
A Distributed Adaptive Algorithm for
Node-Specific Signal Fusion Problems in Wireless

Sensor Networks
Cem Ates Musluoglu and Alexander Bertrand

KU Leuven, Department of Electrical Engineering (ESAT),
STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Belgium

{cemates.musluoglu, alexander.bertrand}@esat.kuleuven.be

Abstract—The distributed adaptive signal fusion (DASF)
framework has been proposed as a generic method to solve spatial
filtering and signal fusion problems in a distributed fashion
over a wireless sensor network, reducing the communication and
energy costs compared to a centralized approach. The DASF
framework assumes that there is a common goal across the nodes,
i.e., all nodes collaborate to optimize the same network-wide
objective function. However, some applications require node-
specific objectives, which are linked via a common latent target
signal subspace. In this work, we propose the distributed adaptive
node-specific signal fusion (DANSF) algorithm which builds upon
the DASF framework, and extends it to allow for such node-
specific spatial filtering problems.

Index Terms—Distributed Signal Processing, Distributed Spa-
tial Filtering, Feature Fusion.

I. INTRODUCTION

Wireless sensor networks (WSNs) consist of a set of
physically distributed wireless sensor nodes that are able to
locally process the collected sensor data and share it with
other nodes in the network. Typically, the goal is to estimate
a signal or parameter satisfying some optimality condition
which is dependent on the global data of the network,
obtained by combining the data collected at every node. In
our work, we are interested in optimal spatial filtering [1],
i.e., linearly combining all the signals measured within a
WSN to obtain a filtered output signal that is optimal in some
sense. Applications of spatial filtering include — but are not
restricted to — wireless communication [2], [3], biomedical
signal processing [4], [5] and acoustics [6], [7].

Some applications require the nodes to estimate a common
spatial filter as in [8]–[10]. This usually translates mathe-
matically as an optimization problem which is common to
every node in the network. However, a node-specific spatial
filter can be desired, e.g., when each node is interested in
different source signals or differently filtered versions of the
same source signal(s) [6], [11], [12]. Each node then has a
different optimization problem to solve, i.e., the problem is
node-specific, yet can be related, e.g., via a common latent
signal model, in which case a joint processing is desirable.

Distributed algorithms for some particular node-specific
problems have been studied, such as minimum mean-squared
error (MMSE) [13]–[15] and linearly constrained minimum
variance beamforming (LCMV) [16]–[19], although each
problem has been treated separately in the literature. Other
distributed algorithms for node-specific problems have been
proposed in [20], [21], but can generally not be applied to
spatial filtering due to the way the data is partitioned across
the network.

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 802895). The authors also acknowledge the
financial support of the FWO (Research Foundation Flanders) for project
G081722N, and the Flemish Government (AI Research Program).

The distributed adaptive signal fusion (DASF) algorithm
proposed in [22] is a generic “vanilla” algorithm that al-
lows to solve spatial filtering problems in a distributed and
adaptive fashion, i.e., without centralization of the data, while
converging to the solution of the central problem under mild
constraints [23]. The DASF algorithm captures several existing
distributed signal fusion algorithms as special cases. However,
it considers a single common optimization problem to be
solved across the network, i.e., it does not allow for node-
specific optimization problems. In this work, we propose
the distributed adaptive node-specific signal fusion (DANSF)
algorithm, which builds upon the DASF framework to solve
generic node-specific problems in a distributed fashion, where
the node-specific objectives are linked via a common latent
target signal subspace. The proposed method contains specific
algorithms previously described for the MMSE and LCMV
problems [13]–[18] as special cases and allows for a gen-
eralization over a larger class of problems, such as robust
variations of the MMSE/LCMV, regularized total least squares,
ℓ2 regularizations terms, etc. The DANSF algorithm converges
to the optimal solution of each node-specific problem under
the same assumptions as the original DASF algorithm.

II. PROBLEM SETTING

We consider a sensor network with K nodes given in the set
K = {1, . . . ,K} and connected following a topology given by
a graph G, where each link between two nodes k and l implies
that nodes k and l can share data with each other. Every
node senses an Mk-channel signal yk so that the network-
wide signal can be defined as

y = [yT
1 , . . . ,y

T
K]T , (1)

while an observation at time sample t is denoted as y(t) ∈
RM , where M =

∑
k Mk. The signal y should be viewed as

a multivariate stochastic variable, assumed to be ergodic and
(short-term) stationary. Each node k acts as a data sink and is
interested in finding its own optimal (network-wide) spatial fil-
ter Xk ∈ RM×Q and the corresponding filter output XT

k y(t),
which should satisfy a node-specific optimality condition. We
envisage a generic problem statement where we assume that
the optimal filter Xk is the solution of an optimization problem
of the following form (for node k):

Pk : minimize
Xk∈RM×Q

φk

(
XT

k y(t), X
T
k B

)
subject to ηk,j

(
XT

k y(t), X
T
k B

)
≤ 0 ∀j ∈ JI ,

ηk,j
(
XT

k y(t), X
T
k B

)
= 0 ∀j ∈ JE ,

(2)

where the sets JI and JE represent the index sets for in-
equality and equality constraints respectively. Some examples
of problems of the form (2) are shown in Table I. The functions

TABLE I: Examples of problems with node-specific objectives as in (2).
MMSE is the minimum mean squared error problem and LCMV the lin-
early constrained minimum variance beamforming problem. E denotes the
expectation operator.

Problem Cost function φk Constraints

MMSE minE[||dk(t)−XT
k y(t)||2] —

LCMV minE[||XT
k y(t)||2] XT

k B = Hk

φk and ηk,j , j ∈ JI ∪JE are real and scalar-valued functions,
while the subscript k specifies that a function or variable is
specific for node k. Moreover, as the filter output (XT

k y(t))
is a stochastic variable, the functions in (2) should contain
an operator to extract a real-valued deterministic quantity
from this term, such as an expectation operator. Note that
a solution X∗

k(t) of (2) depends on the time sample t,
as the statistics of the signal y are allowed to change in
time. The proposed DANSF algorithm will act as a block-
adaptive filter that estimates and tracks the changes in the data
statistics. However, from short-term stationarity, we assume
that a solution X∗

k(t) of (2) changes slowly in time compared
to the convergence rate of the DANSF algorithm. Therefore we
omit the time-dependence of solutions of (2) for mathematical
tractability and assume stationarity within convergence time of
the algorithm.

B is a deterministic M × L matrix independent of the
time index t, and is commonly encountered to enforce a
structure on the variable Xk (as in, e.g., LCMV in Table I).
Although treated similarly, the distinction between stochastic
signals y and deterministic matrices B are made to emphasize
the adaptive and stochastic properties of the algorithm we
will present. Similarly to the partitioning of y in (1), these
deterministic matrices are assumed to be obtained by stacking
Mk × L matrices Bk, where Bk is supposed to be available
at node k, i.e., B = [BT

1 , . . . , B
T
K]T . Moreover, for a fixed

node k, we also allow Problem (2) to have multiple variables,
signals and deterministic matrices (in addition to Xk, y and
B, respectively), which are however not represented in (2) for
conciseness. We assume that every parameter in (2), except y
and B, is available at node k. For example, the signal dk and
parameter Hk in the MMSE and LCMV examples of Table I
should be available at node k.

For each node k, let us denote by X ∗
k the solution set of Pk

and X∗
k ∈ X ∗

k a specific solution. We then make the following
assumption on the set of problems Pk which links the solutions
across the nodes.

Assumption 1. There exists a set of invertible Q×Q matrices
{Dk,l}(k,l)∈K2 such that for any pair (k, l) of nodes, the
solutions X∗

k ∈ X ∗
k and X∗

l ∈ X ∗
l satisfy X∗

k = X∗
l ·Dk,l.

These properties were also exploited in [13]–[17], [19] for
the design of distributed fusion algorithms for MMSE and
LCMV problems. Note that Assumption 1 implies that the
solutions at the different nodes are instantaneous mixtures of
each other. However, this also allows to model convolutive
mixtures if the problem is formulated in the short-time Fourier
transform domain, as for example in [15], [17]. Taking the
example of the MMSE problem in Table I, it can be shown
that Assumption 1 is satisfied if dk(t) = DT

k,ldl(t). This is
true if the desired signals at the different nodes are all different
mixtures from the same set of latent sources. This is common
in, e.g., hearing aids where the acoustic mixing process needs
to be preserved for spatial hearing [15], [17]. For the LCMV
example of Table I, Assumption 1 is satisfied if Hk = DT

k,lHl,
which is a common case in wireless acoustic sensor networks
[17]–[19]. In this paper, we propose a unifying algorithmic

framework, which has [13]–[18] as special cases, while also
admitting new problems (see, e.g., Section IV), assuming they
can be written in the form (2).

III. DASF FOR NODE-SPECIFIC PROBLEMS

In this section, we derive the DANSF algorithm which
extends the DASF framework [22], [23] to also admit node-
specific problems of the form (2). We refer to [22] for a
thorough presentation of the DASF algorithm, from which we
here only extract the essential ingredients to allow us to define
the proposed DANSF algorithm.

At each iteration i, an updating node q ∈ K is selected and
the network represented by the graph G is temporarily pruned
to a tree T i(G, q), such that there is a unique path between any
pair of nodes in the network. The pruning function is a free
design choice, however it should not remove any links between
node q and its neighbors n ∈ Nq [22], where Nq denotes the
set of neighboring nodes of node q. In the remaining parts
of the algorithm derivation, the neighbors of any node are
defined to be the ones after pruning the network, i.e., based on
the edges of T i(G, q). Note that the updating node changes at
each iteration i of the algorithm, which implies that a different
tree is used in each iteration.

Let us partition each Xk, i.e., the network-wide spatial filter
that generates the desired node-specific output signal for node
k, as

Xk = [XT
k1, . . . , X

T
kK]T , (3)

such that each Xkl is Ml × Q. For each k ∈ K, we define
Xkk, the k−th block of Xk, to be the compressor at node k. At
iteration i, every node k ̸= q uses its current estimate of Xkk
to compress the local Mk−dimensional sensor signal yk into
a Q−dimensional one, with Q < Mk. A similar compression
applied to node k’s matrix Bk leads to

ŷi
k ≜ XiT

kkyk, B̂
i
k ≜ XiT

kkBk, (4)

where X0
kk is initialized randomly for each k. The nodes will

then fuse and forward their compressed data (4) towards node
q as explained next. We note that a batch of N time samples
of ŷi

k should be transmitted by node k, where N should be
chosen such that there are enough samples to estimate the
relevant statistics of ŷi

k that are used in the objective and
constraints of (2) (in most practical examples, this consists
of all the second-order statistics). At each iteration, a different
block of N samples is used, so that in the case of changes in
statistics of the signal y, the proposed method can adaptively
track these changes. Each node k first waits until receiving
data from all of its neighbors except one, which we denote
as n. Node k then fuses the data received from its neighbors
l ∈ Nk\{n} with its data (4) and the result is then transmitted
to node n, which receives N samples of

ŷi
k→n ≜ XiT

kkyk +
∑

l∈Nk\{n}

ŷi
l→k, (5)

where ŷi
l→k is the data received by node k from its neighbor

l. Note that the second term of (5) is recursive and vanishes
for nodes with a single neighbor, i.e., leaf nodes, implying
that the recursion in (5) is bootstrapped at the leaf nodes of
the tree T i(G, q). The fused data eventually reaches node q,
which receives N samples of

ŷi
n→q = XiT

nnyn +
∑

k∈Nn\{q}

ŷi
k→n =

∑
k∈Bnq

ŷi
k, (6)

from all its neighbors n ∈ Nq . In (6), Bnq is defined to be the
subgraph of T i(G, q) which contains node n, obtained after

cutting the link between nodes n and q. A similar recursion
applies for the compressed matrices B̂i

k, and we define B̂i
n→q

as the matrix analogous to (6) received by node q. Defining
Nq ≜ {n1, . . . , n|Nq|}, the data collected at node q can be
structured as

ỹi
q ≜ [yT

q , ŷ
iT
n1→q, . . . , ŷ

iT
n|Nq|→q]

T ∈ RM̃q ,

B̃i
q ≜ [BT

q , B̂
iT
n1→q, . . . , B̂

iT
n|Nq|→q]

T ∈ RM̃q×L
(7)

where M̃q = |Nq| ·Q+Mq . Using the local data in (7), node
q creates a compressed version of its original problem Pq:

minimize
X̃q∈RM̃q×Q

φq

(
X̃T

q ỹ
i
q(t), X̃

T
q B̃

i
q

)
subject to ηq,j

(
X̃T

q ỹ
i
q(t), X̃

T
q B̃

i
q

)
≤ 0 ∀j ∈ JI ,

ηq,j
(
X̃T

q ỹ
i
q(t), X̃

T
q B̃

i
q

)
= 0 ∀j ∈ JE .

(8)

Note that (8) has the same objective and constraint functions
as (2) (for k = q), hence a solver for (2) can also be used
locally at node q to solve the compressed problem (8). This
is an interesting feature of the DASF framework, which is
inherited in DANSF as well.

Node q then solves its local problem (8) to obtain X̃i+1
q . In

the cases where (8) has multiple solutions, we choose X̃i+1
q

by minimizing ||X̃q − X̃i
q||F over all solutions of (8), with

X̃i
q = [XiT

qq , IQ, . . . , IQ]
T (9)

and where Xi
qq corresponds to the current estimate of the

compressor Xqq of node q. The optimal solution X̃i+1
q is then

partitioned as

X̃i+1
q = [X(i+1)T

qq , G(i+1)T
qn1

, . . . , G(i+1)T
qn|Nq|

]T , (10)

with each G−matrix being Q × Q. The new estimate of the
variable Xq = [XT

q1, . . . , X
T
qK]T at iteration i is then

Xi+1
qk =

{
Xi+1

qq if k = q
Xi

kkG
i+1
qn if k ∈ Bnq , n ∈ Nq.

(11)

For nodes k ̸= q, a new estimate of their variable Xk can
be estimated in the following way. Node q first transmits

zi+1
q (t) ≜ X̃(i+1)T

q ỹi
q(t), Zi+1

q ≜ X̃(i+1)T
q B̃i

q (12)

to each node k, which can either be broadcast by node q or
transmitted following the pruned network topology (see [13]
for a discussion on efficient ways to achieve this). Note that
again N samples of zi+1

q should be sent by node q to the other
nodes. Node k then solves

minimize
Fkq∈RQ×Q

φk

(
FT
kqz

i+1
q (t), FT

kqZ
i+1
q

)
subject to ηk,j

(
FT
kqz

i+1
q (t), FT

kqZ
i+1
q

)
≤ 0 ∀j ∈ JI ,

ηk,j
(
FT
kqz

i+1
q (t), FT

kqZ
i+1
q

)
= 0 ∀j ∈ JE ,

(13)
such that a new estimate of its variable Xk at iteration i is

Xi+1
k = Xi+1

q F i+1
kq , (14)

where F i+1
kq is a solution of (13) at node k. Note that the

compressor at node k, i.e., Xkk is part of Xk, i.e., the
compression matrix of node k is also updated by (14).

Remark 1. Similar to the proof in [22], it can be shown that
for each node k, Xi

k defined as in (11) and (14) always satisfies
the constraints of the corresponding problem (2) at node k for
every i > 0. Furthermore, X̃i+1

q ∈ S̃iq ⇐⇒ Xi+1
q ∈ S, where

S̃iq and S denote the constraint sets of (8) and (2), respectively
(proof omitted, see [22]).

Since only the compressor matrices Xkk (for all k) play
a role within the algorithm (as these define the transmitted
signals), the update of the blocks Xkl with k ̸= l can be
omitted, unless the nodes are explicitly interested in knowing
the coefficients of the full matrix Xk. However, in most
applications, the filter output signal zk(t) = XT

k y(t) is sought
after, rather than the filter Xk itself, which can be computed
at each node k as

zi+1
k (t) ≜

{
X̃

(i+1)T
q ỹi

q(t) if k = q

F
(i+1)T
kq zi+1

q (t) if k ̸= q,
(15)

without keeping track of other subblocks Xkq for k ̸= q. This
is because the filtering of subblocks Xkq is done at node q
instead of node k, using the compressor Xqq, of which the
output is transformed with Fkq at node k.

At each iteration, this process is repeated by selecting a
different updating node. Algorithm 1 summarizes the steps of
the DANSF algorithm described above. We note that [14]–
[17] are special cases of this algorithm. The method is able to
adapt to and track changes in the signal statistics of y, as is the
case for the original DASF algorithm. This is because a new
block of N samples, e.g., {y(t)}(i+1)N−1

t=iN , is measured and
used at each iteration to solve (8), i.e., different iterations of
the DANSF algorithm are spread over different sample blocks
across the time dimension, similar to an adaptive filter, making
each Xi

k an estimate of X∗
k(t), where t = iN . Note that the

communication cost per node and per iteration is at most 2NQ
samples, independent of the topology (note that Q < Mk). In
a setting where all the raw data is relayed to a fusion center via
multi-hop transmissions, this cost is much higher (i.e., PNMk,
where P is the number of hops between node k and the fusion
center). Additionally, as the problems (8) are compressed
versions of the original problem (2) at each node k, the
computational cost required to solve the former is smaller.

Theorem 1 below gives a convergence guarantee in cost for
the DANSF algorithm. The full convergence for each node
k to a solution X∗

k ∈ X ∗
k of Pk is described afterwards in

Theorem 2. However, the proof of the latter is omitted due to
space constraints, but follows similar steps as in [23].

Theorem 1. Let us denote by (φi
k)i the sequence of function

values φk

(
XiT

k y(t), XiT
k B

)
, ∀k ∈ K, obtained from

Algorithm 1. Then, the sequence (φi
k)i is non-increasing, and

converges for each k, i.e., the cost function at each node is
monotonically decreasing.

Proof. For conciseness, we omit the matrix B in this proof
(it can be treated similarly to y). For the updating node q, at
iteration i, we have that φq

(
X̃

(i+1)T
q ỹi

q(t)
)
≤ φq

(
X̃T

q ỹ
i
q(t)

)
for any X̃q ∈ S̃iq , since X̃i+1

q solves the local problem
(8). Moreover, since X̃i

q ∈ S̃iq (see Remark 1), we have
φq

(
X̃

(i+1)T
q ỹi

q(t)
)
≤ φq

(
X̃iT

q ỹi
q(t)

)
. This shows a monotonic

decrease of the cost at the current updating node q. For the
case k ̸= q, let us (hypothetically) assume that the updating
node q would have used the cost function of node k instead,

Algorithm 1: DANSF algorithm

X0
kk initialized randomly for each k, i← 0.

repeat
Choose the updating node as q ← (i mod K) + 1.
1) The network G is pruned into a tree T i(G, q).
2) Each node k collects N samples of yk,

compress these to N samples of ŷi
k and also

compute B̂i
k as in (4).

3) The nodes sum-and-forward their compressed
data towards node q via the recursive rule (5) (and
a similar rule for the B̂i

k’s). Node q eventually
receives N samples of ŷi

n→q given in (6) and
similarly, B̂i

n→q , from all its neighbors n ∈ Nq .
at Node q do

4a) Compute the solution of (8) to obtain
X̃i+1

q . If the solution is not unique, select
X̃i+1

q which minimizes ||X̃i+1
q − X̃i

q||F with
X̃i

q defined in (9).
4b) Partition X̃i+1

q as in (10).
4c) Update the estimate of Xq as in (11).
4d) Disseminate Zi+1

q and N samples of zi+1
q

as in (12) within the tree to each data sink
node.

end
5) Nodes k ̸= q update Xk according to (14) by
solving (13) and can estimate its filtered output as
in (15).
i← i+ 1

i.e., it solves

minimize
X̃q∈RM̃q×Q

φk

(
X̃T

q ỹ
i
q(t)

)
subject to ηk,j

(
X̃T

q ỹ
i
q(t)

)
≤ 0 ∀j ∈ JI ,

ηk,j
(
X̃T

q ỹ
i
q(t)

)
= 0 ∀j ∈ JE ,

(16)

instead of (8). As mentioned earlier, (8) and (16) are com-
pressed versions of the problem (2) for node q and node k
respectively, i.e., the data y of (2) is replaced by ỹi

q in (8)
and (16). Therefore, the local problems (8)-(16) satisfy As-
sumption 1, i.e., there exists a matrix D̃q,k such that X̃i+1

q =

X̃i+1
k ·D̃q,k. This implies that node q also optimizes φk up to a

transformation with a Q×Q matrix. The latter transformation
is compensated for by finding a proper transformation Fkq at
node k by solving (13). Since this argument holds for any
iteration i, and from the relationship Xi+1

k = Xi+1
q F i+1

kq in
(14), we have φk(X

(i+1)T
k y(t)) ≤ φk(X

iT
k y(t)) even though

node q optimizes φq instead of φk at iteration i. The sequence
(φi

k)i is therefore non-increasing for each k. Since these
sequences are respectively lower bounded by the minimal
value of φk achieved for X∗

k over the constraint set of Pk
in (2), they are converging sequences.

Theorem 2 (Proof Omitted). Suppose that, for each node
k, Problem (2) satisfies Assumption 1 and the conditions for
convergence of the original DASF algorithm (see [22], [23]).
Then the sequences (Xi

k)i, for each k ∈ K, obtained from the
DANSF algorithm also converge respectively to an optimal
point X∗

k ∈ X ∗
k of Problem (2).

Note that this also implies that each node has access to its
optimal node-specific filter output z∗k(t) = X∗T

k y(t) for all
samples collected after convergence of the algorithm. Sensor
observations used during convergence of the algorithm are
fused suboptimally (similar to how an adaptive filter initially
produces suboptimal filter outputs). The algorithm can be used
in an adaptive or tracking context if the dynamics of the
statistics change slowly, i.e., slower than the convergence time
of the DANSF algorithm.

IV. SIMULATIONS

To demonstrate the generic nature of the DANSF algorithm,
we consider a new “toy” problem that has not been investigated
in the literature in the context of node-specific spatial filtering.
For results on practical scenarios, we refer readers to [13]–
[18], which can be shown to be special cases of DANSF. The
problem can be formulated as:

minimize
Xk∈RM×Q

trace(XT
k Bk)

subject to trace(XT
k RyyXk) ≤ 1,

(17)

where Ryy = E[y(t)yT (t)]. Taking Bk ̸= 0, the unique
solution of the problem is given by X∗

k = −βk · R−1
yyBk,

where βk =
√

trace(BT
k R

−1
yyBk)−1. For each k, we take

Bk = B ·Dk, where each element of B and Dk’s are drawn
from a Gaussian distribution with zero-mean and variance 1,
i.e., N (0, 1). Note that Problem (17) satisfies Assumption 1 as
X∗

k = X∗
l ·Dk,l, where Dk,l = D−1

l Dk · βk/βl. We will first
look at the convergence properties of the DANSF algorithm
under stationarity conditions and for different topologies. In
a second experimental setting, we will show that the DANSF
algorithm is able to track changes in the statistical properties
of the signals, demonstrating its adaptive properties in a
non-stationary setting. In every experiment described below,
T i(·, q) is taken to be the shortest path pruning function.

A. Stationary Setting
In this experiment, we consider a stationary signal y which

follows the mixture model y(t) = A · d(t) + n(t), where
each element of d ∈ RQ and n ∈ RM independently follows
N (0, 0.5) and N (0, 0.1) respectively, at each time sample.
Every entry of A ∈ RM×Q is drawn from N (0, 0.2).

At each iteration i of the DANSF algorithm, each node k
transmits N = 104 samples of ŷi

k to the updating node q. The
updating node q then solves its local problem (8) given by

min.
X̃q∈RM̃q×Q

trace(X̃T
q B̃

i
q), s. t. trace(X̃T

q R
i
ỹqỹq

X̃q) ≤ 1,

(18)
where ỹi

q and B̃i
q are defined as in (7) and Ri

ỹqỹq
=

E[ỹi
q(t)ỹ

iT
q (t)].

The performance of the DANSF algorithm is assessed by
computing the relative mean squared error (MSE) ϵk(X

i
k) =

||Xi
k − X∗

k ||2F · ||X∗
k ||

−2
F , where X∗

k is the solution of (17)
for node k. In all our experiments, we take Q = 3, K = 10
and Mk = 7 for every k ∈ K. Figure 1 shows the MSE ϵk
for every node k and for different network topologies namely
fully-connected networks, networks with line topologies, i.e.,
each node has two neighbors except two which have a single
neighbor, and networks with randomly generated topologies.
We observe that the DANSF algorithm converges to X∗

k for
every node k of the network, as stated in Theorem 2, although
at different convergence rates for different topologies. Fully-
connected networks converge the fastest, while the slowest

Fig. 1: MSE ϵk for all nodes k of the DANSF algorithm in a stationary
setting for various network topologies, namely fully-connected networks (FC),
randomly generated networks using the Erdős-Rényi model (Rand) and graphs
in a line topology (Line). Each point has been obtained by taking the median
of 100 Monte-Carlo runs.

Fig. 2: MSE ϵk for all nodes k in an adaptive setting in a randomly generated
networks using the Erdős-Rényi model. Each point has been obtained by
taking the median of 100 Monte-Carlo runs.

convergence rate is obtained for networks with a line topology.
A similar result was observed for the DASF algorithm, where
networks with more connected topologies lead to faster conver-
gence rates [22]. Additionally, we see from Figure 1 that each
node’s estimate of its variable Xk converges to the respective
optimal value X∗

k without large deviations in convergence rate
between different nodes.

B. Adaptive Setting
In this second experimental setting, we demonstrate that

the DANSF algorithm is able to track changes in the signal
statistics, therefore making the method adaptive. We consider
the same setting as previously, except N = 103 and the
mixture matrix A changes at each time sample t. In particular,
we have A(t) = A0 · (1 − p(t)) + (A0 + ∆) · p(t), where
the elements of A0 and ∆ are independently drawn from
N (0, 0.2) andN (0, 0.01) respectively, and p is given in Figure
2. This implies that the stationarity condition does not hold
and X∗ is now time-dependent. Figure 1 shows the MSE
value for each node k in networks with randomly generated
topologies. We see that an abrupt change in the signal statistics
imply a sudden increase in the MSE value, while the algorithm
gradually adapts to slow rates of change, as can be seen by the
decreasing MSE. We also observe that the algorithm reaches
MSE floors instead of converging towards 0 as in the stationary
case. This is due to the fact that the optimal solutions X∗

k , for
each node k, change at each iteration, where the error floor is
higher for faster rates of change in the signal statistics.

V. CONCLUSION

We have proposed the DANSF algorithm to solve node-
specific signal fusion problems in a distributed fashion over a
network. The DANSF algorithm builds upon the principles of
the DASF framework and extends it to problems with different
optimization problems at each node, yet with coupled solution
sets, which leads to analogous convergence results between

both algorithms. We provided a proof for the convergence in
cost, which showed that we obtain a monotonic decrease of
the cost at each node. Simulations of the DANSF algorithm
applied on a new problem validated our convergence claims.

REFERENCES

[1] S. Haykin and K. R. Liu, Handbook on array processing and sensor
networks. John Wiley & Sons, 2010.

[2] E. Björnson and L. Sanguinetti, “Scalable cell-free massive MIMO
systems,” IEEE Transactions on Communications, vol. 68, no. 7, pp.
4247–4261, 2020.

[3] L. Sanguinetti, E. Björnson, and J. Hoydis, “Toward massive MIMO 2.0:
Understanding spatial correlation, interference suppression, and pilot
contamination,” IEEE Transactions on Communications, vol. 68, no. 1,
pp. 232–257, 2019.

[4] A. Bertrand, “Distributed signal processing for wireless EEG sensor
networks,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 23, no. 6, pp. 923–935, 2015.

[5] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Muller,
“Optimizing spatial filters for robust EEG single-trial analysis,” IEEE
Signal processing magazine, vol. 25, no. 1, pp. 41–56, 2007.

[6] N. Furnon, R. Serizel, I. Illina, and S. Essid, “Distributed speech
separation in spatially unconstrained microphone arrays,” in ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2021, pp. 4490–4494.

[7] J. Zhang, R. Heusdens, and R. C. Hendriks, “Rate-distributed spatial
filtering based noise reduction in wireless acoustic sensor networks,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 26, no. 11, pp. 2015–2026, 2018.

[8] C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over
distributed networks,” IEEE Transactions on Signal Processing, vol. 55,
no. 8, pp. 4064–4077, 2007.

[9] ——, “Diffusion least-mean squares over adaptive networks: Formula-
tion and performance analysis,” IEEE Transactions on Signal Process-
ing, vol. 56, no. 7, pp. 3122–3136, 2008.

[10] S. Markovich-Golan, S. Gannot, and I. Cohen, “Distributed multiple
constraints generalized sidelobe canceler for fully connected wireless
acoustic sensor networks,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 21, no. 2, pp. 343–356, 2012.

[11] S. Markovich, S. Gannot, and I. Cohen, “Multichannel eigenspace beam-
forming in a reverberant noisy environment with multiple interfering
speech signals,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 17, no. 6, pp. 1071–1086, 2009.

[12] S. Doclo, T. J. Klasen, T. Van den Bogaert, J. Wouters, and M. Moonen,
“Theoretical analysis of binaural cue preservation using multi-channel
wiener filtering and interaural transfer functions,” in Proc. Int. Workshop
Acoust. Echo Noise Control (IWAENC), 2006, pp. 1–4.

[13] J. Szurley, A. Bertrand, and M. Moonen, “Topology-independent dis-
tributed adaptive node-specific signal estimation in wireless sensor
networks,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 3, no. 1, pp. 130–144, 2016.

[14] A. Bertrand and M. Moonen, “Distributed adaptive node-specific signal
estimation in fully connected sensor networks-—Part I: Sequential node
updating,” IEEE Transactions on Signal Processing, vol. 58, no. 10, pp.
5277–5291, 2010.

[15] S. Doclo, M. Moonen, T. Van den Bogaert, and J. Wouters, “Reduced-
bandwidth and distributed MWF-based noise reduction algorithms for
binaural hearing aids,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 17, no. 1, pp. 38–51, 2009.

[16] A. Bertrand and M. Moonen, “Distributed node-specific LCMV beam-
forming in wireless sensor networks,” IEEE Transactions on Signal
Processing, vol. 60, no. 1, pp. 233–246, 2011.

[17] S. Markovich-Golan, S. Gannot, and I. Cohen, “A reduced bandwidth
binaural MVDR beamformer,” in Proc. of the International Workshop
on Acoustic Echo and Noise Control (IWAENC), Tel-Aviv, Israel, 2010.

[18] S. Markovich-Golan, A. Bertrand, M. Moonen, and S. Gannot, “Opti-
mal distributed minimum-variance beamforming approaches for speech
enhancement in wireless acoustic sensor networks,” Signal Processing,
vol. 107, pp. 4–20, 2015.

[19] X. Guo, M. Yuan, Y. Ke, C. Zheng, and X. Li, “Distributed node-
specific block-diagonal LCMV beamforming in wireless acoustic sensor
networks,” Signal Processing, vol. 185, p. 108085, 2021.

[20] J. Chen, C. Richard, and A. H. Sayed, “Diffusion LMS over multitask
networks,” IEEE Transactions on Signal Processing, vol. 63, no. 11, pp.
2733–2748, 2015.

[21] J. Plata-Chaves, N. Bogdanović, and K. Berberidis, “Distributed
diffusion-based LMS for node-specific adaptive parameter estimation,”
IEEE Transactions on Signal Processing, vol. 63, no. 13, pp. 3448–3460,
2015.

[22] C. A. Musluoglu and A. Bertrand, “A unified algorithmic framework
for distributed adaptive signal and feature fusion problems—part I:
Algorithm derivation,” IEEE Transactions on Signal Processing, vol. 71,
pp. 1863–1878, 2023.

[23] C. A. Musluoglu, C. Hovine, and A. Bertrand, “A unified algorithmic
framework for distributed adaptive signal and feature fusion problems
— part II: Convergence properties,” IEEE Transactions on Signal
Processing, vol. 71, pp. 1879–1894, 2023.

	Introduction
	Problem Setting
	DASF for Node-Specific Problems
	Simulations
	Stationary Setting
	Adaptive Setting

	Conclusion
	References

