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ABSTRACT

Auditory attention decoding (AAD) algorithms decode the
auditory attention from electroencephalography (EEG) sig-
nals which capture the neural activity of the listener. Such
AAD methods are believed to be an important ingredient to-
wards so-called neuro-steered assistive hearing devices. For
example, traditional AAD decoders allow to detect to which
of multiple speakers a listener is attending to by reconstruct-
ing the amplitude envelope of the attended speech signal from
the EEG signals. Recently, an alternative paradigm to this
stimulus reconstruction approach was proposed, in which the
directional focus of auditory attention is determined instead,
solely based on the EEG, using common spatial pattern filters
(CSP). Here, we propose Riemannian geometry-based clas-
sification (RGC) as an alternative for this CSP approach, in
which the covariance matrix of a new EEG segment is directly
classified while taking its Riemannian structure into account.
While the proposed RGC method performs similarly to the
CSP method for short decision lengths (i.e., the amount of
EEG samples used to make a decision), we show that it sig-
nificantly outperforms it for longer decision window lengths.

Index Terms— neuro-steered hearing device, auditory
attention decoding, directional focus of attention, brain-
computer interface, Riemannian geometry, electroencephalog-
raphy

1. INTRODUCTION

Previous research has shown that it is possible to decode the
auditory attention from brain activity measured by electroen-
cephalography (EEG) sensors [1, 2, 3]. These auditory atten-
tion decoding (AAD) algorithms fill an important gap in the

This research is funded by an Aspirant Grant from the Research Foun-
dation - Flanders (FWO) (for S. Geirnaert), the KU Leuven Special Research
Fund C14/16/057, FWO project nr. G0A4918N, the European Research
Council (ERC) under the European Union’s Horizon 2020 research and in-
novation programme (grant agreement No 802895 and grant agreement No
637424), and the Flemish Government (AI Research Program). The scientific
responsibility is assumed by its authors.

S. Geirnaert and A. Bertrand are also affiliated with Leuven.AI - KU
Leuven Institute for AI, Belgium.

design of assistive hearing devices (e.g., cochlear implants or
hearing aids), as they inform classical speaker separation and
noise reduction algorithms about the speaker a user wants
to attend to in a multi-speaker scenario. As such, AAD al-
gorithms constitute a fundamental building block of neuro-
steered hearing devices.

AAD algorithms traditionally use a stimulus reconstruc-
tion approach, in which a spatio-temporal decoder is applied
to the EEG to reconstruct the amplitude envelope of the at-
tended speaker [1, 3]. The decoded speech envelope then tra-
ditionally shows a higher correlation coefficient with the at-
tended speech envelope than with the unattended speech enve-
lope(s). This approach, however, suffers from low decoding
accuracies at high speed, i.e., when using few data to decode
the auditory attention [3, 4]. As these short decision win-
dows (i.e., the amount of data used to decode the attention)
< 10 s are paramount for the practical applicability of AAD
algorithms, for example, when the attention is switched be-
tween two speakers [4], the stimulus reconstruction approach
might be too slow for practical neuro-steered hearing devices
or for conducting research experiments that require tracking
of attention. Furthermore, this approach requires an error-
prone speech separation step, in order to retrieve the indi-
vidual speech envelopes from the recorded mixture of speech
sources [3, 5].

As an alternative paradigm, decoding the directional focus
of auditory attention, solely based on the EEG, was proposed
in [2]. In this approach, the common spatial pattern (CSP) fil-
tering method is used to discriminate between different angu-
lar positions of the attended and unattended speaker(s). This
CSP approach significantly outperforms the stimulus recon-
struction approach on short decision windows. Furthermore,
this paradigm does not require a preceding speech separation
step. As such, this alternative paradigm improves the practi-
cal applicability of neuro-steered hearing devices.

We propose a new AAD algorithm, capitalizing this new
paradigm of decoding the directional focus of auditory atten-
tion, but replacing the traditional CSP filter method with a
so-called Riemannian geometry classifier (RGC). This tech-
nique has become very popular in the brain-computer inter-



face (BCI) community [6] and outperforms the classical CSP
approach in various BCI applications, in particular in motor
imagery paradigms [6, 7, 8]. In Section 2, we explain how
this RGC can be used to classify the directional focus of au-
ditory attention. In Section 3, we compare the proposed RGC
classifier with the state-of-the-art CSP method and stimulus
reconstruction approach. Conclusions are drawn in Section 4.

2. RIEMANNIAN GEOMETRY-BASED
CLASSIFICATION

In recent years, a new class of RGCs has gained a lot of at-
tention in the BCI community [6]. Instead of pre-filtering
the EEG using data-driven filters based on the EEG covari-
ance structure (as is the case in CSP filtering [9]), the EEG
covariance matrices are classified directly, as it is assumed
that all spatial (and potentially temporal) information con-
cerning different conditions is encoded in these covariance
matrices [7, 8]. However, covariance matrices are symmet-
ric positive definite (SPD), such that they live on a differen-
tiable Riemannian manifold, rather than in a Euclidean space.
RGCs take this specific structure into account to improve clas-
sification performance. More details about RGCs and their
use in BCIs can be found in [6, 7, 8].

As covariance matrices live on a differentiable Rieman-
nian manifold, a tangent space at each point (i.e., covariance
matrix) can be computed. Such a tangent space, containing
symmetric matrices, is Euclidean, where Euclidean distances
between tangent vectors approximate Riemannian distances
(i.e., distances between covariance matrices on the Rieman-
nian manifold) of the (projected) covariance matrices. As tra-
ditional classifiers rely on Euclidean metrics, which conflict
with the Riemannian structure of the manifold on which co-
variance matrices live, it is preferred to first project all covari-
ance matrices onto the tangent space of a reference matrix.
Note that this is the crucial difference with a straightforward
direct classification of covariance matrices, which assumes a
Euclidean structure of the covariance matrices. In the RGC,
the intermediate tangent space mapping (TSM) assures that
Euclidean metrics are applicable. For the tangent space to be a
good local approximation of the Riemannian manifold, where
Euclidean distances between tangent vectors closely approxi-
mate Riemannian distances between the covariance matrices,
a good choice of the reference point of the TSM is the geo-
metric or Riemannian mean.

Let {Xk, yk}Kk=1 be a training set containing K segments
of bandpass filtered EEG data Xk ∈ RC×T , with C channels
and T time samples, and with known labels yk ∈ {−1, 1}
(e.g., attending to the left or right speaker). The correspond-
ing covariance matrices are defined as

Rk =
1

T − 1
XkXT

k ∈ RC×C . (1)

As in [2], we estimate the covariance matrices using ridge

regression, where the regularization hyperparameter is deter-
mined automatically using the method proposed in [10]. This
hyperparameter estimation method is considered to be the
state-of-the-art in BCI research [6].

The geometric or Riemannian mean of these K covari-
ance matrices is then given by the SPD matrix RG that min-
imizes the mean squared Riemannian distance from each Rk

to RG [7]:

RG = G(R1, . . . ,RK) = argmin
R is SPD

K∑
k=1

δ2R(Rk,R) , (2)

where δR(R,S) denotes the Riemannian distance between
two SPD matrices R and S, which can be computed as [7]:

δR(R,S) =
∣∣∣∣log(R−1S

)∣∣∣∣
F
, (3)

with log(·) the matrix-logarithm. Given a diagonalizable ma-
trix A = VΛV−1, the matrix-logarithm of A is defined as:

log(A) = V log(Λ)V−1, (4)

with log(Λ) a diagonal matrix with diagonal elements log(λi).
The Riemannian mean in (2) can only be computed in an it-
erative way, by iteratively computing the Euclidean mean in
the tangent space mapping, or can be approximated using
log-euclidean metrics [11]:

RG ≈ exp

(
1

K

K∑
k=1

log(Rk)

)
, (5)

where the matrix-exponential exp(·) is defined similarly as
the matrix-logarithm in (4). We here use the latter estimation
method in (5) to efficiently compute the Riemannian mean
covariance matrix.

The normalized TSM of the covariance matrix Rk onto
the tangent space at reference point RG (2) is then equal
to [7]:

Tk = log
(
R

− 1
2

G RkR
− 1

2

G

)
. (6)

The TSM Tk is then half-vectorized (i.e., a vectorization over
the lower-triangular part only, as it is a symmetric matrix),
which leads to the feature vector fk ∈ R

C(C+1)
2 ×1, represent-

ing EEG segment Xk of the training set. Similarly, for a new
test segment X(test), the test feature vector can be found by
computing the TSM of its covariance matrix using the Rie-
mannian mean RG over the training set.

The generated feature vectors with the aforementioned
method can then be classified using any (Euclidean) classi-
fier, trained with the training set {fk, yk}Kk=1. We here choose
a support vector machine (SVM) classifier with a linear ker-
nel. Such a classifier works well in high-dimensional feature
spaces, which we are dealing with here. Note that combin-
ing the TSM with a linear SVM can be interpreted as apply-
ing an SVM with a Riemannian kernel on the half-vectorized
original covariance matrix [8]. The classification algorithm is
summarized in Algorithm 1.



Algorithm 1 Riemannian geometry-based classification

Input: Test EEG segment X(test) ∈ RC×T and given Rieman-
nian mean RG over a training set and (linear) SVM classifier
D(·)
Output: Class label y(test) (e.g., left or right at-
tended)

1: Bandpass filter X(test) between 12–30Hz
2: Compute a regularized covariance matrix:

R(test) =
1

T − 1
X(test)X(test)T

+ δI,

with regularization constant δ
3: Compute the tangent space mapping onto Riemannian

mean RG:

T(test) = log
(
R

− 1
2

G R(test)R
− 1

2

G

)
4: Compute the feature vector as the half-vectorization

f (test) = vech
(
T(test)

)
of the TSM

5: Classify: y(test) = sign(D (f))

3. EXPERIMENTS AND RESULTS

We compare the proposed RGC method with the CSP method
[2], which is the state-of-the-art method for decoding the di-
rectional focus of auditory attention. In the CSP method used
in [2], features are generated by applying six spatial filters
that maximize discriminability [9] and are classified with a
linear discriminant analysis (LDA) classifier. The state-of-
the-art stimulus reconstruction method (canonical correlation
analysis (CCA) + LDA), as shown in [12, 3], is also added
as a reference. For the CCA method, the same preprocessing
steps and design choices as in [2] are used.

3.1. AAD dataset

The comparison is performed on a publicly available dataset,
which is recorded for the purpose of AAD [13, 14]. This
dataset contains the EEG of 16 subjects, attending to one
of two simultaneously active competing speakers, located at
±90◦ along the azimuth direction. Per subject, 72 minutes
of data is available. The EEG is recorded using a C = 64-
channel BioSemi ActiveTwo system. For more details, we
refer to [13, 14].

3.2. Design choices

3.2.1. Bandpass filtering

According to the analysis of the filterband importance in the
state-of-the-art CSP approach [2], the β-band (12–30Hz) is
the most useful EEG frequency band to decode the direc-

tional focus of attention. As such, both for the baseline CSP
algorithm, as for the proposed RGC method, the EEG is pre-
filtered in the β-band using an 8th-order Butterworth filter and
downsampled to 64Hz.

3.3. Performance evaluation

The proposed RGC method is tested in a subject-specific way
using ten-fold cross-validation. Therefore, the 72 minutes of
EEG data per subject are split into 60 s segments, which are
randomly distributed across ten folds. Note that these 60 s
segments are normalized by setting the mean per channel to
zero, as well as setting the Frobenius norm across all channels
to one. The decision window length is defined as the length of
the EEG window over which a single AAD decision is made
(this usually results in a trade-off between AAD accuracy and
decision latency [4]). In the case of our RGC framework, the
decision window length is defined by the number of samples
T over which the covariance matrices are estimated. To eval-
uate the AAD accuracy for various decision window lengths,
all 60 s segments are split into shorter decision windows. The
Riemannian mean in (2) and linear SVM are retrained for ev-
ery decision window length. The significance level for above-
chance AAD accuracy is computed based on the inverse bi-
nomial distribution [1]. Note that shorter decision window
lengths result in more decisions over the test fold, resulting in
a lower significance level. A similar ten-fold cross-validation
procedure is used for the CSP and CCA method.

Evaluating the AAD accuracy across different decision
window lengths is important, for example, in the context
of detecting switches in auditory attention. To resolve the
traditional trade-off between accuracy and decision window
length, the minimal expected switch duration (MESD) metric
[s] is used, as proposed in [4]. This single-number AAD per-
formance metric quantifies the minimal expected time it takes
to switch the gain from one speaker to another, following a
switch in attention, based on an optimized stochastic model
of a robust (i.e., assuring stable operation above a pre-defined
comfort level) attention-steered gain control system.

3.4. Results

Figure 1 shows the AAD accuracies as a function of deci-
sion window length for the RGC, CSP, and CCA method.
The RGC method outperforms the CSP method on almost
all decision window lengths with ≈ 6%. However, there is
a much larger decrease in performance for the shortest deci-
sion window lengths, below 5 s, for the RGC method than for
the CSP method. This is mostly due to the worse covariance
matrix estimation at these shorter decision window lengths,
which is avoided in the CSP method. As less and less data
is available per decision window to estimate the covariance
matrix, more and more regularization is required, introducing
a larger bias on the estimated covariance matrix. At the deci-
sion window length of 531ms (i.e., using T = 34 samples at
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Fig. 1: The mean AAD accuracy across subjects (± standard
deviation across subjects) shows that the RGC outperforms
the CSP approach on almost all decision window lengths, but
exhibits a faster decrease in performance on very short deci-
sion window lengths, resulting in very similar performances
on 531ms decision windows.

fs = 64Hz), both methods have very similar accuracies. The
CSP method, in contrast, shows only a very limited decrease
in performance. Note that, potentially, the RGC method could
be improved on these very short decision windows by apply-
ing an intelligent dimensionality reduction or feature selec-
tion method, which is beyond the scope of this paper.

As is also shown in [2], the traditional stimulus recon-
struction method (CCA) outperforms the CSP method for the
- less practical - long decision windows > 20 s. As the RGC
method outperforms the CSP method on almost all decision
window lengths, the region in which the CCA method is the
best has decreased to the range > 40 s. If one would con-
struct an AAD algorithm combining both approaches (RGC
+ CCA), the envelope would largely, and in the most impor-
tant regions, be dominated by the RGC method.

The per-subject MESD values are all< 5 s (except for two
outliers due to poorer performing subjects with MESDs> 5 s,
but < 24 s), with median MESD = 2.26 s and [25, 75]%-
quantiles = [2.13, 2.62]s. Note that the MESD values of the
CCA method are all above 5 s (due to poor performance at
short decision windows, median MESD = 16.07 s). The me-
dian MESD of the CSP method is = 2.34 s, with [25, 75]%-
quantiles = [2.12, 2.61]s. For the CSP and RGC method, as
there are still relatively high accuracies on the very short deci-
sion windows, the optimal trade-off point between AAD ac-
curacy and decision window length is very often located at
the shortest decision window lengths. As both methods have
very similar accuracies there (see Figure 1), the MESD val-
ues are also very similar across both methods, with similar

median values. Furthermore, a paired Wilcoxon signed-rank
test (n = 16, p = 0.0627) shows no significant difference
between both methods.

4. DISCUSSION AND CONCLUSION

We have shown that the proposed RGC is capable of outper-
forming the state-of-the-art CSP method to decode the di-
rectional focus of auditory attention by ≈ 6% on most de-
cision window lengths. However, two limitations are to be
noted. Firstly, the RGC method performs similarly to the CSP
method on very short decision windows (see Figure 1), due to
the worse covariance matrix estimation on small sample sizes.
As the MESD values indicate that these very short decision
windows are most relevant in the context of attention switch-
ing, the RGC method achieves a similar overall MESD as the
CSP method. Furthermore, this RGC method has a higher
computational load than applying a simple spatial filter, due
to the TSM in (6). Both limitations need to be considered
for the real-time AAD application in neuro-steered hearing
devices.

To conclude, the large increase in AAD accuracy com-
pared to the state-of-the-art CSP method makes the proposed
method a good candidate to decode the auditory attention,
given that it also outperforms the stimulus reconstruction (i.e.,
CCA) approach for decision window lengths below 40 s. This
makes the RGC-based decoding of the directional focus of au-
ditory attention one of the best AAD methods to date.
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