
A COMPUTATIONALLY EFFICIENT ALGORITHM FOR DISTRIBUTED ADAPTIVE
SIGNAL FUSION BASED ON FRACTIONAL PROGRAMS

Cem Ates Musluoglu and Alexander Bertrand

KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems,
Signal Processing and Data Analytics, Kasteelpark Arenberg 10, box 2446, 3001 Leuven, Belgium

{cemates.musluoglu, alexander.bertrand}@esat.kuleuven.be

ABSTRACT

Spatial filtering procedures aim to optimally fuse the different sig-
nals collected in a sensor array, by exploiting their inter-channel cor-
relations. If the sensors are physically distributed, as it is the case in a
wireless sensor network, the inter-channel statistics cannot directly
be measured or tracked, unless the data is transmitted to a central
processor, which is not always possible due to energy or bandwidth
constraints. The so-called distributed adaptive signal fusion (DASF)
algorithm allows to solve such problems in a distributed fashion with
a reduced communication burden. The DASF algorithm iterates over
the different nodes of the network, each solving a local compressed
version of the original (centralized) optimization problem. How-
ever, if the solver for these local optimization problems is in itself
also iterative, the computational burden can become quite large as
these iterations are nested within the DASF iterations. In this paper,
we focus on Dinkelbach’s iterative procedure to solve fractional pro-
grams, i.e., problems of which the objective function is a ratio of two
continuous functions. We propose the fractional DASF (F-DASF)
algorithm which interleaves the iterations of DASF with those of
Dinkelbach’s procedure, to reduce the computational burden without
affecting the convergence properties of the original DASF algorithm.

Index Terms— Distributed Optimization, Distributed Spatial
Filtering, Fractional Programming.

1. INTRODUCTION

Spatial filtering consists of linearly combining signals measured at
different locations such that the resulting filtered signal is optimal in
some sense [1,2]. This technique is widely used in biomedical signal
processing [3–5], wireless communication [6, 7], and acoustics [8,
9] among others. With the emergence of wireless sensor networks
[10, 11], many applications require a fully distributed approach to
solve spatial filtering problems in order to reduce the energy and
bandwidth requirements.

The filter design is typically based on an optimization problem
aiming at finding a spatial filter which optimally fuses the sensor
channels of the different nodes such that the resulting fused output
signal is optimal in some sense. We refer to this class of problems as
distributed signal fusion optimization (DSFO) problems. Classical
distributed signal processing algorithms [12–15] typically assume
a per-node separable objective function, which is not the case for

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 802895). The authors also acknowledge
the financial support of the FWO (Research Foundation Flanders) for project
G081722N, and the Flemish Government (AI Research Program).

Table 1: Examples of DSFO problems with fractional objectives as
in (2). TRO is the trace ratio optimization problem and RTLS the
regularized total least squares. E denotes the expectation operator.

Problem Cost function to
minimize Constraints

TRO [18] −E[||XT y(t)||2]
E[||XT v(t)||2]

XTX = IQ
⇔ (XTB)(XTB)T = IQ

with B = IM

RTLS
[19, 20]

E[||xT y(t)−d(t)||2]
1+||x||2 ||xTL||2 ≤ δ2

DSFO problems. Indeed, in the DSFO setting, the cost function typ-
ically requires the inter-channel second-order statistics between all
the sensor channel pairs in the network. The latter cannot be mea-
sured or tracked directly in such a distributed setting, unless all the
sensor data is transmitted to a fusion center.

The distributed adaptive signal fusion (DASF) framework pro-
posed in [16] allows to solve DSFO problems in a distributed way,
achieving convergence to the centralized solution under mild con-
straints [17]. At each iteration, the DASF framework requires a node
of the network to solve a local optimization problem, which inher-
its the structure of the original (centralized) problem, and which can
therefore be solved using the same optimization algorithm.

In this work, we are interested in solving a specific class of
DSFO problems, namely fractional problems, for which the objec-
tive function is written as a ratio of two functions, such as, e.g., the
trace ratio optimization problem [18] or the regularized total least
squares problem [19, 20]. These problems are commonly solved us-
ing the generic Dinkelbach procedure [21]. Since the Dinkelbach
procedure is itself iterative, the DASF framework will be computa-
tionally expensive for fractional problems because of the presence
of nested iterations to solve per-node fractional problems within the
iterations of the DASF algorithm. To avoid this computational bur-
den, we propose the fractional DASF (F-DASF) algorithm, which
interleaves the steps of the Dinkelbach procedure with the ones of
the DASF algorithm. Even though none of the nodes fully solves its
local problem (i.e., they only perform a single iteration of Dinkel-
bach’s procedure), the resulting F-DASF algorithm has a guaranteed
convergence under the same assumptions as the original DASF al-
gorithm. We also empirically show by means of simulations that the
convergence rate is not affected.

2. PROBLEM SETTING

Let us consider a sensor network with K nodes with the node set
denoted as K = {1, . . . ,K}. The topology of the network is given

by a graph G. Each node measures its own Mk-channel signal yk
and the network-wide signal y, assumed to be ergodic and (short-
term) stationary, is defined as

y = [yT1 , . . . ,y
T
K]T . (1)

We denote as y(t) ∈ RM the observation of y collected at sample
time t, where M =

∑
kMk. We aim to find a spatial filter X ∈

RM×Q which is the solution of a fractional problem with the generic
form1 (see Table 1 for some illustrative examples)

minimize
X∈RM×Q

%
(
XTy(t), XTB

)
,
ϕ1

(
XTy(t), XTB

)
ϕ2 (XTy(t), XTB)

subject to ηj
(
XTy(t), XTB

)
≤ 0 ∀j ∈ JI ,

ηj
(
XTy(t), XTB

)
= 0 ∀j ∈ JE ,

(2)

where JI and JE denote the index sets for inequality and equal-
ity constraints respectively. Every function is considered to be real-
valued. Note that X must always appear as an inner product with
the signal y or with a deterministic M × L matrix B [16], which is
also partitioned as y in (1):

B = [BT1 , . . . , B
T
k]T ∈ RM×L, (3)

where each Bk is Mk × L and assumed to be available at node k.
These deterministic matrices are independent of the time index t,
and are often used to enforce a structure on the variable X (e.g. the
constraint in the TRO example of Table 1 whereB = IM), or to for-
mulate the problem in a deterministic framework without stochastic
variables (e.g. least squares instead of minimum mean squared er-
ror). Additionally, the functions in (2) contain the stochastic signal
y in their argument, which means they should contain an internal
operator (such as an expected value) to extract a real-valued quantity
from it. The ergodicity and short-term stationarity of y implies that
a solution X∗(t) of (2) at time sample t can be estimated using a
window of observations of y around time point t. For mathematical
tractability, we only consider time-independent solutions X∗, which
corresponds to the assumption that the signal statistics of y do not
change. In practice, the underlying signal statistics are allowed to
change, assuming these dynamics are slower than the convergence
speed of the algorithms we discuss, such that these algorithms are
adaptively able to track changes in the statistics of the signals.

It is noted that Problem (2) can contain multiple variables (X),
signals (y) and deterministic matrices (B), even though only one of
each is included in (2) for conciseness. For example, the TRO prob-
lem in Table 1 involves two M−channel signals (y and v), and the
RTLS example has two instances ofB,B1 = IM in the denominator
of the cost function and B2 = L in the constraint.

3. FRACTIONAL PROGRAMMING REVIEW

A fractional program is an optimization problem with an objective
function r represented by a ratio of two continuous and real-valued
functions f1 and f2: minX∈S r(X) , f1(X)/f2(X). The con-
straint set S ⊂ RM×Q is considered to be non-empty and compact
and it is assumed that f2(X) > 0 forX ∈ S. We define the minimal
value of r over S as ρ∗ , minX∈S r(X) and the set of arguments
achieving this value as X ∗ , {X ∈ S | r(X) = ρ∗}. To solve
fractional programs, there exist generic methods based on solving
auxiliary problems instead of the original problem [22]. The method

1This is the generic form of a DSFO problem as defined in [16], but for the
special case where the cost function can be written as a ratio of two functions.

Algorithm 1: Dinkelbach’s procedure [21]

X0 initialized randomly, ρ0 ← r(X0), i← 0
repeat

1) Xi+1 ← argmin
X∈S

f1(X)− ρif2(X).

2) ρi+1 ← r(Xi+1) = f1(Xi+1)/f2(Xi+1).
i← i+ 1

we focus on in this paper is a parametric approach, initially pre-
sented in [21] and often referred to as Dinkelbach’s procedure. Let
us define the auxiliary functions f(X, ρ) , f1(X) − ρf2(X) and
g(ρ) , minX∈S f(X, ρ), where ρ is a real scalar. Then, g(ρ) = 0
if and only if ρ = ρ∗ when S is compact [21, 23–25].

Dinkelbach’s procedure is an iterative method aiming to find
the unique root ρ∗ of g, with a corresponding X∗ ∈ X ∗, by itera-
tively solving the auxiliary problem minX∈S f(X, ρi) = f1(X)−
ρif2(X) as summarized in Algorithm 1. The convergence proper-
ties of Dinkelbach’s procedure have been extensively studied in the
literature. It can be shown that (ρi)i obtained from Algorithm 1 is a
strictly decreasing sequence converging to ρ∗ [24].

To solve DSFO problems with fractional objectives (2) in a cen-
tralized setting using Dinkelbach’s procedure, the auxiliary prob-
lems corresponding to (2) are of the form

minimize
X∈S

ϕ1

(
XTy(t), XTB

)
− ρiϕ2

(
XTy(t), XTB

)
, (4)

where we define S to be the constraint set of (2), assumed to be
non-empty and compact and ϕ2 > 0 for X ∈ S.

4. MODIFYING DASF FOR FRACTIONAL PROGRAMS

The class of optimization problems written in the form (2) are a sub-
class of DSFO problems — namely those with a fractional objective
— which can be solved in a fully distributed fashion using the DASF
algorithm presented in [16]. However, solving Problem (2) by ap-
plying the DASF algorithm straightforwardly would lead to a high
computational cost since it would require solving a full Dinkelbach
procedure at each iteration, i.e., solving problems of the form (4)
multiple times at each iteration of DASF. The F-DASF method we
propose in this section interleaves the steps of the Dinkelbach pro-
cedure with the ones of the DASF algorithm to significantly reduce
the computational cost at each node. A similar approach has been
taken in [26] for a specific fractional program known as trace ratio
optimization (see TRO in Table 1). The proposed F-DASF algorithm
can therefore be viewed as a generalization of the algorithm in [26]
towards generic fractional problems.

For the sake of completeness, we immediately define our F-
DASF algorithm for networks with a general topology (we refer the
reader to [16] for a more gentle introduction to DASF, which starts
from simpler topologies). We define Xi to be the estimation of the
global filter X at iteration i (with X0 initialized randomly), parti-
tioned as

Xi = [XiT
1 , . . . , XiT

K]T , (5)

where each Xk is Mk × Q, such that XiTy =
∑
kX

iT
k yk and

XiTB =
∑
kX

iT
k Bk. Each iteration starts with selecting an (arbi-

trary) updating node q. At each iteration i, the network is first pruned
to obtain a tree T i(G, q) such that each pair of nodes is connected
by a unique path. The pruning function can be chosen freely, as long
as no link between the updating node q and its neighbors n ∈ Nq
are removed [16], where Nq is to the set of neighbors of node q. In
the remaining parts of this section, the set of neighboring nodes of a

certain node k corresponds to the one after pruning, with respect to
T i(G, q). Each node k ∈ K\{q} compresses its Mk−channel sig-
nal yk into a Q−channel signal using its current estimate Xi

k, while
doing the same operation to its submatrix Bk to obtain

ŷik , XiT
k yk, B̂

i
k , XiT

k Bk. (6)

In iteration i, the values in (6) are fused in an inwards flow within the
tree T i(G, q), to eventually arrive in the updating node q (this will
be formalized later on). For ŷik, this means that a block of N sam-
ples is transmitted, where N should be large enough to estimate the
relevant statistics from it [16]. The F-DASF algorithm will use dif-
ferent samples at each iteration, making the proposed method adap-
tive. The fusion flow emerges naturally within the tree based on the
following rule. A node k waits until it has received data from all of
its neighbors except one, say, node n. Node k will then fuse its local
data (6) with the (fused/compressed) data received from the nodes
l ∈ Nk\{n}, and transmits the result to node n. Formally, this
means that node k will transmit to node n a batch of N samples of

ŷik→n , XiT
k yk +

∑
l∈Nk\{n}

ŷil→k, (7)

where ŷil→k is the data received from its neighbor l. We observe
that (7) is recursive in its second term, which vanishes for leaf nodes
(nodes with a single neighbor). As a result, the recursion defined by
(7) is initiated by all leafs of the tree. Eventually, node q will receive
N samples of the fused and compressed signals

ŷin→q = XiT
n yn +

∑
k∈Nn\{q}

ŷik→n =
∑
k∈Bnq

ŷik (8)

from all its neighbors n ∈ Nq . The same fusion flow applies for the
deterministic matrix B, using the B̂ik’s, such that node q receives
B̂in→q , defined in a similar way to (8), from all its neighbors n ∈ Nq .
The set of nodes Bnq in (8) is defined as the subgraph of T i(G, q)
containing node n obtained after removing the link between nodes
n and q. Defining Nq , {n1, . . . , n|Nq|}, the compressed signals
gathered at node q and its own observation yq can be structured as

ỹiq , [yTq , ŷ
iT
n1→q, . . . , ŷ

iT
n|Nq|→q

]T ∈ RM̃q , (9)

where M̃q = |Nq| ·Q+Mq . Similarly, we can define an analogous
quantity for the matrix B:

B̃iq , [BTq , B̂
iT
n1→q, . . . , B̂

iT
n|Nq|→q

]T ∈ RM̃q×L. (10)

In the original DASF framework, node q would solve a com-
pressed version of (2) based on the compressed data defined in (9)
and (10), using the Dinkelbach procedure (Algorithm 1), which
would converge to the global optimum under mild conditions [16].
However, instead of solving the full fractional problem, we propose
that node q performs only a single iteration of Algorithm 1:

minimize
X̃q∈RM̃q×Q

ϕ1

(
X̃T
q ỹ

i
q(t), X̃

T
q B̃

i
q

)
− ρiϕ2

(
X̃T
q ỹ

i
q(t), X̃

T
q B̃

i
q

)
subject to ηj

(
X̃T
q ỹ

i
q(t), X̃

T
q B̃

i
q

)
≤ 0 ∀j ∈ JI ,

ηj
(
X̃T
q ỹ

i
q(t), X̃

T
q B̃

i
q

)
= 0 ∀j ∈ JE ,

(11)
i.e., solves a compressed version of the auxiliary problem (4), where
ρi can be computed as

ρi = %
(
X̃iT
q ỹiq(t), X̃

iT
q B̃iq

)
=
ϕ1

(
X̃iT
q ỹiq(t), X̃

iT
q B̃iq

)
ϕ2

(
X̃iT
q ỹiq(t), X̃iT

q B̃iq
) (12)

Algorithm 2: F-DASF Algorithm

X0 initialized randomly, i← 0.
repeat

Choose the updating node as q ← (i mod K) + 1.
1) The network G is pruned into a tree T i(G, q).
2) Every node k collects N samples of yk. All nodes

compress these to N samples of ŷik and also compute
B̂ik as in (6).

3) The nodes sum-and-forward their compressed data
towards node q via the recursive rule (7) (and a similar
rule for the B̂ik’s). Node q eventually receives N
samples of ŷin→q given in (8), and the matrix B̂in→q
defined similarly, from all its neighbors n ∈ Nq .

at Node q do
4a) Compute ρi as in (12).
4b) Compute a single Dinkelbach iteration by

solving (11), resulting in X̃i+1
q . If the solution is

not unique, select the solution which minimizes
||X̃i+1

q − X̃i
q||F with X̃i

q defined in (13).
4c) Partition X̃i+1

q as in (14).
4d) Disseminate every Gi+1

n in the corresponding
subgraph Bnq .

end
5) Every node updates Xi+1

k according to (15).
i← i+ 1

at node q, with
X̃i
q = [XiT

q , IQ, . . . , IQ]T . (13)

Node q then obtains X̃i+1
q by solving Problem (11). If the solution

of (11) is not unique, X̃i+1
q is selected such that it minimizes ||X̃q−

X̃i
q||F over all possible solutions X̃q of (11), where X̃i

q is given in
(13). We partition X̃i+1

q as

X̃i+1
q = [X(i+1)T

q , G(i+1)T
n1

, . . . , G(i+1)T
n|Nq|

]T , (14)

whereGn isQ×Q, ∀n ∈ Nq . Each Gi+1
n is then disseminated into

the corresponding subgraph Bnq through node n so that every node
can update its local variable estimator as

Xi+1
k =

{
Xi+1
q if k = q

Xi
kG

i+1
n if k ∈ Bnq , n ∈ Nq.

(15)

Remark 1. It can be shown that each Xi, i > 0, obtained from
Algorithm 2 satisfies the constraints of the global problem (2), i.e.,
Xi ∈ S [16]. Additionally, a similar proof as in [16] shows that
Xi ∈ S ⇐⇒ X̃i

q ∈ S̃iq for every i > 0, where S̃iq is the constraint
set of (11).

The entire process is then repeated by selecting other updat-
ing nodes at different iterations. The proposed fractional DASF (F-
DASF) algorithm is summarized in Algorithm 2. We note that a new
block of N samples of y, say {y(τ)}(i+1)N−1

τ=iN , is used at each iter-
ation i, hence the F-DASF algorithm acts as a block-adaptive filter
which adapts to changes in the statistical properties of the measured
signals. In particular, Xi is an estimator of X∗(t) for t = iN .

The following theorem gives a convergence result of the objec-
tive values obtained from the F-DASF algorithm. After that, we in-
troduce Theorem 2, which provides a stronger convergence result
under the same mild conditions as those for the original DASF algo-
rithm [16,17], although its proof is omitted due to space constraints.

Theorem 1. The sequence (ρi)i of objective values obtained by F-
DASF is monotonically non-increasing and converges.

Proof. In this proof, we denote the constraint set of (11) as S̃iq and
omit the matrix B for conciseness, as it is treated in a similar way to
y. Let us define the objective function of (11) as ϕ

(
X̃T
q ỹ

i
q(t), ρ

)
,

ϕ1

(
X̃T
q ỹ

i
q(t)

)
−ρ ϕ2

(
X̃T
q ỹ

i
q(t)

)
. From the definition of ρi given in

equation (12), note that we have ϕ
(
X̃iT
q ỹiq(t), ρ

i
)

= 0. Since X̃i+1
q

solves (11), we have that ϕ
(
X̃

(i+1)T
q ỹiq(t), ρ

i
)
≤ ϕ

(
X̃T
q ỹ

i
q(t), ρ

i
)

for any X̃q ∈ S̃iq . In particular, since X̃i
q ∈ S̃iq (see Remark 1),

we have ϕ
(
X̃

(i+1)T
q ỹiq(t), ρ

i
)
≤ ϕ

(
X̃iT
q ỹiq(t), ρ

i
)

= 0. Rearrang-

ing the terms of ϕ
(
X̃

(i+1)T
q ỹiq(t), ρ

i
)
, we obtain

ϕ1

(
X̃

(i+1)T
q ỹi

q(t)
)

ϕ2

(
X̃

(i+1)T
q ỹi

q(t)
)

= ρi+1 ≤ ρi. Therefore, the sequence (ρi)i is monotonic non-
increasing and since it is lower bounded by ρ∗, it must converge.

Theorem 2 (Proof Omitted). Suppose that Problem (4) for any fea-
sible ρi satisfies the convergence conditions of the original DASF
algorithm (see [16, 17]). Then the sequences (ρi)i and (Xi)i ob-
tained by F-DASF also converge respectively to the global minimum
ρ∗ and to an optimal point X∗ ∈ X ∗ of Problem (2).

5. SIMULATIONS

We assess the performance of the F-DASF algorithm on the regular-
ized total least squares (RTLS) problem [19, 20]

min.
x∈RM

E[|xTy(t)− d(t)|2]

1 + xTx
=

xTRyyx− 2xT ryd + rdd
1 + xTx

s. t. ||xTL||2 ≤ 1,

(16)

where we have X = x ∈ RM , i.e., Q = 1, Ryy = E[y(t)yT (t)],
ryd = E[d(t)y(t)] and rdd = E[d2(t)]. The RTLS problem has
applications in signal estimation tasks when both the observation
and source signals are noisy [27–29]. Note that in (16), we have
two deterministic matrices B, B1 = IM and B2 = L, where
the former appears in the denominator of the objective: xTx =
(xT IM) · (xT IM)T . We first consider a stationary setting with
y(t) = a · s(t) + n(t), where each time sample of s is drawn from
N (0, 0.5), and each entry of n is drawn fromN (0, 0.1). Moreover,
d(t) = s(t)+w(t), where the time samples ofw followN (0, 0.01).
L is a diagonal matrix where each element of the diagonal is drawn
from N (1, 0.1) while the elements of a ∈ RM follow N (0, 0.2).
At each iteration i, a batch of N = 104 samples of y and d is used
to solve the RTLS problem, such that the relationship between i and
t is i = bt/Nc. At iteration i of Algorithm 2, the problem solved at
node q is the compressed auxiliary problem (11):

min.
x̃q∈RM̃q

x̃Tq R
i
ỹq ỹq

x̃q − 2x̃Tq r
i
ỹqd + rdd − ρi(1 + x̃Tq Ĩ

i
q Ĩ
iT
q x̃q)

s. t. ||x̃Tq L̃iq||2 ≤ 1,
(17)

with Riỹq ỹq
= E[ỹiq(t)ỹ

iT
q (t)] and riỹqd

= E[ỹiq(t)d(t)]. The sig-

nal ỹiq is defined in (9), while Ĩiq and L̃iq are defined as B̃iq given
in (10) when B = IM and B = L respectively. In comparison,
the DASF algorithm will require node q to solve a compressed ver-
sion of (16), solved at each iteration by applying the Dinkelbach
algorithm, i.e., by solving the auxiliary problem (17) multiple times.
We measure the performance of the F-DASF algorithm compared to
the DASF algorithm by looking both at the number of computations
and the mean squared error (MSE) ε(xi) = ||xi − x∗||2 · ||x∗||−2,

Fig. 1: MSE and cumulative computational cost across iterations
of the DASF and the proposed F-DASF algorithm in a stationary
setting.

Fig. 2: MSE and p versus sample time t in an adaptive setting.

where x∗ is the solution of (16). The stopping criterion we use for
the Dinkelbach algorithm in each iteration of DASF is a minimum
threshold of 10−10 on the norm of two consecutive x̃q’s. Figure 1
shows the comparison of these performance metrics for a network
with K = 15 nodes, each with Mk = 5 channels, with a randomly
generated topology, and where the pruning function T i(·, q) is cho-
sen to be the shortest path. Each point has been obtained by taking
the median MSE over 100 Monte-Carlo runs. We see that using
the DASF algorithm to solve the RTLS problem (16) in a distributed
fashion requires a significantly higher number of computations com-
pared to solving (16) using the F-DASF algorithm. In particular, the
DASF algorithm requires on average solving 5 times more auxil-
iary problems per signal batch compared to the F-DASF, while still
achieving an equivalent convergence speed.

Let us now consider the case where a changes at each time in-
stance t, implying that the stationarity assumption on y does not hold
anymore. We have a(t) = a0 · (1− p(t)) + (a0 + ∆) · p(t), where
p is represented in Figure 2 and the entries of a0 and ∆ are drawn
fromN (0, 1) andN (0, 0.01) respectively. Figure 2 shows the MSE
as a function of sample time t, where we see that the F-DASF algo-
rithm is able to track slow changes in the signal statistics and correct
abrupt ones, shown by sudden increase followed by gradual decrease
in MSE values, highlighting its adaptive properties. Note that the al-
gorithm reaches an MSE floor, rather than converging to 0 due to the
fact that the target x∗ changes at each iteration. The faster the rate
of change in statistics, the higher the value of the MSE floor.

6. CONCLUSION

We have proposed an alternative method to the DASF algorithm for
solving fractional spatial filtering problems in a distributed fashion
over a network, and provided a proof of convergence in cost. The
proposed F-DASF algorithm significantly reduces the computational
cost while achieving the same convergence rate as the DASF method.
In future work, we will extensively analyze the convergence proper-
ties of the F-DASF algorithm.

7. REFERENCES

[1] Simon Haykin and KJ Ray Liu, Handbook on array processing
and sensor networks, John Wiley & Sons, 2010.

[2] Barry D Van Veen and Kevin M Buckley, “Beamforming: A
versatile approach to spatial filtering,” IEEE assp magazine,
vol. 5, no. 2, pp. 4–24, 1988.

[3] Alexander Bertrand, “Distributed signal processing for wire-
less EEG sensor networks,” IEEE Transactions on Neural Sys-
tems and Rehabilitation Engineering, vol. 23, no. 6, pp. 923–
935, 2015.

[4] Benjamin Blankertz, Ryota Tomioka, Steven Lemm, Motoaki
Kawanabe, and Klaus-Robert Muller, “Optimizing spatial fil-
ters for robust EEG single-trial analysis,” IEEE Signal process-
ing magazine, vol. 25, no. 1, pp. 41–56, 2007.

[5] Herbert Ramoser, Johannes Muller-Gerking, and Gert
Pfurtscheller, “Optimal spatial filtering of single trial EEG
during imagined hand movement,” IEEE transactions on re-
habilitation engineering, vol. 8, no. 4, pp. 441–446, 2000.

[6] Emil Björnson and Luca Sanguinetti, “Scalable cell-free mas-
sive MIMO systems,” IEEE Transactions on Communications,
vol. 68, no. 7, pp. 4247–4261, 2020.

[7] Elina Nayebi, Alexei Ashikhmin, Thomas L Marzetta, and
Bhaskar D Rao, “Performance of cell-free massive MIMO sys-
tems with MMSE and LSFD receivers,” in 2016 50th Asilomar
Conference on Signals, Systems and Computers. IEEE, 2016,
pp. 203–207.

[8] Jie Zhang, Richard Heusdens, and Richard Christian Hen-
driks, “Rate-distributed spatial filtering based noise reduction
in wireless acoustic sensor networks,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol. 26, no.
11, pp. 2015–2026, 2018.

[9] Jacob Benesty, Jingdong Chen, and Yiteng Huang, Micro-
phone array signal processing, vol. 1, Springer Science &
Business Media, 2008.

[10] Ian F Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and
Erdal Cayirci, “Wireless sensor networks: a survey,” Computer
networks, vol. 38, no. 4, pp. 393–422, 2002.

[11] D Praveen Kumar, Tarachand Amgoth, and Chandra
Sekhara Rao Annavarapu, “Machine learning algorithms for
wireless sensor networks: A survey,” Information Fusion, vol.
49, pp. 1–25, 2019.

[12] Jianshu Chen and Ali H Sayed, “Diffusion adaptation strate-
gies for distributed optimization and learning over networks,”
IEEE Transactions on Signal Processing, vol. 60, no. 8, pp.
4289–4305, 2012.

[13] Reza Olfati-Saber and Jeff S Shamma, “Consensus filters for
sensor networks and distributed sensor fusion,” in Proceedings
of the 44th IEEE Conference on Decision and Control. IEEE,
2005, pp. 6698–6703.

[14] Cassio G Lopes and Ali H Sayed, “Incremental adaptive strate-
gies over distributed networks,” IEEE Transactions on Signal
Processing, vol. 55, no. 8, pp. 4064–4077, 2007.

[15] Alexandros G Dimakis, Soummya Kar, José MF Moura,
Michael G Rabbat, and Anna Scaglione, “Gossip algorithms
for distributed signal processing,” Proceedings of the IEEE,
vol. 98, no. 11, pp. 1847–1864, 2010.

[16] Cem Ates Musluoglu and Alexander Bertrand, “A unified al-
gorithmic framework for distributed adaptive signal and feature
fusion problems–part I: Algorithm derivation,” arXiv preprint
arXiv:2208.08867, 2022.

[17] Cem Ates Musluoglu, Charles Hovine, and Alexander
Bertrand, “A unified algorithmic framework for distributed
adaptive signal and feature fusion problems–part II: Conver-
gence properties,” arXiv preprint arXiv:2208.09088, 2022.

[18] Huan Wang, Shuicheng Yan, Dong Xu, Xiaoou Tang, and
Thomas Huang, “Trace ratio vs. ratio trace for dimensional-
ity reduction,” in 2007 IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2007, pp. 1–8.

[19] Diana M Sima, Sabine Van Huffel, and Gene H Golub, “Regu-
larized total least squares based on quadratic eigenvalue prob-
lem solvers,” BIT Numerical Mathematics, vol. 44, no. 4, pp.
793–812, 2004.

[20] Amir Beck, Aharon Ben-Tal, and Marc Teboulle, “Finding
a global optimal solution for a quadratically constrained frac-
tional quadratic problem with applications to the regularized
total least squares,” SIAM Journal on Matrix Analysis and Ap-
plications, vol. 28, no. 2, pp. 425–445, 2006.

[21] Werner Dinkelbach, “On nonlinear fractional programming,”
Management science, vol. 13, no. 7, pp. 492–498, 1967.

[22] Siegfried Schaible and Toshidide Ibaraki, “Fractional program-
ming,” European journal of operational research, vol. 12, no.
4, pp. 325–338, 1983.

[23] Raj Jagannathan, “On some properties of programming prob-
lems in parametric form pertaining to fractional programming,”
Management Science, vol. 12, no. 7, pp. 609–615, 1966.

[24] Siegfried Schaible, “Fractional programming. II, on Dinkel-
bach’s algorithm,” Management science, vol. 22, no. 8, pp.
868–873, 1976.

[25] Jean-Pierre Crouzeix and Jacques A Ferland, “Algorithms for
generalized fractional programming,” Mathematical Program-
ming, vol. 52, no. 1, pp. 191–207, 1991.

[26] Cem Ates Musluoglu and Alexander Bertrand, “Distributed
adaptive trace ratio optimization in wireless sensor networks,”
IEEE Transactions on Signal Processing, vol. 69, pp. 3653–
3670, 2021.

[27] Hao Zhu, Geert Leus, and Georgios B Giannakis, “Sparse reg-
ularized total least squares for sensing applications,” in 2010
IEEE 11th International Workshop on Signal Processing Ad-
vances in Wireless Communications (SPAWC). IEEE, 2010, pp.
1–5.

[28] Armin Pruessner and Dianne P O’Leary, “Blind deconvolu-
tion using a regularized structured total least norm algorithm,”
SIAM journal on matrix analysis and applications, vol. 24, no.
4, pp. 1018–1037, 2003.

[29] Nicolas H Younan and X Fan, “Signal restoration via the regu-
larized constrained total least squares,” Signal Processing, vol.
71, no. 1, pp. 85–93, 1998.

	 Introduction
	 Problem Setting
	 Fractional Programming Review
	 Modifying DASF for Fractional Programs
	 Simulations
	 Conclusion
	 References

