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Abstract—Auditory attention detection (AAD) is an essential
building block for future generations of ‘neuro-steered’ hearing
prostheses. In a multi-speaker scenario, it uses neural recordings
to detect to which speaker the listener is attending and assists as
such the noise reduction algorithm within the hearing device. Re-
cently, a multitude of these AAD algorithms has been developed,
based on electroencephalography (EEG) recordings. With the
emergence of AAD algorithms, a standardized way of evaluating
these AAD algorithms becomes paramount. However, this is not
trivial due to an inherent trade-off between detection delay and
accuracy. We propose a new performance metric to evaluate
AAD algorithms that resolves this trade-off: the expected switch
duration (ESD). The ESD is based on a Markov chain model of
an adaptive gain control system in a hearing aid and quantifies
the expected time needed to switch its operation from one speaker
to another when the attention is switched. We validate the metric
on simulated data and show on real EEG recordings that it is an
interpretable metric that allows fair comparison between AAD
algorithms, combining both the accuracy of the AAD algorithm
and the time needed to make a decision.

I. INTRODUCTION

The human brain is capable of focusing attention on a spe-
cific speaker in the presence of background noise, including
competing speakers [1]. However, people with hearing impair-
ments have major difficulties in understanding the attended
speaker. Although current hearing aids are able to filter out the
targeted speaker, and as such overcome the difficulties of the
hearing impaired, these devices are not yet able to incorporate
the attentional process. Suboptimal heuristics, such as speaker
loudness, are currently used to select the targeted speaker.
Recent advances have however shown that it is possible to
decode attention directly from the brain, for example via the
electroencephalogram (EEG) (e.g., [2]–[6]). These auditory at-
tention detection (AAD) algorithms are essential as a building
block in future generations of ‘neuro-steered’ hearing aids [7].

As there is an increase in efforts to design such AAD
algorithms, it becomes important to have proper tools at our
disposal to evaluate these AAD algorithms. Currently, AAD
algorithms are evaluated by means of the detection accuracy:
the percentage of decision windows of EEG and audio data
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in which the attention is decoded properly. However, the
accuracy depends on the length of the decision window, which
consequently is an important parameter in the interpretation
of the results. This method of evaluation inherently has
some disadvantages. Firstly, the accuracy is often evaluated
at different decision window lengths, resulting in multiple
metrics (one for each window length), making it hard to draw
a general conclusion. Moreover, a different choice of decision
window lengths at which the accuracy is evaluated hampers
comparison and could lead to different conclusions and thus to
inconclusiveness. Furthermore, it is not clear which decision
window lengths are more relevant in the context of neuro-
steered hearing aids and are thus more important to base
performance evaluation on.

There have been attempts to overcome some of these issues,
for example by using the information transfer rate as metric,
which quantifies the number of bits that can be transmitted per
second [3]. However, there is not yet a performance metric that
meets the following requirements:

• Interpretable: the performance metric should be inter-
pretable in the hearing aid context. The information
transfer rate lacks a clear interpretation in the context
of AAD.

• Single-number: the performance metric should summa-
rize the complete performance of the AAD algorithm in
a single number, facilitating comparison between AAD
algorithms.

• Combining accuracy and decision time: in the hearing-
aid use case, the time needed to make an AAD decision
(the decision window length), is equally important as
the accuracy at that specific window length, as it also
determines how fast a user can switch between two
speakers. The performance metric should thus integrate
both accuracy and decision time.

• Independent of evaluated decision window lengths: the
performance metric should be as independent as possible
of the used window lengths to evaluate the accuracy, in
order to ease the comparison between scientific reports.

The lack of a performance metric that integrates the previous
requirements motivates the design of a new metric: the ex-
pected switch duration (ESD). We build up the theory behind
this metric in Section II, and validate the metric on simulations
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Fig. 1: This Markov chain models an adaptive gain control
system in a neuro-steered hearing aid. Each state i is linked
to a relative amplification x of the targeted speaker versus the
background noise.

and show that it meets the listed requirements by evaluating
it on real EEG recordings in Section III.

II. EXPECTED SWITCH DURATION

The ESD performance metric is based on a Markov chain
model of an adaptive gain control system in a hearing aid
(Section II-A). Essentially, it quantifies the time that the hear-
ing device requires to adapt its operation, when the attention
is switched, between two predefined stable working regions,
each corresponding to a different attended speaker (note that
we further on assume a two-speaker setting for simplicity). By
predefining the lower bound of the P0-confidence interval to
be above a comfort level for the user (representing the stable
working region), the number of states of the Markov chain can
be optimized (Section II-C). Based on this optimized Markov
chain, the ESD can be rigorously defined (Section II-D).

A. Markov chain model

Figure 1 shows a Markov chain of N states as a model for a
smooth gain control system, which is desired in a user-friendly
neuro-steered hearing aid. Each state corresponds to a relative
amplification x ∈ [0, 1] of the targeted speaker versus the
background noise (e.g., including a second speaker). x = 1
matches a certain target gain (maximal amplification) of the
targeted speaker, while still allowing a switch of attention
to the other speaker. x = 0 represents the symmetric case,
where the unattended speaker is amplified at a similar level.
In case the attention is switched to this speaker, the Markov
chain is reversed, such that the previously unattended speaker
corresponds to the target direction state. x = 0.5 implies an
equal amplification of both speakers.

In a realistic setting, incoming EEG and audio data is
buffered for τ seconds (the decision window length), such that
every τ seconds, a new decision can be made. The application
of an AAD algorithm in a real-time fashion then corresponds
to a walk through the Markov chain where an incorrect
AAD decision results in a step back, thereby increasing the
amplification of the wrong speaker. The transition probability
p is equal to the probability of a correct AAD decision, while
q = 1−p is the probability of an incorrect AAD decision. We
assume that p > 0.5, i.e., the applied AAD algorithm performs
better than chance level.

The use of a Markov chain model increases (perceptual)
comfort for the hearing aid user by switching from one speaker

to another with smooth transitions, avoiding sudden changes in
the dominantly perceived speaker. Furthermore, it enables the
user to correct the behavior of the system when incorrect AAD
decisions are made that make that the system starts switching
to the unattended speaker.

B. Steady-state distribution

The steady-state distribution of the Markov chain in Figure 1 is
defined by the per-state probability π(i) = P (x = i−1

N−1 ), i ∈
{1, . . . , N} to be in state i after an infinite number of steps,
starting from any state, while the transition probability p is
fixed. The global balance equations and a normalization con-
dition can be used to compute this steady-state distribution [8]:

π(i) =

N∑
l=1

π(l)pli, (balance equations)

N∑
l=1

π(l) = 1 (normalization condition)

,

where pli corresponds to the transition probability from state
l to state i. The steady-state distribution π(i) can be found
by recursively writing out the balance equations starting from
π(1) (derivation omitted due to space constraints). Defining
p
q = r, we obtain π(i) = ri−1π(1), where π(1) can be found
from the normalization condition:

N∑
l=1

π(l) = 1⇒ π(1) =
r − 1

rN − 1
.

Eventually, we find the following steady-state distribution:

π(i) =
r − 1

rN − 1
ri−1, i ∈ {1, . . . , N}. (1)

C. P0-confidence interval

The steady-state distribution (1) can be used to determine
the P0-confidence interval. The P0-confidence interval cor-
responds to the smallest set of neighboring states in which
the system resides, in a steady-state regime, for at least P0

percent (e.g., 80%) of the time. In the context of a neuro-
steered hearing aid, we interpret it as an optimal working
region of relative gains [x̄, 1] in which the system operates
for at least P0 percent of the time, regardless of AAD errors
that cause transitions opposite to the target direction.

The P0-confidence interval is defined by a lower bound state
k̄, which is equal to the largest i for which:

N∑
j=i

π(j) ≥ P0

(1)⇔ r − 1

rN − 1

N∑
j=i

rj−1 ≥ P0

⇔ rN − ri−1

rN − 1
≥ P0

r>1⇔ rN − rNP0 + P0 ≥ ri−1

⇔ log(rN − rNP0 + P0)

log(r)
+ 1 ≥ i.



The last steps are valid because r > 1 due to the assumption
that p > 0.5 and because the log-function is a monotonically
increasing function. The lower bound state k̄ of the P0-
confidence interval is thus equal to:

k̄ =

⌊
log(rN − rNP0 + P0)

log(r)
+ 1

⌋
, (2)

with b·c the flooring operation. As a result, the P0-confidence
interval is defined as [x̄, 1] = [ k̄−1

N−1 , 1]
Eventually, the number of states N in the Markov chain has

to be minimized to minimize the duration of the switch. How-
ever, in order to model a realistic neuro-steered hearing aid
system, extra constraints on N , relating to the P0-confidence
interval and the smoothness, are needed:
• x̄ ∈ [c, 1]: the lower bound of the P0-confidence interval

should be at least equal to a predefined desired minimum
relative gain c, which ensures a comfortable level for the
listener to sufficiently understand the target speaker. We
thus choose the region in which the hearing aid should
operate for at least P0 percent of the time. This results
in a constraint when minimizing N :

x̄ =
k̄ − 1

N − 1
≥ c. (3)

It can be proven that there exists always such an N (proof
omitted).

• N ≥ Nmin: in order to fully realize the potential of
the Markov chain as an adaptive gain control system to
implement a user-friendly hearing aid (see Section II-A),
a minimal number of states is needed. As a minimal
‘smoothness’ constraint, we want to prevent that the sys-
tem always (for every p and P0 such that p < P0) crosses
x = 0.5 (i.e., the unattended speaker is dominantly
amplified) when leaving the P0-confidence interval due
to an AAD error. This corresponds to putting Nmin = 5.

The optimal number of states N can thus be found by iterating
over N = Nmin, Nmin + 1, Nmin + 2, . . . , in this specific order,
until an N is found that satisfies (3).

D. Expected switch duration

In order to quantify the duration of the switch in the Markov
chain model, we use the mean hitting time as a basic metric.
The mean hitting time hj(i) quantifies the expected number
of steps needed to hit a target state j for the first time, starting
from a certain state i. It is defined as follows:

hj(i) = E{s|i→j} =

+∞∑
s=0

sP (s|i→j), (4)

with i, j ∈ {1, . . . , N}, E{·} denoting the expectation operator
and where P (s|i→ j) is the probability that target state j is
reached for the first time after s steps, when starting in state
i. Using the recursive definition in [8] results in the following
expression for the mean hitting time, when i < j (derivation
omitted due to space constraints):

hj(i) =
j − i

2p− 1
+
p(r−j − r−i)

(2p− 1)2
, for i ≤ j. (5)

We define the duration of the switch as the expected number of
steps needed to enter the optimal working region when starting
outside of that region. In other words, it is the expected number
of steps to go from any state i < k to state k = dc(N−1)+1e,
corresponding to the first state above or equal to the predefined
comfort level c:

E{s|i→k, ∀ i < k} =

+∞∑
s=0

sP (s|i→k, ∀ i < k),

with P (s|i→k,∀ i < k) the probability that target state k is
reached for the first time after s steps, when starting from any
state i < k. By marginalizing in the initial state i, we find:

E{s|i→k,∀ i < k} =

+∞∑
s=0

s

N∑
i=1

P (s|i→k)P (i|i < k).

P (i|i < k) can be found using Bayes’ law:

E{s|i→k,∀ i < k} =

+∞∑
s=0

s

N∑
i=1

P (s|i→k)
P (i < k|i)P (i)

P (i < k)
.

The last expression can be simplified by using:
• P (i) = π(N − i + 1), where the order in the steady-

state distribution (1) is reversed, as the target direction
reversed direction as well. Before the attention switch, the
new interfering speaker was equal to the targeted speaker,
such that as steady-state distribution the one before the
currently indexed situation in Figure 1 should be taken.
The steady-state distribution in the previous situation is
equal to the reversed current steady-state distribution.

• P (i < k|i) = 1 when i < k, 0 otherwise.

• P (i < k) =
k−1∑
l=1

π(N − l + 1), which we define as C.

Using these expressions and (4), the expected number of steps
eventually becomes equal to:

E{s|i→k,∀ i < k} =
1

C

k−1∑
i=1

π(N − i+ 1)hk(i). (6)

The time needed to take a step, τ , which is equal to the
decision window length in the context of an AAD algorithm,
can be used to convert the number of steps into a time metric,
the expected Markov transit time (EMTT) T [s]:

T (p(τ), τ,N) =
τ

C

k−1∑
i=1

π(N − i+ 1)hk(i), (7)

with π(N − i + 1) given by (1), C =
k−1∑
l=1

π(N − l + 1) and

hk(i) given by (5).
One of the main motivations to define a new metric is

the need for a metric that quantifies the performance of an
AAD algorithm regardless of the specific accuracies p at
evaluated window lengths τ . To use a single EMTT as metric
for an AAD algorithm, we first construct a p(τ)-performance
curve by piecewise linearly interpolating through the points
(τi, pi), i ∈ {1, . . . , I} for which the AAD accuracy is actually



evaluated based on real data. The EMTT T (7) can then
be minimized over the performance curve. To this end, we
have to minimize the number of states for each (possibly
interpolated) (τ, p)-pair using the guidelines in Section II-C,
as the EMTT T (7) is monotonically non-decreasing with
N . We call the resulting EMTT the expected switch duration
(ESD) of an AAD algorithm, which is formally defined below:

Definition (Expected switch duration)
The expected switch duration (ESD) is the expected time
required to reach a predefined stable working region defined
via the comfort level c, after an attention switch, in an
optimized Markov chain as a model for an adaptive gain
control system in a neuro-steered hearing prosthesis. Formally,
it is the expected time to reach the comfort level c in the fastest
Markov chain with at least Nmin states for which x̄ ≥ c, i.e.,
the lower bound x̄ of the P0-confidence interval is above c:

ESD = min
N,τ

T (p(τ), τ,N)

s.t. x̄ ∈ [c, 1]

N ≥ Nmin

(8)

where T (p(τ), τ,N) is defined in (7) and x̄ = k̄−1
N−1 , with k̄

defined in (2).

First minimizing the number of states N , obeying the inequal-
ity constraints of (8) (see Section II-C), results in an optimal
number of states N̂τ . Plugging N̂τ afterwards into (8) results
in an unconstrained optimization problem in τ :

ESD = min
τ

T (p(τ), τ, N̂τ ).

The ESD can finally be found as the minimal EMTT over all
sampled window lengths τ on the p(τ)-performance curve.

III. EXPERIMENTS

The lower bound k̄ (2) and EMTT T (7) are validated via
a simulation study (Section III-A). Afterwards, real EEG and
audio data is used to show the computation of the ESD metric
(Section III-B).

A. Simulation study

To validate the lower bound k̄ (2) of the P0-confidence inter-
val, 106 Monte-Carlo runs are performed. In each run, 1000
decisions (0 or 1) are drawn from the Bernoulli distribution
with a predefined probability of success p (the accuracy). We
randomly select the initial state over a uniform distribution and
then perform a walk through a Markov chain of 5 states. The
final state after 1000 steps is considered as a sample from
the steady-state distribution. Based on this sampled steady-
state distribution over 106 runs, the state corresponding to the
lower bound of the 80%-confidence interval is identified and
compared with the theoretical lower bound k̄ (2). The result
is shown in Figure 2 between brackets, for different p, while
N = 5 remains fixed. It confirms the validity of (2).

The EMTT T (7) is validated in similar way. In each of
the 106 runs, 1000 steps are taken with transition probability
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Fig. 2: The simulated EMTTs match the theoretical EMTTs.
For every evaluated p, the theoretical and simulated lower
bound k̄ are shown as well (k̄theo, k̄sim). An asterisk shows
if x̄ ≥ c = 0.65.

p. After 1000 steps, the target direction in the Markov chain
(Figure 1) is reversed and the number of steps s is registered
before state k = dc(N−1)+1e is hit for the first time. k = 4,
given that we choose c = 0.65 and N = 5. The conditioning
on i < k, i.e., only switching from outside the predefined
working region, is taken into account by removing all sim-
ulations in which the process arrived within the predefined
working region [c, 1] after 1000 steps. Each simulation results
in one sample s|i→k, i < k of (6). The resulting hitting times
are averaged over all simulations to obtain a sample of the
EMTT T (7), where τ = 1 s. This experiment is performed for
different p, while N = 5, k = 4 and τ = 1 s. Figure 2 shows
that the simulations correspond to the theoretical formula of
T (7). The relative error is for every p smaller than 10−3.

B. Experiment on real EEG and audio data

To show the computation of the ESD metric, we apply it on
the results of the minimal mean-squared error (MMSE)-based
AAD algorithm [2], [9] on real EEG and audio data. A trained
linear spatio-temporal decoder can be applied to new EEG
data, in order to predict the attended speech envelope. The
resulting speech envelope is then correlated with the recorded
speech envelopes presented to the subject within a decision
window length of length τ . The recorded speech envelope that
correlates best with the predicted envelope, is identified as the
attended speaker. Note that using a larger decision window
length τ results in more accurate estimates of the correlation
coefficients, thereby improving the AAD performance.

The data originates from an AAD experiment in which
16 subjects listened to Dutch short stories of 24 minutes
in a competing two-speaker situation [9]. Each subject was
instructed to target attention on one of the stories presented to
one ear. Details about the experiment, data and preprocessing
can be found in [9]. It is noted that for the training and
testing of the AAD algorithm, we use the envelopes of the
original speech signals. In practice, these envelopes have to
be extracted from the hearing aid’s microphones [7].

The recorded EEG and audio data of 72 minutes are split
into trials of 60 s and per-subject decoders are trained and
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tested in a leave-one-trail-out fashion. A decoder is trained on
71 minutes of data and tested on the left-out trial. This trial
is further split into sub-trials of smaller lengths to evaluate
the trained decoder on smaller decision window lengths τ .
The AAD decisions are registered and compared with ground-
truth attention labels of the test trials, resulting in an average
accuracy over the complete recorded dataset per subject, for
each decision window length.

Figure 3 shows the constructed performance curves based
on the accuracies p evaluated at window lengths τ =
{1, 2, 5, 10, 20}s of the decoders of four subjects. The con-
fidence level P0 is chosen equal to 0.8, while comfort level
c is chosen equal to 0.65, based on a subjective listening test
(details omitted).

The ESDs reported in Figure 3 capture the global behavior
of the corresponding performance curves. The accuracies are
very similar for subject 3 (S03) and S04, which is reflected
in the ESD. Note that the optimal working point corresponds
to decision window lengths around τ = 1 − 2 s. These small
decision window lengths are also more relevant in the hearing
aid use case. S15 has higher accuracies for all evaluated
window lengths. This is reflected in the large decrease of
≈ 40% in EMTT from 14.76 s (of the second-best decoder
of S03) to 8.52 s for S15. For all three subjects, the optimal
Markov chain contains 7 states and has approximately the
same transition probability of p ≈ 63%. This working point
is however reached for a smaller decision window length for
S15, resulting in the lower ESD.

S10 is an outlier: the MMSE decoder globally performs
much worse than the other subject-dependent decoders. This
is reflected in an increase with a factor ≈ 7.5 with respect
to the second-worst decoder of S04. As the accuracies are
overall very low, the ESD metric focuses more on minimizing
the window length and thus the decision time to bring down
the EMTT, rather than picking a working point at a higher
accuracy, resulting in fewer states. Selecting the working point
at a smaller accuracy results in a Markov chain with 19 states,

which is much more than the other decoders.
It is clear that the ESD metric succeeds in capturing the

global performance of different decoders based on a relevant
and interpretable criterion. It is observed to focus more on
smaller window lengths, which has more practical relevance as
well and allows comparison of decoders where other methods
would fail. Although the ESD values appear high for practical
hearing aid use cases, it should not be confused with the time it
takes to perceive the shift towards the attended speaker. This
generally happens earlier than indicated by the ESD, which
corresponds to the time needed to realize a stable switch.

IV. CONCLUSION

We proposed a new metric to evaluate the performance of
AAD algorithms: the expected switch duration. It represents
the expected time needed to switch the operation of the hearing
aid from one speaker to another when it is not yet operating in
the desired stable working region. First, the number of states
of the Markov chain is for each window length τ optimized to
obey certain design requirements based on the P0-confidence
interval. The ESD is then defined as the optimal transit time
from any state outside the working region to this predefined
working region, over all window lengths τ on an interpolated
p(τ)-performance curve.

The simulations validated the formulas behind the ESD
metric and experiments have shown that it is an interpretable,
single-number metric that combines both accuracy and deci-
sion time. Based on the ESD, it is easy to compare different
AAD algorithms or decoders based on a relevant criterion,
independent of the evaluated window lengths.
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