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Electrocardiogram Quality Assessment using
Unsupervised Deep Learning

Nick Seeuws, Maarten De Vos, and Alexander Bertrand

Abstract— Objective: Noise and disturbances hinder ef-
fective interpretation of recorded ECG. To identify the clean
parts of a recording, free from such disturbances, various
quality indicators have been developed. Previous instances
of these indicators focus on human-defined desirable prop-
erties of a clean signal. The reliance on human-specified
properties places an inherent limitation on the potential
power of signal quality indicators. To move away from
this limitation, we propose a data-driven quality indicator.
Methods: We use an unsupervised deep learning model, the
auto-encoder, to derive the quality indicator. For different
quality assessment settings we compare the performance
of our quality indicator with traditional indicators. Re-
sults: The data-driven method performs consistently strong
across tasks while performance of the traditional indicators
varies strongly from task to task. Conclusion: This strong
performance indicates the potential of data-driven quality
indicators for use in ECG processing, removing the reliance
on expert-specified desirable properties. Significance: The
proposed methodology can easily be extended towards
learning quality indicators in other data modalities.

Index Terms— Electrocardiogram (ECG), signal quality,
unsupervised learning

I. INTRODUCTION

The electrocardiogram (ECG) is an essential tool for car-
diologists. When diagnosing numerous cardiac disorders, car-
diologists rely on this signal to get an objective impression
of the condition of the heart. In most applications, a clean
signal is a must for accurate interpretation of the ECG[1].
Capturing the ECG, however, is prone to various measurement
artefacts. For example, muscle activity, electrode movement,
breathing artefacts, or power line interference are common
sources of such disturbances. In wearable ECG sensors for
ECG monitoring in daily life, such artefacts are even more
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notorious, as they appear more frequently and often with a
much stronger impact on the recorded ECG signal.

Different kinds of disturbances affect use cases of ECG in a
different way. One can intuitively see that estimating the heart
rate, for example, places less strict conditions on the quality
of a signal than fine-grained analysis of ECG waveforms like,
for example, the detection of atrial fibrillation. The former
relies on R-peaks which, due to their high amplitude, do not
easily get buried under noise. The latter requires much more
detail in the signal and the slightest amount of noise can make
segments unusable.

Several methods have been proposed to automatically in-
dicate the quality level of ECG recordings. These Signal
Quality Indicators (SQIs) measure the disturbance level and
quantify the fit-for-purpose of the signal. In the past, they were
inspired by human-defined properties of a clean signal such as
skewness, kurtosis, power in certain frequency bands and many
more[2]–[8]. More recently, machine learning based SQIs
have been proposed[9], [10]. These SQIs measure features
of the signal, often inspired by previously developed SQIs,
and use machine learning to predict the quality level based
on measured features. These machine learning models are
trained using labels provided by humans. This reliance on
human effort (both for feature design as well as for providing
labels) creates a severe drawback to the machine learning
SQIs. The labeling effort can be substantial for data-hungry
models and requires a specific definition of quality levels to
ensure consistent labeling.

Detecting noise and artefacts in data has also been a popular
topic in the general field of data mining and machine learning
research. In this field, it is more commonly known as outlier
or anomaly detection[11]. Unsupervised anomaly detection is
a specific branch of such algorithms where anomalies are
detected without relying on human labels, for which auto-
encoders are a popular class of models[12]–[16]. This class
of models can automatically identify the important patterns in
a given data set. Auto-encoders learn to reconstruct data and
error measures on input data and their reconstructions can then
be used to detect anomalies.

In this study, we investigate the performance of modify-
ing such auto-encoders for unsupervised anomaly detection
towards the task of unsupervised (task-agnostic) quality assess-
ment. Unsupervised quality assessment does not rely on human
input, i.e., on human-defined signal properties or human-
provided labels. Additionally, unsupervised quality assessment
involves a new, implicit definition of signal quality linked to
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how well a signal segment can be embedded into a lower-
dimensional space. We test how well this quality definition
matches with various ECG quality measures. We define two
SQIs that make use of an auto-encoder trained on ECG data.
For comparison, we use several classical SQIs that also do not
rely on expert-provided labels. We investigate performance on
two dimensions of quality assessment: detection and quantifi-
cation[9]. In detection, or binary quality scoring, one aims to
make a clear distinction between "good" or "bad, "clean" or
"noisy." A binary decision has to be made about the usability
of a given signal. Quantification is a more continuous approach
to quality assessment where one tries to identify specific
quality levels. This second approach can be more suited when
one has to cope with varying quality needs.

The outline of this paper is as follows. In Section II we
introduce the proposed machine learning model and quality
indicators. We also present the experimental methodology. In
Section III we show results of the experiments. In Section
IV we discuss our results, underlying model assumptions and
some additional remarks. With Section V we conclude the
paper.

II. METHODS

A. Model
1) Auto-encoder: Auto-encoders learn a data model by

mapping inputs to a new representation and back to the
original input space. They encode an input, x, into a learned
representation z with a function f(·), parameterized using a
deep neural network, as z = f(x). In classical auto-encoders,
another function g(·) decodes the representation back to the
original input space. The full auto-encoder r(·) combines the
encoder and decoder to compute a reconstruction x̂ of an
input x after passing through the latent representation as
x̂ = g(f(x)) = r(x). Auto-encoders are traditionally trained
by improving their reconstructions over a training set.

The most common way of quantifying reconstruction errors
is the mean squared error between the original data and the re-
constructions. Penalizing absolute errors with the same weight
in entire ECG reconstructions is, however, undesirable. One
can imagine an error in reconstructing the R-peak to impact
reconstruction quality much less than the same magnitude of
error in the isoelectric line.

To take this issue into account, our model makes use of a
decoder extension and changes the training objective, similar
to the variational auto-encoder[17], by defining a distribution
over reconstructions given the latent representation of a signal
segment. Training the model similar to maximum likelihood
estimation then gives a natural way of coping with the concern
over absolute errors. The reconstruction distribution is defined
as a multivariate Gaussian distribution with diagonal covari-
ance. It is parameterized by a mean and standard deviation
vector which have the same dimension as the input vector x,
and which are both functions of the learned representation of
an input. The full model is defined as

µ(x) = m(f(x))

σ(x) = s(f(x))

where µ(x) and σ(x) define the reconstruction distribution’s
parameters for a specific input x. In a maximum likelihood
setting, µ(x) takes the role of the reconstructed vector x̂,
whereas σ(x) can be viewed as an uncertainty on the re-
constructed vector x̂ (quantified per entry in the vector). The
dependence on x for these parameters will be dropped in the
remainder for legibility. The training objective, formulated as

max

N∑
n=1

log p(x(n);µ(n),σ(n)),

p(x;µ,σ) =

L∏
l=1

1√
2πσl

exp

(
− (xl − µl)

2

2σ2
l

)
for a batch of N segments each of length L, measures the
log likelihood of an input under the Gaussian reconstruction
distribution. By defining such a distribution, we introduce a
scale variable, σ, in addition to a most likely reconstruction
µ. Using this scale variable, the model can indicate where it is
certain about a reconstruction or where some uncertainty exists
about a precise magnitude and location, like in an R-peak.
Lowering the values of σ can easily increase the likelihood
of a signal segment, but mismatches between x and µ will
be more severely penalized. Note that both µ and σ depend
on x, and are automatically learned by the network, i.e., the
model has to learn when it is safe to aim for increasing the
likelihood (by reducing σ) and when it will likely make some
mistakes (and should increase σ).

One can influence the behavior of an auto-encoder through
specific constraints in the training process or the architecture.
Our architecture contains such a constraint, commonly called
a bottleneck. By reducing the dimensionality of the represen-
tation space compared to the input space, the auto-encoder
performs data compression with the encoder. This compression
forces the model to remove redundancy and focus on the most
important patterns in training data to be able to accurately
represent and reconstruct inputs.

2) Architecture: The architecture for our proposed network
is adapted from [18], which is a fully convolutional auto-
encoder for ECG signals and, as mentioned above, uses a
Gaussian output inspired by [17]. The auto-encoder is trained
on input segments with 1024 samples of an ECG signal
sampled at 200 Hz.1 Note that only the architecture of [18] is
used as part of our approach. The training procedure of [18]
involved a denoising task, whereas we aim to learn patterns
directly from raw signals, both clean and noisy. Only working
with the raw signals is a more general and more practical
training procedure compared to [18], since we do not require
a database of noise signals that are representative for the
signals under test. Nevertheless, although we opted for this
more general training procedure, it is in principle also possible
to train our models in a more supervised fashion as in [18].

The model makes use of temporal convolutions with an
Exponential Linear Unit (ELU) as non-linearity. Every kernel
operates on 16 samples along the temporal axis and all features
along the feature axis. A batch normalization layer [19] is

1If the data set is not sampled at 200 Hz, a resampling operation has to be
performed if the same network dimensions are kept.
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Fig. 1: Architecture of the auto-encoder with the encoder
on the left and the decoder on the right. Boxes indicate
intermediate data tensors of size (#Timesteps×#Features) with
arrows indicating a convolution layer (details in text).

placed between the convolution operation and activation. The
final layer that outputs µ uses no non-linearity and the σ
output makes use of a softplus non-linearity to ensure positive
values. The encoder performs strided convolutions through-
out to downsample the signal. The decoder uses transposed
convolutions throughout for upsampling. All layers use zero-
padding to ensure only the convolution strides influence the
intermediate output dimensions. Figure 1 shows the complete
architecture. Note that the two decoder functions m(·) and s(·)
share a large part of the decoder path.

3) Training: In all experiments in this paper, the auto-
encoder is trained on segments of 1024 ECG samples sampled
at 200 Hz. These segments are taken from training recordings
with a stride of 50 samples. A single epoch contains all such
segments from the training set. During training, the loss on a
separate validation set is tracked and the parameter values with
the best validation loss are retained. Training is carried out
for 200 epochs, which was a safe value to ensure convergence
across the evaluation tasks. The models are trained using the
Adam optimizer with 0.001 as learning rate. As mentioned
before, a maximum likelihood-inspired training objective is
used. Details on the data sets and how they are used will be
described further in Subsections II-C.2 and II-C.3.

B. Quality Scoring

1) Signal Quality Indicators: Quantifying errors in the recon-
struction of a new signal segment is linked to measuring signal
quality. Signal quality is assumed to be good when the auto-
encoder can cleanly reconstruct a new segment and poor when
the auto-encoder fails to reconstruct the signal (see figure 2).

Two methods for quantifying errors are investigated in the
remainder of this paper:

• The first indicator calculates the logarithm of the mean
squared error (MSE) between the signal segment and the

µ vector of the output. This vector takes the role of the
reconstruction in a classical auto-encoder. The indicator
is calculated as follows:

AE-logMSE(x) = log
1

L

L∑
l=1

(xl − µl(x))
2

with L the length of the signal and the subscript l
indicating the l-th entry of the full vectors. The logarithm
is taken to rescale the indicator values. AE-logMSE
quantifies the reconstruction error; large values of AE-
logMSE indicate poor signal quality and small values
indicate higher signal quality.

• The second indicator makes use of the log-likelihood
(LLH) values obtained from the auto-encoder output.
These values are calculated at every sample in the signal
and averaged over the total length of the signal. It is there-
fore more closely linked to the training objective than the
AE-logMSE measure. The full indicator is calculated as

AE-LLH(x) =
1

L

L∑
l=1

log p(xl;µl(x), σl(x)).

A large value of AE-LLH requires both a good recon-
struction (µ close to x) and high confidence (small σ)
of the auto-encoder in its reconstruction, indicating a
segment of higher quality. A small value of AE-LLH
is linked with the opposite, a bad reconstruction and/or
too much confidence of the model in a relatively faulty
reconstruction, indicating poorer quality.

Both AE-logMSE and AE-LLH contain the squared differ-
ence |x − µ(x)|22 in their computation. The key difference
between them is that AE-LLH weighs the separate elements
of this difference using the additional network output σ.

2) Time resolution: Both AE-logMSE and AE-LLH contain
a contribution for every time sample of the signal, thereby
allowing to quantify the quality of each and every time sample
of the ECG. This can be viewed as a quality ’signal’ sampled
at 200 Hz. However, at this resolution the quality signal is
very noisy. After smoothing it with a moving average filter
with a length of 100 samples (0.5 s) a clearer quality signal
arises which is illustrated in figure 3. This demonstrates that
the quality indicator can be evaluated at multiple, potentially
fine-grained time scales (depending on the application).

3) Edge Effect: Auto-encoders making use of convolutional
layers struggle with reconstructing the edges of their inputs.
These convolutional layers can work with a full context
window in the center of a signal segment but cannot "see"
beyond the segment’s edges.

Two methods to cope with this edge effect are employed.
Firstly, we ignore the first half-second and final quarter-second
of a segment when computing the quality indicators (due to
potential overlap in segments, the discarded parts can still be
assessed in earlier/later segments). Secondly, it is noted that
the auto-encoder can process larger segments for assessing
quality than the ones used to train the auto-encoder. Indeed,
every layer of the auto-encoder performs a filtering operation,
which does not rely on a specific input length. As long as
the duration of the segment being processed agrees with the
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(a) Clean signal
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(b) Dirty signal

Fig. 2: Examples of reconstructions with the original signal x
in blue and reconstruction µ(x) in orange with bands showing
µ(x) ± 2σ(x). Figure 2a shows a clean signal with a good
reconstruction having most probability mass tightly fit around
the original. Figure 2b shows a segment of poor quality where
the probability mass is clearly more spread out and the mean
reconstruction does not track the signal as well as the clean
signal.
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Fig. 3: Illustration of a quality signal. The input ECG is color-
coded with the quality level making use of AE-logMSE with-
out a logarithmic transformation. Darker signal parts indicate
a small squared error and lighter parts indicate a larger error.
The auto-encoder can report quality information at the scale
of single beats.

down- and upsampling operations, the filters in the auto-
encoder allow us to process segments of indeterminate length,
thereby allowing to reduce the number of affected samples due
to being close to an edge. The model requires the amount of
time samples in a segment to be a multiple of 32 to allow the
down- and upsampling to function as intended. In total, for a
new recording to be processed, the largest subsegment with a
number of samples that is a multiple of 32 is fed through a
trained auto-encoder and the first half-second and final quarter-
second are ignored for computing AE-logMSE and AE-LLH.

The specific cutoff points (the first half-second and final
quarter-second) were determined empirically. On the CinC
validation set (used during the training of the auto-encoder),

averaged over all the ECG segments, the model showed
relatively large and consistent reconstruction errors in the first
half-second and final quarter-second of a segment. These are
edge effects due to lack of a symmetrical surrounding context
for these samples. Ignoring these parts of the signal allows
the model to disregard parts of the signal we expect it to
reconstruct poorly due to model structure and not due to signal
quality. However, the performance impact on quality scoring
of combating these edge effects was minor for our evaluations
as they are only a small fraction of the total segment length.

C. Experiments
1) Benchmark indicators: To test the performance of AE-

logMSE and AE-LLH, they are compared with a comprehen-
sive suite of benchmark SQIs that are commonly used in the
literature.

a) Kurtosis: Kurtosis was proposed in [2] and later used
in multiple works [3]–[6]. A clean ECG is expected to not
show high variance while containing large outlier values due
to the R-peaks leading to a high value for the sample kurtosis.
Therefore, larger values for the kurtosis of a signal are linked
with higher quality.

b) Skewness: Another commonly used quality indicator
based on the statistics of the signal is the normalized third-
order moment (often referred to as the skewness of the
distribution). A clean signal is expected to show high skewness
due to the QRS complex[3], [4].

c) IOR: The in-band to out-band spectral power ratio
(IOR) is a quality index based on frequency information [6],
[7]. IOR assumes that the power of a clean signal is mostly
contained in the 5-40 Hz band. It is calculated as

IOR =

∫ 40 Hz
5 Hz P (f) df∫ 100 Hz

0 Hz P (f) df −
∫ 40 Hz

5 Hz P (f) df .

A larger value for IOR then indicates higher signal quality.
d) pSQI: The relative power in the QRS complex

(pSQI)[4], [5] is the second quality index based on frequency
information. It assumes that most power resides in the 5-15
Hz band. pSQI is calculated as

pSQI =

∫ 15 Hz
5 Hz P (f) df∫ 40 Hz
5 Hz P (f) df

with a larger value linked to higher signal quality.
e) basSQI: A third SQI based on frequency information

measures the relative power in the baseline (i.e, the frequency
content below 1 Hz.)[4] as

basSQI =

∫ 40 Hz
1 Hz P (f) df∫ 40 Hz
0 Hz P (f) df

with a larger value linked to higher signal quality.
f) bSQI: The first SQI that relies on beat detection

(bSQI)[4], [5] compares the results of two beat detection
algorithms, wqrs[20] and eplimited[21]. The former is known
to be more sensitive to noise than the latter. bSQI measures the
ratio of beats wqrs detects that match beats eplimited detects,
with a larger value for bSQI linked to higher signal quality.
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g) pcaSQI: The second SQI that relies on beat detection
uses eplimited to detect beats in a signal segment of interest. It
measures the ratio of the sum of the five leading eigenvalues of
principal component analysis on time-aligned beat waveforms
to the sum of all eigenvalues (pcaSQI)[4]. A larger value is
linked to higher signal quality.

2) Data: We use three different ECG data sets in order
to test whether the approach generalizes well to different
measurement setups and subject cohorts. Furthermore, the
quality labels (used here for validation purposes only) for all
data sets were produced using different criteria. This will allow
us to validate whether auto-encoder based SQIs generalize well
to these different criteria.

a) CinC data set: The first data set is the PhysioNet
Computing in Cardiology Challenge 2017 (CinC) data set[22].
It contains short single-lead ECG recordings between 30 and
60 seconds in length. The data set was constructed with the
aim of developing algorithms for detection of normal rhythms,
atrial fibrillations or a general class of "other rhythms". More
importantly for our work, the data set also contains labels
indicating that a recording is too noisy to process and properly
detect rhythms. Training and testing splits are provided by
the data set creators and were kept for the purpose of our
work. A full distribution of the labels can be found in table
I. The recordings were sampled at 200 Hz and, for our use,
preprocessed using a band-pass filter with passband between
1 and 50 Hz. The authors of [22] state that the signal was
originally stored with a bandwidth of 0.5 - 40 Hz, but we
noted small amounts of high-frequency noise, hence the high-
frequency cutoff.

b) Sleep data set: The Sleep data set, originally intended
for sleep apnea research, contains over 150 hours of single-
lead ECG recordings[9]. These recordings are split into one-
minute segments and provided with a quality label, indicating
whether the recording contains signal artefacts or not[23]. In
total, 3.2% of the recordings contained artefacts (table I). The
signal was sampled at 200 Hz and pre-processed using a zero
phase high- and low-pass filter with cut-off frequencies at 1
Hz and 40 Hz, respectively, following the procedure of [9].
Obvious flatline recordings were removed prior to our analysis
by looking at the signal power of a recording.

c) Stress data set: The Stress data set, originally part of a
database of various modalities used to capture stress levels, is
made up of 2879 30-second ECG segments originally sampled
at 256 Hz. In [9], the authors labeled these segments as clean
or noisy depending on the visibility of R-peaks. If all the
R-peaks of a segment were clearly visible, a segment was
deemed clean. If not, it was deemed noisy. Around a third of
the segments were classified as noisy (table I). Similar pre-
processing as on the Sleep data set was applied to this Stress
data set. Before use, these signals were resampled to 200 Hz.
Obvious flatline recordings were removed prior to our analysis
by looking at the signal power of a recording.

Out of the three data sets, CinC will be our main focus as
it contains atrial fibrillations and other rhythms, making it a
potentially very challenging data set for our method.

3) Training and validation: Signals of all data sets are
rescaled to unit variance over each individual data set. For

TABLE I: Label distribution for the different data sets

Normal AF Other Noisy
CinC - Training 5076 758 2415 279
CinC - Testing 148 47 65 40

Clean Noisy
Sleep 8837 295
Stress 1935 944

the CinC data set, an 80/20 split is randomly made on the
recordings in the training set for training and validation of
an auto-encoder. This split is stratified making use of the
four class labels (normal beat, atrial fibrillation, other beat,
noisy). An auto-encoder is trained on this new training set
and the auto-encoder weights that produce the best loss on
the validation set are retained.

For the Sleep and Stress data sets, a similar random 80/20
split is made for training and validation but there is no held-out
test set (see Table II). These splits are not stratified, simulating
a scenario where the user does not have any labels. Various
experiments are carried out to validate different aspects and
use cases of SQIs, hence the two different splits.

To evaluate and compare the newly introduced quality mea-
sures with the various benchmarks, we define three different
experimental settings, as shown in Table II:

a) Generalization to held-out data: This is the traditional
machine learning setting with a held-out test set. It involves
training on a specific measurement setup and testing on unseen
signals from a similar setup. While training happens offline,
the testing can in principle be done online on streaming data.
While this is the main evaluation setting, for our binary quality
scoring experiments we also consider the two other settings.

b) Data-specific model: In this setting, all signals are avail-
able at once and performance is evaluated in an offline setting
with a large computational budget. It involves training an auto-
encoder and evaluating the SQIs on the same signals. While
the approach of training an auto-encoder on a set of signals and
using the same signals at the testing stage might seem strange,
we do want to stress the merit of the approach. The auto-
encoder is an unsupervised model that only uses the signal data
during training (without any quality labels). Only at the testing
stage the quality labels are used for evaluation purposes. This
setting is relevant in, e.g., a retrospective analysis, to clean
up large ECG data sets or as a pre-processing step for other
machine learning algorithms on such data sets.

c) Generalization to other data sets: While information
obtained from the previous two settings is valuable, they do
not cover all potential use cases. The performance of SQIs is
also tested under a setting where, e.g., measurement setups or
patient cohort change by changing the evaluation data set.

4) Binary quality scoring: In a first validation experiment,
the different quality indicators are compared on their capability
in predicting binary quality labels. The CinC data set contains
labels indicating whether a recording is fit for interpretation
or too noisy to use. Since the recorded signals were used for
the detection of atrial fibrillation, the labelling process took
into account the more subtle parts of the ECG morphology. A
signal should be of very high quality before it is deemed fit
for interpretation. Labels in the Sleep data set indicate the
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TABLE II: Overview of the evaluation settings for our exper-
iments together with the corresponding data sets

Training Evaluation

Binary quality scoring

Generalization to held-out data CinC train set CinC test set

Data-specific model Sleep

Stress

Sleep

Stress

Generalization to other data sets CinC train set Sleep

Stress

Correlation with quality level

Generalization to held-out data CinC train set CinC test set

presence of artefacts disturbing the signals. For the Stress
data set, labels tell whether all R-peaks in a recording can
be identified, which is a less strict quality requirement than
for, e.g., detection of atrial fibrillation.

In this experiment, we consider all three different settings
(as introduced above, see also Table II):

a) Generalization to held-out data: The CinC data set, with
its pre-defined training and testing split, is used in this setting.
An auto-encoder is trained on the training set and SQIs are
evaluated on the held-out test set, produced from the same
device and a similar subject cohort.

b) Data-specific model: The Sleep and Stress data sets are
used for this setting. An auto-encoder is trained using an 80/20
training-validation split for both data sets separately, and SQIs
are afterwards computed for every recording in this same set.
The SQIs are then evaluated on the full data set.

c) Generalization to other data sets: The Sleep and Stress
data sets are used for evaluation in this setting. An auto-
encoder is trained on the CinC training set and used to compute
AE-logMSE and AE-LLH for the Sleep and Stress data. The
SQIs are then evaluated on these two sets.

In all these settings, the area under the ROC curve (AUC)
is used to score performance, and is computed using the
SQI values for the signals and their respective labels. For
each result, the sampling distribution is approximated using
bootstrapping. From the full evaluation set of (SQI value,
label) tuples bootstrap samples are created by sampling tuples
with replacement. AUC is computed for many such bootstrap
sets of samples to arrive at a sampling distribution.

To test significance of the predictive power of each quality
indicator (in each setting), a simple classifier based on logistic
regression is used, which is merely for facilitating statistical
hypothesis testing. A logistic regression model is first fit for
every individual SQI. On these models the likelihood ratio
test is used to determine whether the SQI shows significant
power in predicting the quality labels. As a second test,
a logistic regression model is fit making use of all SQIs
simultaneously and, using the Wald test, backwards selection
is used to determine the group of indicators that jointly
best predict the quality labels. Here, one can see whether
other SQIs can still significantly contribute to the quality
decision of individual SQIs, i.e., whether certain SQIs capture
complementary information. This analysis is carried out for all

the SQI values computed in our three settings (so for the full
Sleep and Stress sets, and the CinC test set). The data-specific
and generalization to other data sets settings are "combined"
in this evaluation for Sleep and Stress data to test whether the
auto-encoders trained on the respective sets (the data-specific
setting) or on CinC data (the generalization to other data sets
setting) capture complementary or redundant information.

Additionally, the CinC data set allows to differentiate SQI
performance for different beat types. It contains labels for a
normal rhythm class, an atrial fibrillation class, and a class for
other rhythms. With the auto-encoders automatically learning
the patterns in the training set, AE-logMSE and AE-LLH run
the risk of mainly learning the patterns of the majority class
(normal rhythms in the case of CinC) and, because of this, also
run the risk of not performing well on the other beat classes.
This risk is assessed by measuring the performance for every
beat class separately. A class-agnostic classification threshold
is chosen for AE-logMSE and AE-LLH based on their ROC
curves of the test set for the binary quality scoring task.
The specific threshold corresponds to the point of the ROC
curve with the highest F1-score. Using this fixed threshold,
sensitivity and specificity are computed for three new binary
quality scoring tasks combining the CinC noisy class with
either the normal rhythm, atrial fibrillation, or other signals.
Large variations in sensitivity and specificity values for the
three groups would indicate that AE-logMSE and/or AE-LLH
struggle to generalize to rhythm classes that were not as well-
represented in the training set as the other classes.

5) Correlation between indicators and quality level: To mea-
sure how well the SQIs correlate with signal quality, a data
set was constructed in which (semi-) clean ECG signals were
contaminated with different amounts of realistic noise signals.
To this end, realistic ECG noise was used from the Physionet
MIT-BIH Noise Stress Test Database[24]. This noise database
contains examples of electrode motion artefacts, muscle arte-
facts and baseline wander noise. Three new data sets were
constructed from the CinC test set (excluding the CinC signals
that were labeled as noisy), one for each type of noise. Using
the approach by [10], noise was added corresponding to four
quality levels linked with four distinct SNR levels. Similar
to the base CinC signals, the noise signals are also band-pass
filtered. Random segments of the noise signals were taken and
added to the original signals at specific SNR values for each
type of noise. This results in a new signal data set with five
quality labels: clean, minor noise, moderate noise, severe noise
and extreme noise. Figure 4 shows an example of a signal
corrupted by electrode motion noise at the various levels.

A relevant quality indicator should then change mono-
tonically with the severity of the noise. The Kendall rank
correlation coefficient based on the τb statistic[25] is used
to measure this monotone relationship, which is explained
briefly below. Do note that most SQIs decrease in value with
increasing severity of noise, while AE-logMSE increases with
increasing severity. For correlation tests, we are interested in
absolute values of a statistic and do not focus on the sign of
the correlation.

The Kendall rank correlation coefficient bases its calculation
on concordance or discordance of variable pairs. For two
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random variables X and Y under investigation and two joint
samples (xi, yi), (xj , yj) the sample pairs are said to be
concordant if the ordering is the same for both variables, either
(xi < xj and yi < yj), or (xi > xj and yi > yj). The sample
pairs are discordant if the ordering differs for the variables
and tied if either xi = xj or yi = yj . Concordance then
looks for positive correlation, where discordance can capture
negative correlations. In our case, the x-variable corresponds
to the SQI value, and the y-variable corresponds to the noise
level. The full τb statistic is calculated as

τb =
nc − nd√

(nc + nd + nx)(nc + nd + ny)

with nc and nd being the number of concordant and discordant
pairs respectively, nx being the number of ties in the x-
variable, and ny being the number of ties in the y-variable.
Data pairs where both the x- and y-variable are tied are not
counted in nx and ny

This is an experiment in the generalization to held-out
data setting. AE-logMSE and AE-LLH are both calculated
using an auto-encoder trained on the CinC training data, and
the corrupted signals were all drawn from the CinC test set.
Bootstrapping is used to estimate the τb sampling distributions,
using a similar approach to Section II-C.4, by randomly
sampling (indicator value, SNR level) tuples with replacement
and computing τb on each bootstrap set.

III. RESULTS

A. Binary quality scoring

Figure 5 and 6 show the AUC results for the binary quality
scoring experiment in our three settings.

a) Generalization to held-out data: Figure 5 shows the AUC
results for binary quality scoring on (held-out) CinC test
data. Both auto-encoder based indicators performed well in
predicting the quality labels. The different SQIs span a wide
range of AUC values. The best score was obtained for the
AE-LLH SQI (median of 0.88 AUC) with the lowest scoring
SQI, pSQI, showing very weak predictive power (median of
0.53 AUC).

b) Data-specific model: Figure 6a and 6b show the data-
specific results for the Sleep and Stress data respectively at
the labels AE-logMSEspecific and AE-LLHspecific, compared
against the benchmarks. For the Sleep data set, AE-logMSE
achieves a near-perfect median AUC of 0.98 and outperforms
all SQIs. AE-LLH and bSQI share second place with a median
AUC of 0.91. On the Stress data set, AE-logMSE also shows
a near-perfect median AUC of 0.96. AE-LLH (median of 0.90
AUC) is slightly outperformed by bSQI (median of 0.93 AUC).

c) Generalization to other data sets: Figure 6a and 6b show
results in this setting for Sleep and Stress data at the labels AE-
logMSEgeneral and AE-LLHgeneral. The benchmark results
in this setting are identical to the data-specific setting, since
the underlying data set doesn’t change, only the auto-encoder
changes (as it is now trained on a different data set). For
Sleep data, AE-logMSE and AE-LLH show a substantial drop
in performance compared to the data-specific case, with both
indicators only outperforming kurtosis and pSQI. For Stress
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Fig. 4: Illustration of the different quality levels for electrode
motion noise added to a single ECG segment.

data, AE-logMSE and AE-LLH are more competitive, with
only bSQI outperforming both.

When performing logistic regression on the individual SQIs
in the generalization to held-out data setting (for CinC test
data), each indicator besides kurtosis shows a significant effect
based on the likelihood ratio test (Table III). The tests show
a highly significant effect for most of the SQIs; AE-logMSE,
AE-LLH, skewness, IOR, basSQI, bSQI, and pcaSQI all show
p < 0.001. For pSQI, a p-value of 0.02 was obtained and
kurtosis showed an insignificant effect in logistic regression
(p > 0.7). Multiple logistic regression shows most SQIs can
add a significant contribution to the proposed regression model
in this setting. Backwards selection drops kurtosis, pSQI and
bSQI from the suite of SQIs. A final combination of AE-
logMSE, AE-LLH, skewness, IOR, pcaSQI, and basSQI shows
a substantial drop in negative loglikelihood, from the best fit
of 81.6 for AE-LLH individually to 40.2 for the group.

For logistic regression on Sleep data (combining the data-
specific and generalization to other data settings), all indi-
vidual SQIs had a significant effect (Table III). Even though a
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Fig. 5: Binary quality scoring results for the held-out CinC
test set, boxplots show bootstrap estimates of the sampling
distribution

significant effect was observed, large differences exist between
the SQIs. Fitting logistic regression for (data-specific) AE-
logMSE gave a negative loglikelihood of 351.1 compared to
kurtosis with 921.3, barely improving upon only fitting an
intercept. Backwards selection resulted in a group consist-
ing of AE-logMSEspecific, AE-logMSEgeneral, kurtosis, IOR,
basSQI, bSQI, and pcaSQI (so combining the AE-logMSE
indicators from both settings).

Logistic regression for Stress data (combining the data-
specific and generalization to other data settings) showed
similar results to the held-out results on CinC data: kurtosis
was also the sole SQI not having a significant effect (Table
III). Here, backwards selection resulted in a smaller group than
the other data sets with AE-logMSE, AE-LLH, basSQI, and
bSQI being selected, only including the data-specific versions
of AE-logMSE and AE-LLH. This did lead to a smaller drop
in negative loglikelihood than observed with the other two data
sets. The data-specific AE-logMSE by itself got a fit of 105.0
and the combination only dropped this to 97.5.

Table IV shows sensitivity and specificity results for a
subgroup analysis of the CinC test set. Performance remains
similar across the three subgroups.

B. Quality correlation

Results for the correlation between SQI values and quality
levels (for held-out data) can be found in Figure 7. For elec-
trode motion noise, AE-logMSE and AE-LLH both outperform
the benchmarks. For motion artefacts, AE-logMSE and AE-
LLH are outperformed by pSQI and pcaSQI. Both report
a near-perfect correlation. For baseline wander, performance
of AE-logMSE drops to the middle of the pack and AE-
LLH again scores third-best, being outperformed by pcaSQI

and pSQI. Note that AE-LLH is the only SQI that scores
consistently above 0.6 for the three types of noise.

IV. DISCUSSION

A. Discussion of experimental results

As a first experiment, the binary quality scoring capabil-
ities of AE-logMSE and AE-LLH were evaluated. In the
generalization to held-out data setting (Figure 5), AE-LLH
outperformed the benchmarks and AE-logMSE only got out-
performed by bSQI. In the data-specific setting (Figure 6),
AE-logMSE showed very strong performance, clearly outper-
forming the benchmarks. AE-LLH scored on par, or slightly
worse than bSQI. Results for AE-logMSE (median AUC of
0.98 and 0.96 for Sleep and Stress respectively) are nearing the
performance of the supervised model of [9], where the authors
reported 1.00 AUC for both of these data sets. Note that the
auto-encoder achieves these results without any knowledge of
the target labels. Results for the generalization to other data
sets setting were more varied (Figure 6), with AE-logMSE
and AE-LLH performing well on the Stress set, but less on
the Sleep set.

To obtain a good quality indicator in the generalization to
held-out data setting, the auto-encoder needs to transfer well
to held-out data. If the model had overfit on the training set or
failed to learn important ECG characteristics during training,
its reconstructions would be poor. Next, AE-logMSE and AE-
LLH have to accurately capture quality information. In a test
set, reconstruction errors can arise either due to the novelty
of the signals (being unseen in the training set) or due to
quality issues in the signals. A good quality indicator has to
isolate these quality issues while not being mistaken on novel
signals. The strong performance in binary quality scoring on
the CinC test set shows these two properties of AE-logMSE
and AE-LLH.

Looking at the data-specific and held-out results, AE-
logMSE outperforms AE-LLH on Sleep and Stress data, while
the reverse is true on CinC data. We hypothesize that this is
caused by the difference in definition of the quality labels.
For CinC data, a high-quality ECG recording had to show
the finer details of an ECG recording like P and T waves
to allow for diagnosis of atrial fibrillation. Sleep and Stress
data on the other hand, linked the quality of a recording with
clearly defined R-peaks. AE-LLH allows to weigh parts of
the signal depending on the confidence of the model. The
auto-encoder showed high uncertainty around the R-peaks of
a signal, not clearly predicting the magnitude of the peaks.
The uncertainty bands shrank outside of the QRS complex,
penalizing reconstruction errors at this part of the signal higher
than around the R-peaks. AE-logMSE does not incorporate this
local weighing and is mainly driven by reconstruction errors on
the R-peaks due to the high amplitude of the peaks compared
to the rest of the ECG. These properties lead to the hypothesis
that AE-LLH is more suited for tasks where the finer details
of the ECG matter, and AE-logMSE is more suited for a focus
on R-peaks.

The CinC results indicate strong performance of AE-
logMSE and AE-LLH in an online setting when training data is
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Fig. 6: Binary quality scoring results for the data-specific and generalization to other data settings (evaluated on the Sleep
and Stress data sets), boxplots show bootstrap estimates of the sampling distribution. AE-logMSEspecific and AE-LLHspecific

show the data-specific results, AE-logMSEgeneral and AE-LLHgeneral show results in the generalization to other data setting.

TABLE III: Negative loglikelihood of the logistic regression fit for SQIs on the different data sets (lower is better), also
including fit of the SQI group obtained using backwards selection. Note that we combine two evaluation settings (data-specific
and generalization to other data, the latter trained on CinC data, see Table II) for determining the best group fit. For the
benchmark SQIs, the data-specific and generalization to other data settings are identical. Intercept indicates a model fit using
only an intercept parameter, giving a baseline to perform the likelihood ratio test. Results for the likelihood ratio test:∗p < 0.05,
∗∗p < 0.01

Evaluation setting Held-out data Data-specific Generalization to other data
Evaluation data CinC Sleep Stress Sleep Stress
Intercept 130.1 926.7 293.2 926.7 293.2
AE-logMSE 96.0∗∗ 351.1∗∗ 105.0∗∗ 834.6∗∗ 197.1∗∗

AE-LLH 81.6∗∗ 601.8∗∗ 165.2∗∗ 790.3∗∗ 182.3∗∗

Kurtosis 130.1 921.3∗∗ 291.6 921.3∗∗ 291.6
Skewness 124.7∗∗ 565.4∗∗ 201.4∗∗ 565.4∗∗ 201.4∗∗

IOR 114.6∗∗ 737.8∗∗ 276.1∗∗ 737.8∗∗ 276.1∗∗

pSQI 127.4∗ 919.5∗∗ 280.6∗∗ 919.5∗∗ 280.6∗∗

basSQI 113.9∗∗ 461.7∗∗ 231.5∗∗ 461.7∗∗ 231.5∗∗

bSQI 93.7∗∗ 746.2∗∗ 159.1∗∗ 746.2∗∗ 159.1∗∗

pcaSQI 98.1∗∗ 879.1∗∗ 191.1∗∗ 879.1∗∗ 191.1∗∗

Group fit 40.2∗∗ 207.3∗∗ 97.5∗∗ 207.3∗∗ 97.5∗∗

TABLE IV: Sensitivity and specificity results for a binary
quality scoring task between noisy signals and one of either
normal rhythms, atrial fibrillation, or a catch-all other class
with a common classification threshold for all tasks. The noisy
signals are considered the negative class.

Normal rhythm Atrial fibrillation Other rhythms
Sens Spec Sens Spec Sens Spec

AE-logMSE 0.96 0.60 0.96 0.60 0.94 0.60
AE-LLH 0.93 0.70 0.93 0.70 0.88 0.70

available from the measurement setup and subject population
(held-out setting). When changing measurement setup, results
on the Sleep and Stress data set in the generalization to other
data sets setting indicate that, while satisfactory performance
can be obtained (like in the Stress case), retraining might
be required for optimal performance. If a retraining step is

not an option, a user might want to opt for one of the more
traditional SQIs, e.g., bSQI, depending on the measurement
setup in question (as it is difficult to know a priori whether the
results for the Sleep or Stress data are more representative for a
new use case). Note that this retraining step does not require
human labels, the auto-encoder retrains in an unsupervised
manner. In an offline setting with a data-specific model, our
results indicate that this retraining can lead to near-perfect
binary quality scoring.

Multiple logistic regression showed room for improvement
on a single SQI. For every data set, the best performing
individual SQI could achieve significantly better performance
when joined by another indicator. Even though AE-logMSE or
AE-LLH could outperform the reference SQIs by themselves,
some aspects of signal quality seem to be missed by the
auto-encoder but can be identified by relying on other SQIs,
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Fig. 7: Absolute values for Kendall’s rank correlation (τb) of the quality indicators with five quality levels using electrode
motion noise, motion artefacts, and baseline wander (tested on held-out data). Error bars indicate the sampling standard deviation
estimated using bootstrapping.

indicating that they are complementary in nature (with the
auto-encoder based indicators being the most informative).
For CinC and Stress data, significant gains could even be
obtained by joining AE-logMSE and AE-LLH, which are both
computed from the same auto-encoder model.

When comparing results from binary scoring with the corre-
lation test, it becomes clear that performance of the reference
SQIs varies strongly from task to task. AE-logMSE, AE-LLH,
and kurtosis show similarly strong correlation for the three
noise types. For the binary scoring, however, kurtosis was the
only SQI to show insignificant predictive power in logistic
regression for two out of three data sets. On the other hand,
the best performing reference SQI in the CinC binary scoring
task, bSQI, shows mediocre results for the correlation test. AE-
LLH outperformed it for all noise types, and AE-logMSE only
scored similarly for baseline wander noise. For the other noise
types, AE-logMSE clearly outperformed bSQI. The auto-
encoder based quality indicators show strong performance on
both tasks and on all noise types in the correlation test.

The temporal resolution of SQIs is worth considering. The
data sets under investigation all contain signal segments with
duration between 30 and 60 seconds. Quality assessment,
however, can also be necessary at finer temporal resolution
for, e.g., beat classification. In this case one is interested in
resolutions of around a single second. Figure 3 shows that our
auto-encoder based indicators can convey meaningful quality
information at this resolution or even finer. Similar analysis
indicated that the SQIs based on signal statistics (kurtosis
and skewness) also already capture some quality information
at such short time scales. SQIs based on frequency infor-
mation are expected to struggle at finer temporal resolution
due to spectral resolution issues for the lower frequencies,
e.g., basSQI requiring <1 Hz frequency information. Finally,
SQIs that rely on beat detectors will struggle most at these
finer resolutions. pcaSQI requires more than five detected
beats, and we were able to obtain reasonable results on CinC

subsegments of down to five seconds. This was not possible
for bSQI, where the underlying wqrs beat detector failed for
segments of 5 seconds or less.

Our results show that the implicit definition of signal quality
by using an auto-encoder (that high-quality signals can be
represented on a low-dimensional manifold) is a good match
for human definitions of ECG signal quality across tasks.
In our experiments, AE-LLH generally outperformed AE-
logMSE. We want to restate the hypothesis that AE-LLH is
better suited for tasks involving fine-grained details of the
signal. This already shows in the binary quality scoring results.
The additive noise in the quality quantification test first distorts
P and T waves before distorting the QRS complex. Quality
labels in the temporal resolution test also rely on P and T
waves. For these tests, AE-LLH did outperform AE-logMSE,
while on the Sleep and Stress data (where quality labels relied
on visibility of R peaks) the reverse was true.

To summarize, while the benchmark SQIs show varying
performance on different tasks, we show that AE-logMSE and
AE-LLH perform consistently well across the different tasks.
However, our results adhere to the "no free lunch" principle.
For binary quality scoring, bSQI is a strong contender and the
more reliable SQI in a generalization to other data setting.
To quantify the quality level of a signal, pSQI or pcaSQI
might be more relevant if it is known beforehand that the
signal mainly suffers from motion artefacts. However, across
the board (across settings in the binary quality scoring task
and across noise types in the quality quantification task) AE-
logMSE and AE-LLH perform consistently, and perform well.

B. Model assumptions
Using auto-encoders to assess signal quality relies on two

key assumptions at the data set level and signal level. Firstly,
in order to obtain a model that is attuned to high-quality
signals the majority of the training data needs to consist of
examples of clean signals. In addition, these clean examples
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should make up a diverse set containing all variations of the
signal that could arise during use of the auto-encoder based
SQIs. Secondly, the type of signal should lend itself well
to unsupervised learning using auto-encoders. There should
be grounds to assume a lower-dimensional manifold can be
identified for the signal in question with realistic noise not
lending itself well to such a lower-dimensional representation.

Both assumptions seem to hold. ECG is a very structured
signal, giving confidence to the possible existence of a low-
dimensional representation that auto-encoders try to identify.
The typical noise in ECG recordings also shows less structure
than the actual signal. This allows the auto-encoder to more
easily learn desired ECG characteristics and ignore noise
which is more difficult to model with a bottleneck layer. The
data sets also lend themselves well to this approach, with labels
indicating a majority of clean data.

There is, however, a property of the ECG that deserves
closer attention. The heart is prone to various arrhythmias
which deviate from the expected, normal heart rhythm. These
arrhythmias, while part of the expected range of forms a clean
ECG can take, can easily be deemed an anomalous pattern by
the auto-encoder. To limit the risk of mistaking arrhythmias
for noise, enough examples of these deviating patterns should
be available in a training set for the model. This risk was the
main motivation to put more focus on the CinC data set, since
this data set contained not only atrial fibrillation, but other
rhythms as well (labeled as "other beats"). Table IV, together
with the strong performance of AE-logMSE and AE-LLH for
this data set shows the risk is manageable, but has to be taken
into account when applying our methodology to new data.

In the proposed approach, the model only looks at ECG
signals in a single lead. CinC data consist of lead I signals, and
Sleep and Stress data contain lead II signals. Our experiments
show that AE-logMSE and AE-LLH can cope with single-
lead signals coming from different leads, but might require
retraining to improve performance further. Additionally, since
the auto-encoder driving AE-logMSE and AE-LLH relies
on signal structure, we expect the model to also work on
multi-lead ECG where signal structure can be even more
pronounced, yet this is beyond the scope of this study.

C. Additional remarks
It is noted that this study goes beyond traditional auto-

encoder based anomaly detection. Purely detecting anomalous
signals corresponds to the binary quality scoring setting. For
this task, auto-encoders have become a popular approach in
other modalities to build such a data-driven, unsupervised
anomaly detector with minimal expert input. In this work,
however, we showed that the auto-encoder approach can be
taken further. When testing the correlation of our indicators
with noise levels or with the ordinal relabeling, AE-logMSE
and AE-LLH have to show a monotonic relation with these la-
bels. This is in contrast to the anomaly detection setting, where
we only look for a clear distinction between "normal" and
"anomalous" classes. The strong performance of AE-logMSE
and AE-LLH on these tasks show that auto-encoders are also
fit for extending anomaly detection to quality assessment (at
least for the particular case of ECG).

Applying auto-encoders instead of classical SQIs changes
the required expertise. Detecting quality issues using the
reference SQIs requires knowledge of the type of noise that
might be present and what characteristics a fit-for-analysis
signal should have. Our analysis shows that the reference SQIs
react differently to different kinds of noise, and differ in per-
formance depending on the specific task. Determining the best
indicator requires knowledge of these differences and which
differences matter for a specific use case. Auto-encoders, on
the other hand, perform strongly across types of noise and
tasks. They require, however, a different kind of expertise.
One needs to build and train an auto-encoder that succeeds at
learning a meaningful representation of the signal of interest.
The model has to focus on desirable properties while ignoring
various kinds of noise. Our results for binary quality scoring
on Sleep and Stress data show that auto-encoders can perform
well, even without retraining, for new data. It should also
be noted that no part of the model architecture was changed
between the different data sets, indicating that the architecture
transfers well to new data. While applying our methodology
for a new use case (other than ECG) might require further
tuning of the auto-encoder, this architecture can nonetheless
be used as a good starting point.

V. CONCLUSION

In this paper, we discussed the use of auto-encoders, a class
of unsupervised deep learning models, in ECG signal quality
assessment. Two quality indicators based on a trained auto-
encoder, AE-logMSE and AE-LLH, consistently performed
well on the investigated evaluation tasks compared to their
benchmarks. These evaluation tasks went further than the
typical anomaly detection setting for auto-encoders. Not only
did AE-logMSE and AE-LLH perform well on binary quality
scoring, they also showed strong performance when testing
correlation with different noise levels.

In contrast to developing the benchmark indicators, no
expert input is needed for our indicators. The auto-encoder
automatically detects patterns in the data without additional
human input. Our methodology can easily be extended to
other data modalities by training an auto-encoder on these
modalities, leading the way for data-driven quality assessment
instead of relying on desirable data properties defined by
humans.
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