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Abstract— Electroencephalography (EEG) is an essential
tool in clinical practice for the diagnosis and monitoring
of people with epilepsy. Manual annotation of epileptic
seizures is a time consuming process performed by expert
neurologists. Hence, a procedure which automatically de-
tects seizures would be hugely beneficial for a fast and cost-
effective diagnosis. Recent progress in machine learning
techniques, especially deep learning methods, coupled with
the availability of large public EEG seizure databases
provide new opportunities towards the design of automatic
EEG-based seizure detection algorithms. We propose an
epileptic seizure detection pipeline based on the fusion
of multiple attention-gated U-nets, each operating on a
different view of the EEG data. These different views
correspond to distinct signal processing techniques applied
on the raw EEG. The proposed model uses a long short
term memory (LSTM) network for fusion of the individual
attention-gated U-net outputs to detect seizures in EEG.
The model outperforms the state-of-the-art models on the
TUH EEG seizure dataset and was awarded the first place
in the NeurekaTM 2020 Epilepsy Challenge.

I. INTRODUCTION

Electroencephalography (EEG) is an essential tool in
clinical practice for the diagnosis of epilepsy, the hall-
mark of which are epileptic seizures. Manual annotation
and interpretation of long-term EEG recordings are
time-consuming and expensive tasks. Therefore, auto-
mated EEG-based epileptic seizure detection systems
would be a valuable clinical support tool.

Epileptic seizure detection is a standard binary classi-
fication problem that aims at labelling epochs of EEG
as belonging to one of two classes: ‘seizure’ or ‘non-
seizure’. Algorithms to solve this problem have typically
relied on classical machine learning techniques such as
neural networks and support vector machines [1, 2].
Deep learning (DL) methods, currently used to solve
a plethora of other machine learning problems, have
seen a more limited use in EEG-based epileptic seizure
detection due to a lack of large annotated datasets [3].
However, recent public availability of large EEG seizure
datasets such as the TUH EEG corpus [4] has led to
a renewed focus in the development of DL methods
for solving the seizure detection problem [5]. DL has
shown great promise in EEG based classification due
to its capacity to learn good feature representations

from raw data. Currently, convolutional neural networks
(CNNs) seem to be the most popular approach for
automatic seizure detection [6–10]. Recurrent neural
networks (RNN) such as Long Short Term Memory
(LSTM) or Gated Recurrent Unit (GRU) have also been
used [5, 6, 11–13].

U-net is a DL architecture originally developed for
image segmentation [14]. The U-net is a convolutional
autoencoder with skip connections to recover the local
spatial information lost during compression. This archi-
tecture has found recent applications in the analysis of
biomedical signals, for example, in electrocardiograms
(ECGs) for arrhythmia diagnosis [15] and in EEG for
the identification of sleep stages [16]. In the current
work, we used a modified U-net architecture with at-
tention gating [17]. This attention mechanism allows the
network to focus on the specific channels that contain
the most relevant information for the classification task.
To the best of our knowledge, attention-gated U-nets
have never been applied to EEG based seizure detection.

To improve classification outcome, we fused the pre-
dictions of three distinct attention-gated U-nets. These
three individual attention-gated U-nets operated on three
different views of the EEG data. These individual views
were distinguished by the filtering or preprocessing
techniques applied to the EEG data. The three views
of the EEG data used here are (a) re-referenced and
bandpass filtered EEG data, (b) data filtered using a
set of multi-channel subspace filters and (c) EEG data
processed using the ICLabel toolbox [18]. Hence, we
term the proposed model as fusion of multi-view U-
nets.

Most of the popular DL models used in seizure detection
use a sliding time window [6–8, 10]. In our proposed
approach, a view of the entire EEG recording is used
as input to the attention-gated U-nets, which outputs
the probability of being a seizure for each point in
time. To produce robust predictions, we fuse the multi-
view attention-gated U-net outputs with a simple LSTM
neural network.

We developed the proposed model for the NeurekaTM

2020 Epilepsy Challenge [19], a month-long chal-

IEEE SPMB 2020 v1.0: June 1, 2020



Page 2 of 7

lenge on seizure detection using the TUH EEG Seizure
dataset [20]. Our submission to the challenge, based on
the proposed model, was awarded the first place among
15 submissions from all over the world [19]. The goal of
the challenge was to have the best performance across
subjects (with a minimal number of false detections)
while using as few channels as possible.

The paper is organized as follows. In Section II a
description of the preprocessing of raw EEG, the multi-
view attention-gated U-nets and the postprocessing steps
of the seizure detection model, are given. We also
describe the training, validation and testing procedure
used on the model. We report and draw inferences on
the performance of the proposed model on the TUH
EEG seizure dataset in Section III. Finally a summary
of our work and future improvements of the model are
presented in Section IV.

II. METHODS

The NeurekaTM 2020 Epilepsy Challenge made use
of the Temple University Hospital Seizure Detection
Corpus v1.5.1 [20]. This dataset consists of routine EEG
recordings performed on 692 patients. The seizures in
the recordings are annotated by experts. The dataset
contains more than 3500 seizures. The recordings in
the dataset come in different EEG montages and with
different sampling frequencies. A subset of this dataset,
was used in the challenge [20].

The subset which was made available for the challenge
was divided into a training, development and evaluation
set. EEG recordings along with seizure annotations were
made available for the training and development (vali-
dation) set but not for the evaluation set. The training set
consisted of 4597 files of EEG recordings, with a total
duration of approximately 752 hours, which contained
46.7 hours of seizure data (6.21%). The development
set consisted of 1013 files of EEG recordings, with
a total duration of approximately 170 hours, which
contained 16.2 hours of seizure data (9.53%) [19]. For
the evaluation set, only the final performance scores of
the submitted detection models were made available.
Figure 1 gives on overview of the architecture of our
seizure detection pipeline. The raw EEG data are first
standardized to form the input data of our pipeline.
This was done by means of re-referencing to a bipolar
montage, re-sampling to 200Hz and filtering the data
(details in Section II-E). Different views of the data
were created through different preprocessing methods
(Section II-A). Three U-nets with attention layers were
trained on these different views ( Section II-B). These
U-nets were combined by means of an LSTM network
(Section II-C). Finally, after some postprocessing of
the predicted labels, a list of detected seizure events
is provided (Section II-D).

II-A. preprocessing

Three different preprocessing pipelines of the input data
were used as different data views to train three different
U-nets (Fig. 1):
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Figure 1. Seizure detection pipeline

• The input data (without any further processing)
were used as a first view of the data.

• A set of multi-channel subspace filters that
suppress the dominant artifacts were computed
and applied to provide a second view of the
data.

• The input data filtered with the use of the
ICLabel toolbox provided by EEGlab [18] was
used as a third view.

II-A1. Subspace projection filtering
Subspace filtering derived methods have proven effec-
tive for removing artifacts in EEG recordings [21–23].
In typical implementations of this method, a well identi-
fied type of artifact (e.g. eye blinks) is manually marked
by an expert. A spatial or spatio-temporal co-variance
matrix of the artifact is computed and the resulting
subspace is calculated. This is a semi-automated method
as it first requires a manual labelling of each type of
artifact. We propose two main novelties with regards to
established methods:

1) An automatic artifact identification followed
by an automatic clustering of these artifacts.

2) The use of a set of subspace projection filters
to remove the dominant artifacts identified in
step 1.

II-A1a. Automatic artifact identification

Automatic artifact identification is done with the use
of a spatio-temporal max Signal-to-Noise-Ratio (max-
SNR) filter [24]. The max-SNR filter (w) is a spatio-
temporal filter that linearly combines the time lagged
multi-channel input data (y(t)) into a single-channel
output (o(t)) : o(t) = wT y(t). The filter w is optimized
in a data-driven fashion to maximize the SNR of o(t)
over a training set, where the target signal corresponds
to the seizure epochs. A detailed description of this
artifact selection procedure is described in [25].

II-A1b. Artifact clustering

The artifacts are clustered based on the Euclidean
distance between their spatio-temporal covariance ma-
trices. The spatio-temporal covariance matrix of each
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individually identified artifact is computed. Dimension-
ality reduction, based on Principal Component Analysis
(PCA), is applied to the vectorized covariance matrices,
retaining 99% of the variance of the data. A K-means
clustering is then applied on the compressed covariance
matrices. This allows to group the artifacts in clusters
of similar covariance matrices.

II-A1c. Subspace filtering

An eigenvalue decomposition is performed on the co-
variance matrices of the two biggest clusters (which
are considered the most representative clusters of the
respective artifact). For each matrix, the largest eigen-
values that sum up to 99% of the trace of the matrix
are kept, and the rest are set to zero. The data is then
multiplied with the resulting matrix, which is equivalent
to a projection of the data onto the principal eigenspace
and back to sensor space, thereby mainly retaining
information related to the artifact. The result is then
subtracted from the original data. This procedure is done
sequentially for both artifact clusters.
II-A2. IC Label preprocessing
Blind Source Separation (BSS) approaches for multi-
channel EEG processing have become popular, in view
of their proven ability for artefact removal and source
extraction. In particular Independent Component Analy-
sis (ICA) makes use of different properties of the signal,
such as non-Gaussianity, sample dependence, geometric
properties, or non-stationarity in order to maximize
the independence among the extracted components. In
matrix-based BSS approaches the multichannel EEG
signal forms a matrix, T ∈ RIt×Ie for which a decom-
position is sought such that:

T ≈MA>, (1)

with A ∈ RIe×R containing the weights of the topo-
graphic maps and M ∈ RIt×R containing the time-
courses. Ie represents the total number of electrodes,
It the total time in number of samples and R being the
estimated number of sources [26]. Note that, in practice,
the decomposition cannot be exact due to unmodeled
phenomena including noise.

ICA solves Eq. (1) by assuming that the matrix A
contains statistically independent topographic maps in
its columns, each one corresponding to a time-course in
the associated column of the (mixing) matrix M . The,
R, independent components (IC) obtained by ICA are
manually inspected and interpreted in order to identify
if they represent an artifact or source of interest; the
artifact components are then removed and the signal is
reconstructed from the remaining components.

Automated IC classifiers have been designed, speeding
up the analysis of EEG studies with many subjects.
ICLabel [18] is one of the most accurate automated
classifiers available via EEGlab [27]. The ICLabel clas-
sifier uses a fusion of convolutional neural networks
of different depth for each of the feature-sets. Namely,

the feature-sets included in the ICLabel dataset, are
scalp topography images, channel-based scalp topogra-
phy measures, power spectral density (PSD) measures,
plus features used in several published IC classifier
approaches. The ICLabel dataset [28], used for training
comprised of spatio-temporal measures for over 200,000
ICs from more than 6000 EEG recordings, the biggest
dataset with which such a classifier has ever been
trained. The seven different clusters used for the ICs
are: brain, muscle, eye, heart, powerline noise, channel
noise, and other.

The input data were first high-pass filtered (0.25 to 0.75
Hz) and then possible “bad channels” were rejected. A
channel was rejected either if it was flat for more than
20 seconds, or its SNR was lower than 0.25 standard
deviations based on the total channel population, or if its
Pearson correlation with a least-squares estimate based
on other channels was less than 0.6. The “cleaned” input
data were decomposed with the Second Order Blind
Identification (SOBI) [29] ICA algorithm. The resulted
ICs were clustered based on ICLabel probabilities. Any
IC with probability higher than 0.6 for being in any of
the following five classes, was removed: muscle, eye,
heart, powerline noise, channel noise.

II-B. Attention-Gated U-net

An attention-gated U-net neural network was used as
the base-learning algorithm in the seizure detection
pipeline. The network architecture is based on [17],
which was originally designed for medical imaging
tasks.
II-B1. Architecture
The network processes multi-channel EEG data and
outputs a single-channel signal indicating the likelihood
of a seizure for each time sample at the same temporal
resolution as the input signal. Figure 2 shows the
architecture of the network. All convolutions operate
along the temporal axis, i.e., all channels are processed
in a parallel manner.

The “downward path” of the U-Net extracts information
on different scales. It uses a maxpooling operation to
down-sample the data. This down-sampling, similarly
to the convolutions, works along the temporal axis.
In the lowest part of the U-net the data channels are
merged. This merging step performs maxpooling along
the channel axis. The “upward path” of the U-Net
combines local and global information before outputting
a signal.
II-B2. Attention Gating
The local information of channels is merged using
the Attention Gating mechanism of [17], allowing the
network to decide, at every time step, which channels
should be focused on and which should be ignored.
Attention Gating calculates an attention weight, α , for
a specific feature fiber, x, in the (time× channel ×
f eature) data tensor. The attention mechanism makes
use of a gating signal, g, another feature fiber originat-
ing from a lower stage in the upward path up-sampled
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Figure 2. Illustration of the architecture of the U-nets used as base-learners for the different data views. The “downward path”
consists of five stages, down-sampling along the time axis at every stage. The last part performs max-pooling over the entire
channel axis, reducing the data to a single channel. The “upward path” up-samples the data along the time axis in five stages,
making use of attention-gated skip connections from the “downward path”. The darker blocks represent multi-channel data and
the lighter ones correspond to single-channel data.

to match the time resolution of the data flowing from
the downward path. The attention weight α is calculated
as follows:

α = σ(wT
σ(Wxx+Wgg+b)+b, (2)

with w,Wx,Wg,b and b all being trainable weights and
σ(·) the element-wise sigmoid function. This calcu-
lation is based on the additive attention mechanism
of [30], taking a form similar to a classical multilayer
perceptron.

Skip connections in the “upward path” of the U-net
make use of this Attention Gating mechanism. The at-
tention weights are used to compute a weighted average
along the channel axis for data flowing from a skip
connection. Every stage of the upward path concatenates
this weighted average with up-sampled data from the
lower stage.
II-B3. U-net Training
The training process makes use of multiple regulariza-
tion methods to improve the generalization power of a
single U-net. Firstly, regular cross-entropy loss making
use of the output of the network is extended by use of
Deep Supervision [17]. This makes sure the network
focuses on seizure information at every stage of the U-
net instead of relying on one-off patterns it may find in
the training set by accident. Secondly, label smoothing
prevents over-confident predictions. The normal training
labels, 0 or 1, are changed to values closer to 0.5.
By doing so, the network should avoid saturating the

sigmoid activation in its output and overfit less. Finally,
a weighted cross-entropy loss is used to mitigate the
effect of class imbalance (higher number of background
EEG samples than seizure events).

II-C. U-net fusion

Each trained U-net predicts the likelihood of each
time sample being part of a seizure. To include long-
term memory and information on the probability of
transitioning between a seizure and non-seizure state,
an RNN is used to combine the different U-Nets. The
RNN is implemented as a bidirectional LSTM node with
a state vector of length 4 followed by a dense layer. The
LSTM receives as an input a downsampled version of
the U-net predictions at 1Hz and provides predictions
at the same sampling rate.

II-D. Postprocessing

The proposed seizure detection model designed for the
Neureka challenge [19] was tuned with the objective to
maximize a scoring function described in Section III. To
this end, the following set of postprocessing rules was
used to merge neighbouring events and remove short
events:

1) Seizure events less than 30 seconds apart are
merged together.

2) Merged seizure events, for which the proba-
bility of being a seizure is less than 82%, are
rejected. The probability per event is calculated
as the mean of all the output probabilities
during that seizure event, normalized by the
mean probability of the event with the highest
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probability.
3) Seizure events of duration less than 15 seconds

are rejected.

II-E. Model training and validation

The recording montages, sampling frequencies and
number of channels were not uniform across the record-
ings in the EEG dataset. Therefore, for uniformity, the
following preprocessing steps were applied. First, only
a subset of channels available in all the recordings were
used in the development of the seizure detection algo-
rithm. These channels were the following 16 channels:
FP1, F7, T3, T5, O1, FP2, F8, T4, T6, O2, C3, CZ, C4,
F3, P3, F4. The EEG measurements from these channels
were re-referenced to 18 bipolar pairs from a double
banana montage. Second, the re-referenced EEG was
resampled to 200 Hz. The resampled EEG was high-
pass filtered with a fourth order Butterworth filter with a
cut-off frequency of 1 Hz and with two band-stop fourth
order Butterworth filters with stop bands of respectively
[47.5,52.5] Hz and [57.5,62.5] Hz to remove powerline
noise.

For each of the three data views (Raw EEG, sub-
space filtering and ICLabel preprocessing) the network
specifics are kept identical. For the subspace filters the
number of time lags was set to L = 50 and 40 minutes
of artifact are selected per 24h. The U-nets are trained
on data with 4096 time samples, or about 20 seconds
of EEG data. In every stage of the “downward path”,
the network performs down-sampling along the time
axis with a factor of 4. In total, the U-net contains five
such down-sampling steps, resulting in 4 "time steps"
at the lowest level of the U-net. The “upward path” up-
samples data by a factor of 4 in five stages, similarly
to the “downward path”. Training makes use of the
Adam optimizer [31] with 0.0001 as learning rate. It
was stopped using early stopping by monitoring the
performance of the network on a separate validation set.
Each batch consisted of 32 EEG segments.

We used a bidirectional LSTM with 4 hidden nodes
followed by a dense layer to fuse the attention-gated
U-Net outputs. The LSTM based network was trained
and tested on the development set using 10−fold cross
validation. The LSTM state vector was reset for each
recording. EEG recordings which contained seizures
were given a larger weight during LSTM training by
using 15 times more epochs from these recordings
compared to those not containing any seizures.

To show the added value of the multi-view approach, the
seizure detection pipeline, shown in Fig. 1, was tested
as well on the the individual preprocessing methods
or views: the Raw-view, the subspace-filtered-view and
Icalabel-view. For each view, the corresponding U-net
predictions were fed to the LSTM.

III. RESULTS AND DISCUSSION

The evaluation of the submissions in the NeurekaTM

Epilepsy challenge was based on the Time-Aligned

Event Scoring (TAES) metric. The TAES metric weighs
each seizure event predicted by a model equally. For
each event a partial score based on its overlap with
a true seizure [32] is assigned. The sensitivity is then
calculated as a sum of the true positive scores divided
by the number of seizures. The metric is designed to
be a compromise between the fraction of true seizure
events correctly detected as well as the number of
false detections (background EEG detected as a seizure
event). Using the TAES metric, true positives (TPs) and
false alarms (FAs) are calculated. The following formula
was used to compute the “TAES score”:

TAES score = Sens−α ∗FAs24hr−β ∗ N
19

, (3)

where Sens is the sensitivity in %, FAs24hr is the number
of FAs per 24 hours, N is the mean number of EEG
channels used for seizure detection and α = 2.5 and β =
7.5 are constants defined by the challenge organizers.

In Fig. 3, the sensitivity is plotted as a function of FA
rate by varying the threshold values (using a 10−fold
cross-validation on the validation set). This curve is
plotted for the multi-view approach as well as the
individual views: the Raw-view, the subspace-filtered-
view and the ICLabel-view. The bold line indicates
the median score and the edges of the shaded area
represent the maximum and minimum scores across
10 folds. As expected, there is a compromise between
sensitivity and FA rate for all views, based on the
threshold (τ) set on the predicted probabilities (a seg-
ment with probability higher than τ is considered a
seizure). A higher sensitivity is observed for the multi-
view approach compared to the individual views at low
false alarm rate (≈2FAs/24Hr).

In order to select the optimal τ value we computed
the TAES score (on the validation set) for different
threshold values, shown on Fig. 4 (using a 10−fold
cross-validation). This TAES scores was shown for the
multi-view approach as well as the individual views.
The multi-view approach obtained higher TAES scores
compared to the individual views. The optimal proba-
bility threshold, to be used for the evaluation set, was
selected based on this figure.

After selecting a threshold 1, we applied the proposed
model on the evaluation set to detect seizures. The
results were submitted for the challenge by our team,
named ’Biomed Irregulars’. The scores obtained in
the challenge by the top 5 teams, from 15 worldwide
submissions, is listed in Table 1. As can be noted, our
submission achieved the top position, with a consider-
able gap to the remaining competitors.

1We would like to note that the model used to generate the
submission for the challenge used a threshold of 0.55. Due to time
constraints, this threshold was selected after training and testing the
LSTM on the development set without the use of 10-fold cross
validation. However, a threshold equal to 0.35 would have probably
resulted in an even better performance, as can be noted from Fig. 4.
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Figure 3. Development set performance: Sensitivity in func-
tion of FA rate using a 10-fold cross-validation for the multi-
view, raw-view, subspace-filtered-view and ICLabel-view. The
bold line indicates median sensitivity and the edges of the
shaded area represent minimum and maximum sensitivity
across the 10 folds.
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Figure 4. Development set performance: TAES score obtained
for different thresholds on the development set using a 10-
fold cross-validation for the multi-view, raw-view, subspace-
filtered-view and ICLabel-view. The bold line indicates me-
dian score and the edges of the shaded area represent mini-
mum and the maximum score across the 10 folds.

Rank Team Sensitivity FAs/24Hr Channels Score

1 Biomed 12.37 1.44 16 2.46Irregulars
2 NeuroSyd 2.04 0.17 2 0.82
3 USTC-EEG 8.93 0.71 17 0.45
4 RocketShoes 5.98 3.36 3 -3.6
5 Lan Wei 20.00 15.59 4 -20.56

Table 1. Neureka challenge results: The top 5 teams and the
performance scores of their submissions on the evaluation set
of the Neureka challenge.

While our seizure detection algorithm showed better
results than other competing models in the Neureka

challenge, it still needs to be further optimized for use
in clinical practice. Sensitivity remains below 25% even
for high FAs/24hr. This is partially due to the nature of
the dataset which contains seizures of different type,
some of them challenging to identify. The architecture
and training of the model was the same for all types of
seizures. The use of a different model for every subset
of seizure type may result in better performance, which
should be examined as future work. Furthermore, the
impact of each step of our detection pipeline must be
studied and documented. In the view of the success of
the multi-view approach, alternative views (other than
different preprocessing methods) will also be examined.

IV. CONCLUSION

Automatic seizure detection is highly beneficial for the
quick and efficient diagnosis of patients. The avail-
ability of large public EEG seizure databases have
enhanced the possibility for developing DL approaches.
We propose an epileptic seizure detection model based
on the fusion of multiple attention-gated U-nets, each
operating on a distinct view of the EEG data. The
outputs of the U-nets were combined with an LSTM.
This model achieved the highest performance in the
Neureka challenge competition. However, its perfor-
mance still remains insufficient for use in clinical prac-
tice. The code for the model proposed in this paper has
been released under the GNU public license v3.0 and
is available at https://github.com/mabhijithn/irregulars-
neureka-codebase
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