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ABSTRACT
We propose an adaptive distributed algorithm to solve a node-

specific Active Noise Control (ANC) problem. In this novel ANC
problem, the nodes estimate different but overlapping ANC filters
in order to generate secondary signals that cancel a primary noise
source as it impinges on their microphones. Different sets of nodes
follow a cyclic mode of cooperation in order to implement several
coupled Multiple Error Filtered-X Least Mean Squares algorithms,
each responsible for the estimation of part of the different node-
specific ANC filters. The proposed algorithm outperforms the non-
cooperative strategies and achieves the same steady-state noise re-
duction as a centralized solution that processes all the signals in the
network. Finally, computer simulations are provided to illustrate the
effectiveness of the proposed algorithm.

Index Terms— Distributed node-specific parameter estimation,
wireless sensor networks, active noise control.

1. INTRODUCTION

To solve signal processing problems over wireless sensor networks
(WSNs), several distributed estimation techniques have been pro-
posed [1]-[19]. Initially, most of these techniques have been applied
to networks where all nodes cooperate with each other to estimate
the same network-wide signal or parameter (e.g. [1]-[5]). More re-
cently, due to the heterogeneity of the devices that form networks
in today’s digital age, there is a growing interest in designing dis-
tributed estimation techniques that can be applied over multi-task
networks where the devices are interested in solving different but
overlapping node-specific estimation problems.

In the context of node-specific estimation problems over WSNs,
two major groups of works can be distinguished. The first group
considers distributed algorithms that allow to estimate samples of
node-specific desired signals sharing a common latent signal sub-
space. These distributed algorithms apply compressive filter-and-
sum operations on the sensor signals in WSNs with a fully-connected
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topology [6], a tree topology [7] and combinations thereof [8] allow-
ing for a single-shot estimation of every signal sample at each node.
The second group considers distributed algorithms under which
nodes of an ad-hoc WSN cooperate to simultaneously solve differ-
ent but related parameter estimation problems. In [9] the authors
have proposed a diffusion-based algorithm with spatial regularizers
that leverage an a priori knowledge on the relationship between the
node-specific parameter estimation (NSPE) problems to facilitate
the cooperation between nodes with similar estimation interests.
Although this cooperation allows to achieve superior performance
compared to the non-cooperative approach, it yields biased esti-
mates. The authors in [10]-[12] have proposed incremental and
diffusion strategies that let the nodes obtain asymptotically unbiased
estimates in a NSPE problem where the nodes have a-priori known
node-specific interests. To solve this NSPE problem and simultane-
ously learn the relationship between the NSPE problems of neigh-
boring nodes, a handful of works have also proposed unsupervised
diffusion strategies with adaptive combination techniques deter-
mined through different multi-task clustering techniques [13], [14].

Besides solving generic adaptive learning and optimization
problem over multi-task networks, there is an increasing number of
works addressing the design of distributed algorithms that leverage
the cooperation among nodes in a so-called wireless acoustic sen-
sor network (WASN) for speech and audio applications [15]-[20].
In this paper, we focus on the application of active noise control
(ANC) [21], for which recently also several distributed algorithms
have been proposed [17]-[19], with applications in the automotive
and aeronautic industry in order to improve auditory comfort of pas-
sengers. A distributed ANC system consists of a multitude of nodes,
each equipped with a set of microphones that record a primary noise
source and a set of loudspeakers that act on the environment by
emitting signals aimed at canceling the recorded noise source. How-
ever, to the authors knowledge, when addressing the design of such
distributed ANC systems, all existing approaches assume that all
the nodes are interested in estimating the same network-wide ANC
filter, which does not generally hold due to node-specific acous-
tical coupling among the nodes. Moreover, none of the proposed
techniques are scalable with the network size. To overcome these
limitations, we state the novel node-specific ANC problem where the
nodes can be interested in estimating different but overlapping ANC
filters. We design an incremental Multiple Error Filtered-X Least
Mean Squares (MEFxLMS) algorithm for node-specific ANC that
achieves the same performance as the corresponding centralized so-
lution [21]. To do so, the nodes run different but coupled MEFxLMS
algorithms under an incremental mode of cooperation. Finally, com-
puter simulations are provided to illustrate the effectiveness of the
proposed algorithm.
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Fig. 1. WASN with K nodes. A link between the nodes indicates
that they are acoustically coupled.

The following notation is used throughout the paper. We use
boldface letters for random variables and normal fonts for determin-
istic quantities. Capital letters refer to matrices and small letters refer
to both vectors and scalars. The notation (·)H andE{·} stand for the
Hermitian transposition and the expectation operator, respectively.
Finally, ‖x‖ equals the Euclidian norm of x and 0L×M denotes the
L×M zero matrix.

2. PROBLEM FORMULATION

We consider a WASN consisting of K nodes deployed over some
region. As shown in Fig. 1, each node is equipped with a single mi-
crophone and a loudspeaker1. Moreover, the nodes have P given
reference signals that are correlated with a primary noise source.
Without loss of generality, we assume that these reference signals
are the same at all nodes.

The goal of the ANC implemented at node k, is to emit a filtered
version of the P available reference signals and to cancel a primary
noise source as it impinges on its microphone. As a result, consid-
ering that the channel between the loudspeaker of node ` and the
microphone of node k is modeled as an L-th order FIR filter, i.e.,
h`k = col{h`k(l)}Ll=1 ∈ CL×1, at time instant i the error signal
ek(i) measured at the microphone of node k is described as

ek(i) = dk(i) +
∑
`∈Ik

L∑
l=1

h`k(l)

P∑
p=1

xp,i−l+1w`p,i−l+1 (1)

where

- dk(i) denotes the primary noise source as it impinges on the
microphone of node k,

- w`p,i ∈ CM×1 denotes filter of M coefficients applied by
node ` to the p-th reference signal at time instant i,

- xp,i = [xp(i) · · · xp(i −M + 1)] ∈ C1×M with xp(i) de-
noting the p-th reference signal at time instant i,

- Ik denotes an ordered set of indices associated with the nodes
whose loudspeaker is acoustically coupled with the micro-
phone of node k, i.e., the nodes whose emitted signals can be
observed with significant power at the microphone of node k.

Considering that the secondary channels {h`k}`∈Ik are known
or estimated by node k in a calibration phase [22], the ordered sets
{Ik} can also assumed to be known or estimated. Given these esti-
mates or prior knowledge, the objective of the nodes is to cooperate

1For the sake of clarity, we have assumed single channel nodes, though
the derivations can be easily extended to multi-channel nodes that have N
microphones and J loudspeakers with N, J > 1 and N ≥ J [21].

in order to process the data set {ek(i)}Kk=1 and find the ANC filters{
{wkp,i}Pp=1

}K
k=1

that minimize

Jglob

({
{wkp,i}Pp=1

}K
k=1

)
=

K∑
k=1

E
{
e2
k(i)

}
(2)

with ek defined in (1). All the works addressing the design of dis-
tributed ANC systems [17]-[19] assume that all the nodes are inter-
ested in cooperating to estimate the same network-wide ANC filter,
i.e., ri = col

{
{w`p,i}Pp=1

}K
`=1

. Instead, in this paper we consider a
more general setting where the nodes are interested in estimating dif-
ferent but related ANC filters. In particular, according to the obser-
vation model (1) of the considered node-specific ANC system, each
node k is interested in estimating the filter rk,i = col{w`,i}`∈Ik
where

w`,i = col{w`p,i}Pp=1. (3)

Since the sets {Ik}Kk=1 are not disjoint, note that the ANC filters rk,i
estimated by different nodes can be partially overlapping. Indeed,
the ANC filter estimated by node k will be overlapping with the
ANC filter of a node ` as long as Ik ∩ I` 6= ∅. Moreover, since
the sets Ik differ from node to node, notice that the ANC filters of
two different nodes can be arbitrarily different. Despite this fact, a
distributed algorithm can be proposed to let the nodes cooperate and
achieve the same performance as a centralized approach.

3. DISTRIBUTED NODE-SPECIFIC ANC

In this section, first we provide a centralized solution for the node-
specific ANC problem provided in (2), and then we develop an incre-
mental distributed algorithm that converges to this centralized solu-
tion. As it is often assumed in the literature [21], we assume that the
different ANC filters are time-invariant. In particular, we consider
that w`,i = w` in (3). Note that this assumption is approximately
satisfied if the coefficients of the ANC filters change or adapt slowly
as compared to the timescale of the system to be controlled, i.e., the
secondary channels {h`k}`∈Ik and the channel between the primary
noise source and the microphones.

3.1. Centralized solution

First, under the assumed time invariance of the ANC filters, note that
the error signal measured by the microphone of node k is

ek(i) = dk(i) +
∑
`∈Ik

hH
`kXiw` (4)

where w` equals (3) with the time-dependence i removed and where

Xi =
[
X1,i X2,i · · · XP,i

]
(5)

with Xp,i = col{xp,i−l+1}Ll=1 ∈ CL×M . Hence, by substitut-
ing (4) into (2), the solution of the considered distributed node-
specific ANC requires the optimization of

Jglob

({
w`

}K
`=1

)
=

K∑
k=1

E

∣∣∣dk(i) +
∑
`∈Ik

hH
`kXiw`

∣∣∣2
 (6)

with respect to multiple vector variables, i.e.,
{
w`

}K
`=1

. If we now
gather all the variables associated with the different ANC filters into
the following augmented vector

w̃ =
{
w`

}K
`=1

( M̃ × 1 ) (7)



where M̃ = KPM , from (4) we can easily verify that

ek(i) = dk(i) + ũk,iw̃ (8)

where

ũk,i =
[
1{1∈Ik}h

H
1kXi 1{2∈Ik}h

H
2kXi · · · 1{K∈Ik}h

H
KkXi

]
(9)

with 1{X∈A} denoting an indicator function that equals 1 if X ∈ A
or 0 otherwise. Thus, the node-specific ANC problem in (6) can be
cast as

̂̃w = argmin
w̃
{Jglob(w̃)} = argmin

w̃

K∑
k=1

E

{∣∣∣dk(i) + ũk,iw̃
∣∣∣2}

(10)

The centralized solution ̂̃w is given by the normal equations [23](
N∑

k=1

Rũk,i

)
· ̂̃w = −

N∑
k=1

rũk,idk,i
(11)

with Rũk,i
= E

{
ũH
k,iũk,i

}
and rũk,idk,i

= E
{
ũH
k,idk,i

}
. How-

ever, when computing this centralized solution with an adaptive fil-
ter, e.g., based on filtered-X LMS [21], each node would have to
transmit its error signal to a central device, where the filters are com-
puted and then transmitted to the nodes. This is not robust, as it
introduces a single point of failure, and moreover, it is not scalable
with the network size since it requires the inversion of a square ma-
trix whose dimension is proportional to the number of nodes K. To
alleviate this prohibitive computational cost and communication re-
quirement, a distributed algorithm is proposed in the next section.

3.2. Distributed algorithm

Similar to [17], to design a distributed algorithm for the estima-
tion of ̂̃w, our starting point is the traditional steepest-descent al-
gorithm. This algorithm allows to iteratively estimate w̃ by split-
ting the update from w̃(i) to w̃(i+1) into partial updates across the
network, where w̃(i) = col{w(i)

k }
K
k=1 denotes the estimate of w̃ at

time instant i. In particular, taking into account that our global cost
function Jglob(w̃) is expressed as the sum of K local cost functions
{Jk(w̃)}Kk=1 with

Jk(w̃) = E
{
e2
k(i)

}
= E

{∣∣∣dk(i) + ũk,iw̃
∣∣∣2} (12)

and ũk,i defined in (9), at each instant i a steepest descent for (10)
should perform the following step for any node k ∈ {1, 2, . . . ,K}
and some initialization ψ̃(0)

K

ψ̃
(i)
k = ψ̃

(i)

(k−1) − µk

[
∇Jk(w̃(i))

]H
(13)

where w̃(i) = ψ̃
(i−1)
K and[

∇Jk(w̃(i))
]H

= E
{
ũH
k,iek(i)

}
= E

{
ũH
k,i

[
dk(i) + ũk,iw̃

(i)]}
(14)

with ψ̃(i)
k = col{ψ(i)

k` }
K
`=1 denoting a local estimate of w̃ at node

k and time instant i, ψ̃(0)
K equal to some random guess of w̃, µk

denoting a suitably chosen positive step-size and

ψ̃
(i)

(k−1) =

{
ψ̃

(i−1)
K if k = 1,

ψ̃
(i)
k−1 otherwise.

(15)
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Fig. 2. Structure of the I-NS ANC algorithm for the estimation of
the ANC filter w` that generates the secondary signal at node `.

It is well known that the previous steepest-descent approach con-
verges to the centralized solution ̂̃w, i.e., limi→∞ ψ̃

(i)
k = ̂̃w if each

step-size satisfies 0 < µk < 2/λmax with λmax equal to the largest
eigenvalue of the invertible matrix

∑N
k=1Rũk

[23]. However, note
that its implementation requires the knowledge of E

{
ũH
k,iek(i)

}
,

which depends on the statistics Rũk
and rũk,dk . Since these statis-

tics are not generally available, a widely-used approach [17] consists
in using the following instantaneous approximations of the gradient[

∇Jk(w̃(i))
]H
≈ ũH

k,iek(i) = ũH
k,i

[
dk(i) + ũk,iw̃

(i)] (16)

where ek(i) is the error signal measured at the microphone of node
k when each node ` generates the following secondary source signal

y`,i = [x1,i x2,i · · · xP,i]w
(i)
` . (17)

The previous approximation enables the network to respond to time-
variations in the underlying signal statistics. Nonetheless, note that
its implementation, in particular, the generation of the secondary
source signals, requires each node k to have access to the global
information, i.e., w̃(i), which is only computed at node K once all
the nodes have executed the adaptation step in (13). To overcome
this, similarly to the incremental gradient technique ([3], [17], [24]
and [25]), we consider that each node k, at time instant i, generates
the secondary source signal by using its local estimate

y`,i = [x1,i x2,i · · · xP,i]ψ
(i−1)
``

(18)

to evaluate the instantaneous approximation of ∇Jk(·) at the local
estimate col{ψ̃(i−1)

`` }K`=1 instead of w̃(i) = ψ̃
(i−1)
K . Thus, in the

resulting algorithm, at instant i node k executes the following steps:{
Transmission step: yk,i = [x1,i x2,i · · · xP,i]ψ

(i−1)
kk ,

Adaptation step: ψ̃(i)
k = ψ̃

(i)

(k−1) − µkũ
H
k,iek(i).

(19)

In the cyclic cooperation established by the previous algorithm, at
each time instant i each node k only needs to transmits the local
estimate ψ̃(i)

k to one neighbor. Although this solution is fully dis-
tributed, it is still non-scalable with respect to both communica-
tion requirement and computational cost since the dimension of ψ̃(i)

k

equals KPM , which depends on the total number K of nodes. This
issue will be addressed in the following.

Due to the structure of ũk,i defined in (9), only |Ik| sub-vectors
of ψ̃(i)

k are updated when a specific node k performs the Adapta-
tion step at time instant i (see (19)). In particular, according to (9)
and (19), only the sub-vectors associated with the local estimates of
{w`}`∈Ik at node k and time instant i, denoted as {ψ(i)

k` }`∈Ik , are
updated based on the local estimates {ψ(i)

f`(k)`
}`∈Ik where

ψ
(i)

f`(k)`
=

{
ψ

(i−1)
c``

if Ck` = ∅,
ψ

(i)

max{Ck`}`
otherwise,

(20)



with Ck` = {j ∈ C` : j < k}, c` = max{C`} and C` = {k : ` ∈
Ik} which is not necessarily equal to Ik unless there exists acous-
tical reciprocity. Thus, after defining ψ(i+1)

k = col{ψ(i+1)
k` }`∈Ik ,

ψ
(i+1)

(k−1) = col{ψ(i+1)

f`(k)`
}`∈Ik and uH

k,i = col{XH
i h`k}`∈Ik , in (19)

we obtain the incremental MEFxLMS for node-specific ANC (I-NS
ANC), which is summarized as follows

Incremental node-specific ANC (I-NS ANC)

• Start with some random guess
{
ψ

(0)
ckk

}K

k=1
.

• At time instant i, for each k ∈ {1, 2, . . . ,K} collect one
extra sample of the reference signals to build Xi and execute

1. Transmission step:
yk,i = [1 01×(L−1)]Xi ψ

(i−1)
kk

2. Adaptation step:
ψ

(i)
k = ψ

(i)

(k−1) − µk u
H
k,iek(i)

(21)

Note that the I-NS ANC solves a total of K different but cou-
pled optimization problems simultaneously and in a distributed fash-
ion. To this end, K cyclic modes of cooperation are simultaneously
established. As illustrated in Fig. 2, the nodes in C` undertake a
cyclic mode of cooperation whose goal is to solve one of the opti-
mization problems, which consists in estimating the filter w` gen-
erating the secondary source signal emitted by the loudspeaker of
node k. Similarly to other existing distributed algorithms [17]-[19]
as well as the algorithm for node-specific ANC described in (20), in
the proposed algorithm the resulting estimates asymptotically con-
verge in the mean to the centralized solution if the positive step-sizes
{µk}Kk=1 are sufficiently small. The details of the proof are omitted
due to space constraints. Unlike any other distributed algorithm for
ANC, it should also be noted that the I-NS ANC algorithm is scal-
able with the network size in terms of computational cost and com-
munication requirements. Regarding the computational cost, at each
time instant, each node k only needs to update |Ik| vectors whose
dimensions are independent of the number of nodes. Moreover, de-
creasing the communication requirements, at each time instant i,
each node k only transmits the local estimates of |Ik| ANC filters,
whose dimensions again do not depend on the number of nodes.

4. SIMULATIONS

To illustrate the effectiveness of the proposed algorithm, we consider
a node-specific ANC system formed by K = 5 randomly deployed
nodes, each equipped with one microphone and one loudspeaker.
The goal for each node is to cancel a primary Gaussian noise source
(with zero mean and unit variance) as locally observed at its mi-
crophone, i.e., after the primary noise source has been filtered with
a node-specific impulse response of 20 taps (this impulse response
is unknown). To do so, at each time instant i the loudspeaker of
each node will emit a filtered version of only one reference signal
(P = 1). In this system, we have assumed that the filter wk is of
length M = 30 coefficients and that the reference signal of every
node corresponds to the primary noise source before being filtered
by the unknown acoustic channel between the unwanted noise and
the microphones. We have also employed 20-tap FIR filters to model
the secondary channels. Moreover, in a setting with acoustical reci-
procity, we have assumed that the loudspeaker of a node is acous-
tically coupled with a subset of nodes in the network, i.e., its emit-
ted secondary source signal can be measured at the microphones of
other nodes. In particular, we have considered that C1 = {1, 2, 3, 5},
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Fig. 3. Evolution of Network NR and MSE for the non-cooperative
ANC, the I-NS ANC algorithm and the centralized ANC.

C3 = {1, 3, 4}, C4 = {2, 3, 4, 5}, C5 = C2 = {1, 2, 4, 5} and
Ck = Ik for each node k (reciprocity of acoustical coupling holds).

In the simulations presented here, we compare the proposed I-
NS ANC algorithm with the centralized solution provided in (11)
and a non-cooperative ANC that is equivalent to the proposed I-NS
ANC algorithm described in (21) when ψ(i+1)

(k−1) = ψ
(i)
k and uH

k,i =

XH
i hkk (see [17] for more details). To do this comparison, for

each algorithm we have evaluated the instantaneous network Mean
Square Error (MSE) and the network Noise Reduction (NR), defined
as (1/K)

∑K
k=1 10 log10[e

2
k(i)/d

2
k(i)]. Furthermore, since the I-NS

ANC and the non-cooperative algorithms undertake |Ik| and one up-
dates of the estimate of wk per time step, respectively, to have a fair
comparison we have assumed that µI-NS ANC

k = µnc
k /|Ik| = 10−3

where µI-NS ANC
k and µnc

k denote the step-size used by the I-NS ANC
and the non-cooperative algorithms for the estimation of wk, respec-
tively. Under this assumption, Fig. 3 shows the temporal evolution of
the network NR and MSE for the the three aforementioned ANC al-
gorithms. To generate each plot, the results have been averaged over
50 independent experiments. As expected, note that the I-NS ANC
achieves the same steady-state NR and MSE as the centralized ANC.
On the contrary, although the non-cooperative ANC initially cancels
some primary noise, there is an instant from which it becomes un-
stable, and hence, shows a poor performance in the steady-state. As
discussed in [17], this degradation occurs due to the absence of co-
operation among the nodes when they are solving ANC problems
that are indeed coupled through the secondary paths.

5. CONCLUSION

We have considered a node-specific ANC problem where the nodes
simultaneously estimate different but overlapping filters to generate
secondary source signals that cancel a primary noise source as it
is observed at their microphones. To solve this problem, we have
presented a technique based on several coupled MEFxLMS algo-
rithms. The implementation of each MEFxLMS algorithm is under-
taken by all the nodes that are acoustically coupled with a specific
secondary source and its goal is the estimation of part of the differ-
ent node-specific ANC filters. The proposed algorithm achieves the
same steady-state noise reduction as the centralized solution and, un-
like the existing distributed ANCs, is scalable with the network size.
Computer simulations have shown the effectiveness of the algorithm.
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