1,i [k; ρ

m−(q−1)Λ
i ]

(17)

and B is a matrix of dimension
⌊

K
2

⌋

×Q with elements bk,q

bk,q =
2πkΛ

K
, (18)

where b·c denotes the floor function.

A LS3 estimation of εi can be obtained by solving

ε̂LSi = arg min
εi

‖~A− ~Bεi‖2, (19)

where ‖·‖2 denotes the L2-norm and ~· denotes vectorization, where columns of a matrix are stacked on

top of each other. The optimal solution of (19) can be obtained as follows:

ε̂LSi =
~BT ~A

~BT ~B
, (20)

where T denotes the transpose operator.

2) Multiple sources scenario: For the multiple sources scenario, we modify (19) by developing a WLS

framework.

Although relation (15) is invalid for the multiple sources scenario (3), it still holds for frequency bins

where at least one of the following conditions is met.

1- One of the sources is predominant for two consecutive frames, i.e.

∃ z ∈ {1, . . . , Z} : Ψm
1,i[k] ≈ Ψm

1,i,z[k] and Ψm−Λ
1,i [k] ≈ Ψm−Λ

1,i,z [k] (21)

2Since the second half of the STFT bins is just a mirror image of the first half, we use the first half without losing performance.

3Other distance measures can also be applied for this problem. The procedure of solving a similar estimation problem using

KullbackLeibler divergence is explained in [24]
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This condition is typically satisfied in the case of speech sources, due to their sparse nature in the time-

frequency-domain. This is often exploited in speech processing, and has been empirically validated in

several studies [25]–[27]. Meeting the predominant source condition turns the multiple sources scenario

into a single source scenario in the majority of the time-frequency bins. Therefore, its validity is shown

in relations (8)-(15).

2- All active sources are stationary for two consecutive frames, i.e.

∀z ∈ {1, · · · , Z} : S̄m
z [k] = S̄m−Λ

z [k], (22)

where

S̄m
z [k] =

∑

ι

|Sι
z[m; k]|2 . (23)

This condition is commonly met in noise-only frames in scenarios with localized (i.e., coherent) stationary

noise sources.

To show the importance of the second condition, let us start by expanding (8) using (7)

Φm
1,i[k] =

∑

z H1,z[k](Hi,z[k])
∗
∑

ι |Sι
z[m; k]|2

√

∑

z |H1,z[k]|2
∑

ι |Sι
z[m; k]|2 + σ2

1

√

∑

z |Hi,z[k]|2
∑

ι |Sι
z[m; k]|2 + σ2

i

, (24)

or

Φm
1,i[k] =

∑

z H1,z[k](Hi,z[k])
∗S̄m

z [k]
√

∑

z |H1,z[k]|2 S̄m
z [k] + σ2

1

√

∑

z |Hi,z[k]|2 S̄m
z [k] + σ2

i

. (25)

Coherence Φm−Λ
1,i [k] can be calculated as

Φm−Λ
1,i [k] =

∑

z H1,z[k](Hi,z[k])
∗S̄m−Λ

z [k] exp
(

−2πkΛεi
K

j
)

√

∑

z |H1,z[k]|2 S̄m−Λ
z [k] + σ2

1

√

∑

z |Hi,z[k]|2 S̄m−Λ
z [k] + σ2

i

. (26)

Assuming the second condition (22) is met, we replace S̄m−Λ
z [k] by S̄m

z [k], i.e.

Φm−Λ
1,i [k] =

exp
(

−2πkΛεi
K

j
)
∑

z H1,z[k](Hi,z[k])
∗S̄m

z [k]
√

∑

z |H1,z[k]|2 S̄m
z [k] + σ2

1

√

∑

z |Hi,z[k]|2 S̄m
z [k] + σ2

i

. (27)

Relation (15) is obtained by dividing (25) with (27).

By inserting the following WG scheme into the proposed LS estimation problem (19), we decrease

the deteriorating effect of these data points that do not meet any of the conditions mentioned above.

ε̂WLS

i = arg min
εi

‖~AV − ~BVεi‖2 (28)

~AV = ~V ◦ ~A (29)

~BV = ~V ◦ ~B, (30)
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where ◦ denotes Hadamard product and V is a weighting matrix of dimension
⌊

K
2

⌋

×Q with rows vk,q

vk,q =

√

(
∣

∣

∣
Φm−qΛ
1,i [k]

∣

∣

∣

∣

∣

∣
Φ
m−(q−1)Λ
1,i [k]

∣

∣

∣

)β

exp

(

∣

∣

∣
|Φm−qΛ

1,i [k]| − |Φm−(q−1)Λ
1,i [k]|

∣

∣

∣

2
) , (31)

where β is a hyperparameter and can be tuned for different applications. The weight vk,q attains its

global maximum (vk,q = 1) if condition 1 (21) is satisfied as shown in Appendix A and any typical

discrepancies from this condition decrease the weight.

For the frequency bins where the second condition (22) is satisfied, the denominator of (31) is also

minimized (which result in a larger weight) as shown in Appendix B. To understand the motivation

behind the numerator in this case, note that the denominator alone would result in a large weight even if

there is a low coherence between the signals, i.e. both

∣

∣

∣
Φm
1,i[k]

∣

∣

∣
and

∣

∣

∣
Φm−Λ
1,i [k]

∣

∣

∣
are close to 0. To avoid

this problem, the numerator is used to down-weight low-coherence frequency bins.

Remark 2: Please note that the WG scheme (31) assumes unchanged transfer functions between the

sources and microphones during each consecutive frames. It is also noted that this WG scheme depends

on the coherence amplitude only and completely ignores the coherence phase. This may cause undesired

large weight in some cases such as a turn-taking scenario where the fixed transfer function assumption

is violated. In this case, the coherence amplitudes can be similar (or even not affected) and instead the

coherence phase abruptly changes. To avoid this problem an outlier removal (OR) procedure is proposed

in the subsequent section which gives binary weights of zeros and ones to each frequency bin depending

on the coherence phase.

3) Outlier Removal: Although the WG scheme (28)-(31) significantly improves the performance of

the LS estimate, there are still many outlier frequency bins which have a non-negligible effect on the LS

estimator. For example, (15) compares phases which are defined over a circular topology, i.e., a phase of

π is the same as a phase −π. However, for phases that are close to this phase ambiguity boundary, small

errors due to noise may result in large absolute differences, and then (28) may result in an inaccurate

estimation of the SRO. Figure 1 shows an example of the coherence phase drift in different frequency

bins. The SRO estimation here involves fitting a line to this observation. Note that the slope of the line

has a linear relation with the value of the SRO. As it can be seen in this figure, there are some outliers

in different frequency bins causing a harmful effect on the accuracy of data fitting4.

4Note that in practice, we can never determine the exact cause of existing outliers, however in this specific case, the number

of outliers is more in higher frequencies, which can indicate that the outliers occur due to phase wrapping. By the way the

proposed outlier removal procedure remove all outliers without considering their cause.
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Fig. 1: Outliers in the coherence drift phase.

Furthermore, (31) only focuses on the coherence amplitude and completely ignores the coherence phase,

while in some scenarios many outlier frequency bins can occur due abrupt changes in the coherence phase.

For example, Figure 2 shows the coherence drift5 in a turn-taking scenario over a 6 frames segment,

where in frames 3 and 4 the first source stops speaking the second source starts speaking. As can be seen

in this example this turn-taking scenario abruptly changes the phase drift in frames 3 and 4 and causes

many outlier frequency bins in this two frames.

Therefore, we adopt a two-step outlier removal (OR) procedure focusing on the coherence phase and

yielding a binary (0 and 1) weigh to each frequency bin. In the first step, we make a rough estimation

of εi through the following least absolute value (LA) minimization:

ε̂LAi = arg min
εi

‖~AV − ~BVεi‖1 (32)

where ‖·‖1 denotes the L1-norm. The LA estimation is known to be more robust against outliers

compared to the ordinary LS estimation. Furthermore, solving (32) also allows to detect the outliers, e.g.,

using thresholding of the absolute error. LA minimization of (32) does not have an analytical solution

and usually an iterative approach is applied such as, e.g., a simplex-based approach [28], iteratively

re-weighted least-squares [29], Wesolowsky’s direct descent approach [30] and Li-Arce’s maximum

5In Figure 2, the coherence drift of six frames is concatenated one after the other one to show the effect of turn-taking sources

in frames 3 and 4.
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Fig. 2: Outliers in the coherence drift phase of six frames, where two sources take a turn in frames 3

and 4.

likelihood approach [31].

In the second step, the outliers are detected and removed, after which a more accurate SRO estimate

can be computed, this time using a LS minimization for computational convenience. The frequency bins

(rows of A and B) satisfying the following condition are considered as outlier frequency bins:

∃q ∈ {1, . . . , Q} : |ak,q − bk,q ε̂
LA

i |> ασq, (33)

where σq is the standard deviation of the elements in the qth column of the residual matrix R = A−Bε̂LAi

and α is a tuning parameter, which is usually around 1.

After detection and removal of the outlier frequency bins, we proceed with the WLS minimization.

ε̂WLS

i = arg min
εi

‖ ~AV − ~BVεi‖2, (34)

where matrices ~AV and ~BV are equivalents of ~AV and ~BV after removal of the outlier rows in A and B.

Finally, the optimal solution of (34) can be obtained as

ε̂WLS

i =
( ~BV)

T ~AV

( ~BV)T ~BV

. (35)

IV. SRO COMPENSATION

speech enhancement is required in many applications such as speech recognition, hearing aids and

speaker characterisation and verification [32]–[34]. In this paper, we focuse on multi-channel speech

enhancement using MWF and try to perform SRO compensation over MWF. For the SRO compensation,
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two complementary operations are performed: skipping critical samples in the time-domain and phase

compensation in the frequency-domain. We will explain why both have to be applied in a hybrid

compensation framework. In this approach, an estimate of the SRO is assumed to be available from

the LCD described in Section III.

A. Time-domain compensation

Assume w.l.o.g. that the ith microphone signal has a positive relative SRO εi with respect to the

reference signal. The SRO then causes a linearly increasing delay between the two signals. Therefore,

after a certain time τ , the signals are drifted more than 1 sample apart from each other. The corresponding

sample nτ is found as the first sample for which the following inequality is satisfied:

f ref
s

[

n

f ref
s

− n

(1 + εi)f ref
s

]

> 1, (36)

i.e. nτ = ε−1i (using the same approximation as in (14)). By skipping one sample after nτ samples, the

signals will be re-aligned again. This procedure can be repeated after each nτ samples indefinitely and

will ensure that the two of signals will never drift further apart than 1 sample.

B. Frequency-domain compensation

The SRO compensation in the frequency-domain is performed based on the fact that a fixed delay of %i

samples in xi [n] causes a phase rotation of 2πk%i

K
in frequency bin k. In other words, two signals shifted

relative to each other in the time-domain can be re-aligned by a simple phase-shift in the frequency-

domain. However, an SRO causes a linearly increasing delay instead of a fixed delay. Still we compensate

for a linearly increasing delay with a fixed phase-shift assuming the drift caused by the SRO within a

single STFT segment is much smaller than 1 sample, i.e. |Kεi| � 1. Therefore, the compensation

is more accurate for a small segment-size and a small SRO. For each segment we calculate the SRO

induced delay at the mid-segment sample based on the estimated SRO and obtain the corresponding phase

rotation
2πkmε̂WLS

i

K
. For the STFT segment, the kth frequency bin is then multiplied by exp

(

−j
2πkmε̂WLS

i

K

)

to compensate for the phase rotation caused by the SRO.

Since the MWF is typically applied in the STFT domain, this frequency-domain compensation is

computationally very cheap.

C. Hybrid compensation

If the frequency-domain compensation would be applied alone, the signals at two different nodes drift

more and more away from each other as the time increases, until their STFT segments no longer relate
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to the same source signal STFT segments. A phase rotation in the STFT domain can obviously no

longer compensate for this. Therefore, the frequency-domain compensation cannot be applied without

the time-domain compensation.

Applying the time-domain compensation without the frequency-domain compensation is also not

sufficient. Even though the signals will then never drift further apart than one sample, there will be

a significant performance drop due to short-term time-varying coherence phases in the second-order

signal statistics used in, e.g., the MWF.

Therefore, both compensation schemes are essential and have to be combined into a hybrid scheme

to compensate for the SRO effects in, e.g., a speech enhancement algorithm. The hybrid compensation

is in fact split up in realigning the segments (coarse-scale compensation) and the compensation of small

phase-shifts (fine-scale compensation).

The hybrid compensation is straightforwardly integrated into the MWF. To implement the hybrid

compensation in MWF, we basically apply time-domain compensation and then a frequency-domain

compensation is applied each time a sample is skipped (compensating for a 1-sample delay corresponding

to a phase-shift of 2πk
K

).

V. VALIDATION

In this section, we briefly describe two benchmark methods with which we will compare our LCD.

Then we present our evaluation setup and investigate the accuracy of the proposed methods for SRO

estimation and compensation.

A. Benchmark methods

We will compare the LCD with two benchmark methods, which we refer to as averaged coherence

drift (ACD) SRO estimation [9] and maximum likelihood (ML) SRO estimation [12].

1) Averaged coherence drift (ACD): In [9], a method for SRO estimation has been proposed, based on

the phase-drift of the coherence of noise-only segments of the signals. The SRO is estimated as follows:

ε̂ACDi =
1

Kmax

Kmax
∑

k=1

K

2πΛkQ

Q
∑

q=1

ak,q (37)

=
1

Kmax

Kmax
∑

k=1

ε̂ACDi,k , (38)

where ak,q is defined in (17), ε̂ACDi,k is the ACD estimated SRO in k-th frequency bin and Kmax < K is

the maximum number of considered frequency bins and is determined such that ak,q is bounded in the

range [−π, π] to avoid phase ambiguity.
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Eq. (38) implies that the ACD computes an SRO for each frequency bin and then averages over

the estimated SROs to obtain an overall SRO between the two signals. This method also assumes the

availability of a coherent noise source and a VAD to detect noise-only segments.

The LCD enjoys four distinct advantages compared to the ACD. First, in the ACD, the final SRO is

computed by averaging over the estimated SROs in each frequency bin. Instead, we use a least squares

estimation framework, which minimizes the sum of the squared residuals (errors). In Appendix C, we

prove that, for the case of Gaussian noise and for the same data points in both methods, the mean and

variance of the SRO estimation error in ACD is always larger compared to LCD (even if no OR or WG

schemes are used).

Second, the ACD looses available information in speech frames by applying a VAD. This problem

significantly deteriorates the accuracy of the ACD when there are few noise-only frames. The LCD

solves this problem by developing an OR and WG procedures in frequency domain, which results in

exploiting available information in both speech and noise frames. In this method, improper frequency

bins are ignored or down-weighted and the rest are incorporated in the estimation.

Third, to avoid the phase ambiguity, the ACD completely neglects frequency bins larger than Kmax to

avoid the phase wrapping point, whereas many of these bins contain useful information about the SRO

and only a few of them are affected by phase wrapping. The applied OR procedure of LCD implicitly

removes the frequency bins with phase ambiguity, and hence exploits a lot more informative frequency

bins compared to the ACD. The effect of the OR procedure on both LCD and ACD is studied in our

experiments.

Finally, the ACD suggests no method to deal with multiple source scenarios, while the WG technique

improves the results of the LCD in such a case.

2) Maximum likelihood (ML): A blind SRO estimation method based on a maximum likelihood

estimation of the sampling frequency mismatch in the STFT domain has been proposed by [10], [12].

The SRO is again translated into a phase-rotation in the STFT domain (??) and then estimated by solving

the following likelihood maximization problem

ε̂MLi = arg max
εi

Ω (εi) (39)

Ω (εi) = −
∑K

k=1 log
(

1− |Φ1,i[k;−εi]|2
)

(40)

Φ1,i[k;−εi] =
∑

ι
Xι

1[k]X
ι

i
[k]∗ exp ( 2πk(ιΛ+1)εi

K
j)√∑

ι
|Xι

1[k]|
2
√∑

ι
|Xι

i
[k]|2

. (41)
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This optimization problem (39) does not have an analytical solution and a numerical approach, namely

a golden section search, is applied.

The ML assumes a fixed acoustic transfer functions between the sources and the microphones during

the full batch size –over which the SRO is estimated– to yield an accurate SRO estimation. Therefore, its

accuracy severely degrades in the case of turn-taking sources, e.g., during a conversation. In a turn-taking

speakers scenario the coherence phase changes drastically at certain time instances as shown in Figure 2.

The LCD is less affected since in such a scenario, the time instances in which a drastic change occurs

will be considered as outliers and removed effectively by the proposed OR procedure. However, the ML

suggests no method to deal with such abrupt changes in the coherence as it considers the overall change

in coherence over the full batch size, and hence yields less accurate results in such a case.

B. Experimental setup

For the SRO estimation, the LCD uses frames of length Γ = 4096 with 50% overlap. Coherence is

calculated using the Welch method [23] with segment size K = 2048, using a Hamming window, and

with 75% overlap, i.e., m is incremented with 4096/4=1024 samples between consecutive segments (note

that a frame of length Γ = 4096 is then chunked into 5 smaller segments of length K = 2048 with %75

overlap). We assume a nominal sampling rate of 8kHz in all experiments.

The accuracy of the SRO estimation is measured using the mean absolute error EMA and median

absolute error EMdA calculated as

EMA =
1

L

L
∑

l=1

|εl − ε̂l| , (42)

EMdA = Median (|ε1 − ε̂1| , · · · , |εl − ε̂l| , · · · , |εL − ε̂L|) , (43)

where εl and ε̂l are the true and estimated SRO respectively and L is the total number of experiments.

C. SRO Estimation on Real Audio Recordings

We validate the proposed method in two different real-world scenarios. In the first experiment, we

recorded a static speech source scenario when multiple noise sources were also present. In the second

experiment, we recorded a real conversation between two persons when multiple noise sources were also

present.
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Fig. 3: The location of sources and microphones with actual SRO in the room.

1) Static speech sources scenario: In this experiment, we perform SRO estimation over real speech

data recorded in an office environment. We repeated this experiment for 10 times using different speech

signals from the Hearing in Noise Test (HINT) database [35]. The room contains 3 sound sources, which

produce either speech or background noise and 2 recording devices, i.e. the microphones of laptops from

two different brands, namely an Apple MacBook Pro and a Sony VAIO. The sampling frequency of each

module was set to 8 kHz and the recording was performed with a single channel and 16 Bits-Per-Sample.

The location of the sources and microphones is depicted in Figure 3.

There is no ground-truth about the actual SRO between the two signals to measure the accuracy of the

applied SRO estimation methods directly. However, by compensating for different values of SRO in an

MWF-based noise reduction we can determine which SRO yields a better enhancement and use it as a

ground-truth. Applying the SDW-MWF with the specifications mentioned in Section V-E to the received

signals after compensation for different values of SRO shows that the maximum SNR is obtained at 20.60

ppm, hence we use this value as a ground-truth.

Table I lists the mean absolute error (EMA) and the median absolute error (EMdA) of the SRO

estimates, where a signal of 6 seconds is available for the SRO estimation in all methods. We repeated this

experiment for 10 times using different speech signals. To study the effect of the WG scheme described
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TABLE I: The EMA and EMdA of the SRO estimation by LCD, ACD and ML in the static source scenario

using 6 seconds of signal, averaged over 10 different experiments (all units are in ppm).

System Configuration EMA EMdA

ACD 9.55 8.94

ML 1.98 1.97

L
C

D

without WG, without OR 5.09 4.93

without WG, with OR 1.77 1.80

with WG, without OR 2.56 2.61

with WG, with OR 0.59 0.41

in Section (III-B2) and the OR procedure explained in Section (III-B3), we reported the results of the

LCD with and without OR and WG. It is observed that the applied WG technique is effective and the

proposed OR substantially improves the performance of the LCD. Furthermore, the combination of WG

and OR is more powerful than any of them separately and remarkably improve the estimation results,

which suggests that they have a complementary effect on the performance.

Table I also demonstrates that the accuracy of the LCD with OR and WG is considerably more than both

ML and ACD in SRO estimation. Applying the SDW-MWF to the received signals after compensation

for estimated SRO using using LCD, ML and ACD yield SNR improvement of 6.89%, 3.26% and 1.33%

respectively.

It is also shown that the ACD, which uses only the noise-only segments detected through a perfect

VAD yields less accurate results compared to ML and LCD in this scenario, which can be due to the fact

that ACD does not apply useful information in speech segments and requires on consecutive noise-only

segments.

To further investigate the performance of ACD compared to ML and LCD, the accuracy of ACD,

ML and LCD for different signal segment lengths is depicted in Figure 4. This figure illustrates that

ACD requires a long signal segment to yield reliable results, while ML and LCD can estimate the

SRO by processing much shorter signal segments (note that the horizontal and vertical axes are scaled

differently in both figures). This figure also shows that the accuracy of ACD, ML and LCD improves by

increasing the signal segment length. Of course, this comes at the cost of decreased tracking capabilities

and increased algorithmic delays. This figure demonstrates that for a short batch-size of only 1 second

LCD is considerably more accurate than ML, which suggests that the tracking capabilities of LCD is

superior compared to ML.
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Fig. 4: The EMA of the SRO estimation versus signal segment length (batch size) in a static source

scenario, averaged over 10 experiments. Note that the horizontal and vertical axes are scaled differently

in both figures.

2) Turn-taking speech sources scenario: In this experiment, we perform SRO estimation over a real

conversation of two persons recorded in an office environment.

The room contains 4 sound sources, which produce either speech or background noise. The same

recording devices mentioned in Section V-C1 are used.

We have recorded the 5 different conversations while the speaker were located at different positions

of the room and the microphones locations were the same as those of the last experiment depicted in

Figure 3.

Table II lists the mean absolute error (EMA) and the median absolute error (EMdA) of the SRO

estimates, where a signal of 6 seconds is available for the SRO estimation in all methods. Table ??

demonstrates that the results of LCD, ML and ACD in SRO estimation. As expected, the accuracy of

ACD and ML is considerably lower than that of the LCD with OR and WG due to the violation of the

fixed transfer function assumption. In this case, since each speaker generates a different transfer function

at the microphones, the coherence abruptly changes when one speaker becomes active and the other

becomes silent. This abrupt change in coherence will only affect one or two measurement frames in the

LCD method, which will be detected and removed via the applied OR procedure, whereas ML and ACD
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TABLE II: The EMA and EMdA of the SRO estimation by LCD, ACD and ML in the turn-taking source

scenario using 6 seconds of signal, averaged over 5 different experiments (all units are in ppm).

System Configuration EMA EMdA

ACD 13.05 13.87

ML 3.22 2.47

L
C

D

without WG, without OR 16.69 16.87

without WG, with OR 9.22 6.19

with WG, without OR 12.27 12.10

with WG, with OR 0.80 0.79

estimate the SRO from the coherence over the full batch size.

D. SRO Estimation on Simulated Data

It is noted that our experiments on real recorded data is very limited and we could not study the

statistical significance of the obtained results. Therefore, to perform a Monte-Carlo experiment over

different controlled experimental settings, we have simulated a 5m × 5m × 3m reverberant room with

a T60 reverberation time of 0.3 seconds using the image method [36], [37]. We used 25 speech signals

from the Hearing in Noise Test (HINT) database [35]. Signal re-sampling is performed using Sound

eXchange (SOX) software6. An uncorrelated (diffuse) additive white Gaussian noise is present in each

microphone with power equal to 20% of the speech signal power. We considered three cases a static

source case, a turn-taking source case and a multiple source case.

1) Static speech source scenario: In this scenario, the microphones are located at positions [4.5 1 0.5]

and [0.5 1 0.5]. The sampling rate of the reference microphone is set to 8kHz and the sampling rate of

the second microphone is subject to an offset of 1, 10, 40 and 80 parts per million (ppm) of the sampling

rate of the first microphone. In this experiment, a speech source and a localized white noise source are

used. The ratio of the power of the speech signal and the power of the localized noise signal is around 9

dB. For every SRO value, we conducted 100 Monte-Carlo experiments (4 experiments for each speech

signal), where the location of the speech and noise sources are randomly selected.

Table III lists the mean absolute error (EMA) of the SRO estimates in static, turn-taking and multiple

scenarios, where a signal of 6 seconds is available for the SRO estimation. This table demonstrates that

6http://sox.sourceforge.net/
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Fig. 5: Description of case 2 in multiple speech sources scenario.

LCD outperforms ACD and ML in static source scenario. This results concur with those of real-world

recorded data.

2) Turn-taking speech source scenario: In the first case, we simulate a conversation between three

speakers. Consisting of three time intervals of 2 seconds each. In each time interval, only one of the

speakers is active. The sampling rate of the reference microphone is set to 8kHz and the sampling rate of

the second microphone is subject to an offset of 10, 20, 40 and 80 ppm. Table III shows that performance

of LCD, ACD and ML in this scenario. Similar to the results of real-world recorded data, the LCD yields

more accurate results compared to ACD and ML in the turn-taking scenario.

3) Multiple speech source scenario: In this case, a 20mx10m reverberant room is simulated with a T60

reverberation time of 0.3 seconds. The room contains 10 sound sources, which produce either continuous

speech or background noise and 2 recording devices with nominal sampling rate of 8kHz. The location

of the sources and microphones is depicted in Figure 5.

Table III lists the EMA of the SRO estimates in these cases, where the available data of SRO estimation

for both methods is 6 seconds. This table shows that the LCD still estimates the SRO without a severe

performance degradation, which shows the effectiveness of the proposed OR and WG which up-scale the

contribution of good frequency bins.

E. SRO compensation for noise reduction

For noise reduction, the speech-distortion weighted MWF (SDW-MWF) [38] with square-root Hann

window of size 1024, 50% window overlap and a forgetting factor of 0.997 is applied to the static speech
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TABLE III: The EMA of the SRO estimation by the LCD and ML in the static, turn-taking and multiple

speech sources scenarios (all units are in ppm).

PPM
Static Turn-taking Multiple

ACD LCD ML ACD ML LCD ACD ML LCD

80 10.25 0.18 0.13 20.48 18.62 14.07 5.23 0.42 0.24

40 8.67 0.16 0.13 24.54 17.69 9.61 6.44 0.48 0.27

20 8.34 0.14 0.12 26.44 14.82 8.12 7.54 0.50 0.50

10 8.15 0.14 0.12 29.82 11.39 6.67 9.01 0.50 0.65

TABLE IV: The SNR of signals after using the proposed hybrid compensation approach (dB).

PPM Uncompensated
Compensated

with true SRO with estimated SRO

100 17.43 20.52 20.55

10 19.94 20.55 20.54

1 20.50 20.50 20.50

0 20.55 20.55 20.55

source scenario described in Section V-D1. Table IV shows the output SNR of the SDW-MWF without

SRO compensation (in the column ’Uncompensated’) and after SRO compensation using the LCD (in the

column ’Compensated’). To investigate the effect of errors in the estimation of the SRO on the proposed

compensation, we list both the results with perfectly known SRO and with the estimated SRO.

Comparison of the last row of this table -where there is no SRO between the nodes- with the rest

of the rows shows that the SRO substantially degrades the performance of the MWF. This degradation

increases with the SRO7. Therefore, a compensation method to avoid this performance-loss is necessary.

The result after compensation with the true SRO is very near to the perfect case (no SRO) indicating

the efficiency of the applied compensation scheme. The compensation, in which the SRO is estimated,

produces similar results. Therefore it is confirmed that the applied method can effectively recover the

degradation of the MWF performance caused by SRO.

7It is noted that the experiments are performed with an adaptive MWF [39], which implicitly already performs some SRO

compensation due to the continuous updating of the second-order statistics of the signals within the MWF. However, this implicit

SRO compensation is not sufficient, since the SRO causes variations in these statistics which are usually too fast to be tracked

with an adaptive MWF.
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VI. CONCLUSIONS

A new approach to blind SRO estimation in an asynchronous wireless acoustic sensor network has

been proposed in this paper. This method assumes that the SRO causes a linearly increasing time-delay

between two signals, hence induces a linearly increasing phase-shift in the STFT domain. For the SRO

estimation, the phase of the coherence function between two microphone signals is monitored, where

the SRO induces a phase-drift over time. After outlier frequency bin removal, the obtained coherence

phase-drift, which has a linear relation with the SRO of the signals, is used in a weighted LS framework

to estimate the SRO. Experimental results in different scenarios with static and turn-taking sources show

the effectiveness of the LCD. Finally it has been demonstrated that the proposed SRO estimation along

with a hybrid SRO compensation can eliminate the performance loss due to SRO in an MWF-based

signal enhancement.

APPENDIX A

The WG scheme (31) implies that the global maximum of vk,q is 1, which is attained if and only if

∣

∣Φm
1,i[k; ρ

m
i ]

∣

∣ = 1 (44)

∣

∣

∣
Φm−Λ
1,i [k; ρm−Λi ]

∣

∣

∣
= 1. (45)

We prove that if (21) holds, then vk,q = 1. W.l.o.g. let’s assume q = 1. Assuming the first condition (21)

is satisfied, the coherence (8) can be simplified to (11) as shown in equations (8)-(11), and hence it follows

that

∣

∣Φm
1,i[k; ρ

m
i ]

∣

∣ =

∣

∣

∣

∣

H1,z[k](Hi,z[k])
∗

|H1,z[k]| |Hi,z[k]|

∣

∣

∣

∣

= 1. (46)

In equations (8)-(15), which hold under assumption (21), we show that Φm−Λ
1,i [k; ρm−Λi ] = Φm

1,i[k; ρ
m
i ] exp

(

2πkΛ
K

εi
)

,

hence

∣

∣

∣
Φm−Λ
1,i [k; ρm−Λi ]

∣

∣

∣
= 1. (47)

Therefore, vk,q is maximized if the condition (21) is satisfied.

This proof shows that (21) is a sufficient condition to maximize the weight vk,q, although it may not be

necessary condition. Nevertheless, significant discrepancies from condition (21) will typically decrease

the weight unless in contrive cases.
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APPENDIX B

In this appendix, we show that (22) yields a sufficient condition to minimize the denominator of (31).

W.l.o.g. let’s assume q = 1. Since | · |2 is a convex function, the global minimum of the denominator

of (31) is 1, which is attained if

∣

∣

∣
Φm−Λ
1,i [k; ρm−Λi ]

∣

∣

∣
=

∣

∣Φm
1,i[k; ρ

m
i ]

∣

∣ . (48)

In equations (24)-(27), we calculated Φm−Λ
1,i [k; ρm−Λi ] and Φm

1,i[k; ρ
m
i ] assuming the second condi-

tion (22) is satisfied. Comparing (25) and (27) shows that the magnitudes of Φm−Λ
1,i [k; ρm−Λi ] and

Φm
1,i[k; ρ

m
i ] are the same. Therefore, the denominator of (31) is minimized if the condition (22) is satisfied.

APPENDIX C

Assume both LCD and ACD methods use the same measurements ak,q in all frequency bins and

consider

ak,q = a�k,q + ek,q, (49)

where a�k,q is the actual phase drift between the two signals due to SRO and ek,q is its corresponding

error. To obtain a fair comparison between ACD and LCD, we do not include WG and OR in LCD. To

make the analysis mathematically tractable we assume that both methods use the same number of bins

and we ignore phase wrapping, i.e., we assume that K = Kmax and the error ek,q are small enough such

that no phase wrapping occurs. The SRO estimation8 of the ACD can be obtained by inserting (49) into

(37), i.e.,

ε̂ACDi =
1

K

K
∑

k=1

K

2πΛk

(

a�k,1 + ek,1
)

, (50)

or

ε̂ACDi = εi +
1

K

K
∑

k=1

K

2πΛk
ek,1. (51)

Assuming that the measurement errors are independent and identically distributed (iid) with a zero-mean

Gaussian distribution with variance σ2
e , the variance of the ACD SRO estimation error, denoted as (σACD

i )2,

is equal to

(σACD

i )2 = E{(ε̂ACDi − εi)
2} (52)

=
σ2
e

K2

K
∑

k=1

(

K

2πΛk

)2

. (53)

8For easy exposition and w.l.o.g we assume that Q = 1 in this proof.
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The SRO estimation of LCD can be obtained by inserting9 (49) into (20), i.e.,

ε̂LSi =

~BT
(

~A� + ~e
)

~BT ~B
, (54)

where A
� and e are matrices of appropriate size with elements a�k,q and ek,q respectively. Expanding

(54) results in

ε̂LSi = εi +

∑K
k=1

2πΛk
K

ek,1
∑K

k=1

(

2πΛk
K

)2 . (55)

The variance of LCD SRO estimation error, denoted as (σLCD

i )2, equal to

(σLCD

i )2 = E{(ε̂LCDi − εi)
2} (56)

=
σ2
e

∑K
k=1

(

2πΛk
K

)2 . (57)

Consider the SRO estimation variance of LCD and ACD obtained in (57) and (53) respectively. The

Cauchy-Schwarz inequality implies that

|t̄1ū1 + · · ·+ t̄K ūK |2 ≤

(|t̄1|2 + · · ·+ |t̄K |2)(|ū1|2 + · · ·+ |ūK |2). (58)

Replacing t̄k by 1
ūk

and ūk by 2πΛk
Kσe

, results in σLCD

i ≤ σACD

i , which implies that LCD yields a more

accurate estimation compared to ACD.

In the case of dynamic source scenario, the measurement error mean µe can be non-zero. In this case,

the mean of the ACD and LCD estimations are obtained as

µACD

i = E{ε̂ACDi } = εi +
µe

K

K
∑

k=1

K

2πΛk
, (59)

and

µLCD

i = E{ε̂LCDi } = εi +

∑K
k=1

2πΛk
K

∑K
k=1

(

2πΛk
K

)2µe, (60)

respectively.

By expanding the series in numerator and denominator of (60), the mean of LCD estimation error can

be obtained as

µLCD

i = εi +
3K

2πΛ(2K + 1)
µe (61)

9To have a fair comparison between the ACD and LCD, we ignore using OR and WG in this proof.
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By comparing (61) and (59), it is trivial to validate that |µLCD − εi| ≤ |µACD − εi|, where the equality

holds for K = 1 only. This implies that the expected value of the SRO estimation error using LCD is

almost always lower compared to ACD.

REFERENCES

[1] M. H. Bahari, A. Bertrand, and M. Moonen, “Blind sampling rate offset estimation based on coherence drift in wireless

acoustic sensor networks,” in Proc. European signal processing conference (EUSIPCO), Nice, France, Sep. 2015, pp.

2326–2330.

[2] A. Bertrand and M. Moonen, “Distributed adaptive estimation of node-specific signals in wireless sensor networks with a

tree topology,” Signal Processing, IEEE Transactions on, vol. 59, no. 5, pp. 2196–2210, 2011.

[3] L. Lanbo, Z. Shengli, and C. Jun-Hong, “Prospects and problems of wireless communication for underwater sensor

networks,” Wireless Communications and Mobile Computing, vol. 8, no. 8, pp. 977–994, 2008.

[4] M. F. F. B. Ismail and L. W. Yie, “Acoustic monitoring system using wireless sensor networks,” Procedia Engineering,

vol. 41, pp. 68–74, 2012.

[5] C.-Y. Chong and S. P. Kumar, “Sensor networks: evolution, opportunities, and challenges,” Proceedings of the IEEE,

vol. 91, no. 8, pp. 1247–1256, 2003.

[6] A. Bertrand, “Applications and trends in wireless acoustic sensor networks: a signal processing perspective,” in Commu-

nications and Vehicular Technology in the Benelux (SCVT), 2011 18th IEEE Symposium on, 2011, pp. 1–6.

[7] A. Bertrand and M. Moonen, “Robust distributed noise reduction in hearing aids with external acoustic sensor nodes,”

EURASIP Journal on Applied Signal Processing, p. 12, 2009.

[8] M. H. Bahari, J. Plata-Chaves, A. Bertrand, and M. Moonen, “Distributed labelling of audio sources in wireless acoustic

sensor networks using consensus and matching,” in Proc. European signal processing conf. (EUSIPCO), Hungary, 2016,

pp. 2345–2349.

[9] S. Markovich-Golan, S. Gannot, and I. Cohen, “Blind sampling rate offset estimation and compensation in wireless acoustic

sensor networks with application to beamforming,” in Acoustic Signal Enhancement; Proceedings of IWAENC 2012;

International Workshop on. VDE, 2012, pp. 1–4.

[10] S. Miyabe, N. Ono, and S. Makino, “Blind compensation of inter-channel sampling frequency mismatch with maximum

likelihood estimation in stft domain,” in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International

Conference on. IEEE, 2013, pp. 674–678.

[11] R. Lienhart, I. Kozintsev, S. Wehr, and M. Yeung, “On the importance of exact synchronization for distributed audio signal

processing,” in Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03). 2003 IEEE International

Conference on, vol. 4, April 2003, pp. IV–840–3 vol.4.

[12] S. Miyabe, N. Ono, and S. Makino, “Blind compensation of interchannel sampling frequency mismatch for ad hoc

microphone array based on maximum likelihood estimation,” Signal Processing, vol. 107, pp. 185 – 196, 2015.

[13] D. Cherkassky and S. Gannot, “Blind synchronization in wireless sensor networks with application to speech enhancement,”

International Workshop on Acoustic Signal Enhancement 2014, 2014.

[14] S. Wehr, I. Kozintsev, R. Lienhart, and W. Kellermann, “Synchronization of acoustic sensors for distributed ad-hoc audio

networks and its use for blind source separation,” in Multimedia Software Engineering, 2004. Proceedings. IEEE Sixth

International Symposium on. IEEE, 2004, pp. 18–25.

December 25, 2016 DRAFT



27
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