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Abstract 13

Measurement of neural tracking of natural running speech from the 14

electroencephalogram (EEG) is an increasingly popular method in auditory 15

neuroscience and has applications in audiology. The method involves decoding the 16

envelope of the speech signal from the EEG signal, and calculating the correlation 17

with the envelope of the audio stream that was presented to the subject. Typically 18

EEG systems with 64 or more electrodes are used. However, in practical 19

applications, set-ups with fewer electrodes are required. Here, we determine the 20

optimal number of electrodes, and the best position to place a limited number of 21

electrodes on the scalp. We propose a channel selection strategy based on an 22

utility metric, which allows a quick quantitative assessment of the influence of a 23

channel (or a group of channels) on the reconstruction error. We consider two use 24

cases: a subject-specific case, where the optimal number and position of the 25

electrodes is determined for each subject individually, and a subject-independent 26

case, where the electrodes are placed at the same positions (in the 10-20 system) 27

for all the subjects. We evaluated our approach using 64-channel EEG data from 28

90 subjects. In the subject-specific case we found that the correlation between 29

actual and reconstructed envelope first increased with decreasing number of 30

electrodes, with an optimum at around 20 electrodes, yielding 29% higher 31

correlations using the optimal number of electrodes compared to all electrodes. 32

This means that our strategy of removing electrodes can be used to improve the 33

correlation metric in high-density EEG recordings. In the subject-independent 34

case, we obtained a stable decoding performance when decreasing from 64 to 22 35

channels. When the number of channels was further decreased, the correlation 36

decreased. For a maximal decrease in correlation of 10%, 32 well-placed electrodes 37

were sufficient in 91% of the subjects. 38

Introduction 39

To understand how the human brain processes an auditory stimulus, it is essential to 40

use ecologically valid stimuli. An increasingly popular method is to measure neural 41

tracking of natural running speech from the electroencephalogram (EEG). This method 42

also has applications in domains such as audiology, as part of an objective measure of 43

speech intelligibility (Vanthornhout et al., 2018; Lesenfants et al., 2019), and coma 44

science (Braiman et al., 2018). 45
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Among the different models used to study the relationship between the stimulus and 46

the brain response, two of the most often used ones are the forward and backward 47

models (e.g., Crosse et al., 2016; Lalor and Foxe, 2010; Ding and Simon, 2012; 48

Verschueren et al., 2019; Vanthornhout et al., 2018). In the forward model (also know as 49

encoding model), we determine a linear mapping from the stimulus to the brain 50

response. In the backward model (also known as stimulus reconstruction), we determine 51

the linear mapping from the brain response to the stimulus. Backward models are 52

referred to as decoding models, because they attempt to reverse the data generation 53

process. Both the forward and backward models involve the solution of a linear least 54

squares (LS) regression problem. The quality of the reconstruction is usually quantified 55

in terms of correlation between the true and reconstructed signal. The benefit of the 56

forward model is that the obtained models (also called temporal response functions) can 57

be easily interpreted, and topographical information can be easily obtained. The benefit 58

of the backward model is that through combination of information across EEG channels, 59

better performance (higher correlations) can be obtained, but the model coefficients can 60

not be easily interpreted. Another approach to study the relationship between the 61

stimulus and the brain response is based on Canonical Correlation Analysis (CCA) 62

(Hotelling, 1936). CCA estimates the optimal linear operator to be applied to both the 63

stimulus and the response in order to reveal correlations between the two. This allows 64

the stimulus representation to be stripped of dimensions irrelevant for measurable brain 65

responses, and the EEG to be stripped of activity unrelated to auditory perception 66

(de Cheveigné et al., 2018). In this experimental paradigm, the most used stimulus 67

representation is its slowly varying temporal envelope (e.g., Ding and Simon, 2011; 68

Aiken and Picton, 2008), which is known to be one of the most important cues for 69

speech recognition (Shannon et al., 1995). 70

EEG systems used in research typically have 64 electrodes or more. However, in 71

practical applications, such as objective measurement of speech intelligibility in the 72

clinic, such large numbers of electrodes are not always possible due to the cost of high 73

density systems and the time required to place the electrodes on the scalp. We therefore 74

considered the following questions: for a smaller number of electrodes, (1) what is the 75

optimal location of electrodes on the scalp and (2) what is the impact on the correlation 76

when we decrease the number of channels. We consider two use cases: in one case the 77

electrodes are placed at the same positions (in the 10-20 system) for all subjects, which 78

would for instance be relevant in the design of an application-specific headset or 79

electrode cap. We will refer to this use case as the subject-independent scenario. In a 80

second use case the optimal number and position of electrodes is determined for each 81

subject individually. In this case the main application of the method would be to 82

improve correlations with the use of a high-density system. Another future application 83

would be to determine the optimal electrode locations in order to design a custom 84

system for each subject, but this will require further validation. We will refer to this use 85

case as the subject-specific scenario. We use the backward model, due to its advantages 86

in decoding accuracy compared to the forward model. 87

We started from 64-channel recordings, and considered the question which subset of 88

K channels allow to get the best decoding performance. This is a combinatorial 89

problem, closely related to the column subset selection problem (Boutsidis et al., 2009), 90

whose NP-hardness is an interesting open problem. In order to overcome this challenge, 91

Mirkovic et al. (2015); Fuglsang et al. (2017) used a channel selection strategy based on 92

an iterative backward elimination approach, where at each iteration, the electrode with 93

the lowest corresponding coefficient magnitudes in the decoder is removed from the next 94

iteration (we will refer to this channel selection method as the decoder magnitude-based 95

(DMB) method). This strategy assumes that important channels will have a large 96

coefficient in the least squares solution. However, as pointed out by (Bertrand, 2018), 97
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this is an unsuitable assumption: for example, if the coefficients of one of the channels 98

would all be scaled with a factor α, then the corresponding decoder coefficient in the LS 99

solution would be scaled with α−1, whereas the information content of that channel 100

obviously remains unchanged. 101

In this work, we propose a channel selection strategy based on the utility metric 102

(Bertrand, 2018), which allows a quick quantitative assessment of the influence of a 103

channel (or a group of channels) on the reconstruction error. In the subject-specific 104

scenario, we use the utility metric to remove channels one by one, each time removing 105

the channel with least influence on the reconstruction error. In the subject-independent 106

scenario, we use the utility metric to remove one group of channels at a time (the group 107

of channels with least influence on the reconstruction error). For channels located off 108

the midline each group is composed of one channel located over the left hemisphere and 109

its closest symmetric counterpart located over the right hemisphere. For channels 110

located over the central line dividing both hemispheres, each group is composed of one 111

channel located over the frontal lobe and its closest symmetric counterpart located 112

either over the parietal or the occipital lobe (see Fig. 1). The rationale behind this 113

channel selection strategy is to maintain symmetry. The symmetry criterion avoids bias 114

to one hemisphere, which could be problematic as hemispheric differences are often 115

found between subjects (e.g., Goossens et al., 2019; Van Eeckhoutte et al., 2018; 116

Poelmans et al., 2012; Vanvooren et al., 2015). A similar channel selection strategy, also 117

based on the utility metric, was proposed by Narayanan and Bertrand (2019) on an 118

auditory attention decoding task, where the main goal was to optimize the topology of a 119

wireless EEG sensor network (WESN), without imposing a symmetry constraint on the 120

selected channels. We evaluated our approach using EEG data from 90 subjects. We 121

aimed to minimize reconstruction error, and to minimize the intra-subject variability in 122

reconstruction error. 123

While Narayanan and Bertrand (2019); Mirkovic et al. (2015) used auditory 124

attention decoding accuracy as their main outcome measure, we investigated the 125

underlying correlation between actual and reconstructed envelope instead. This 126

correlation can be considered a measure of signal to noise ratio. Note that stable 127

attention decoding accuracy does not imply stable correlation. Another difference with 128

the literature is that we considered both the subject-specific and subject-independent 129

cases. In addition, we propose and use symmetry constraints for avoiding lateralization 130

bias. 131

Methods 132

Data collection 133

Participants 134

Ninety Flemish-speaking volunteers participated in this study. Their age ranged from 18 135

to 30 years old, with a mean of 22. 15% of the participants was male and 7% was 136

left-handed. They were recruited from our university student population to ensure 137

normal language processing and cognitive function. No tests of language processing or 138

cognitive function were performed. Each participant reported normal hearing, which 139

was verified by pure tone audiometry (thresholds lower than 25 dB HL for 125 Hz until 140

8000 Hz using MADSEN Orbiter 922–2 audiometer). Before each experiment, the 141

participants signed an informed consent form. The study was approved by the Medical 142

Ethics Committee UZ KU Leuven/Research (KU Leuven). 143
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Experiment 144

Each participant listened attentively to the children’s story “Milan”, written and 145

narrated in Flemish by Stijn Vranken. The stimulus was 15 minutes long and was 146

presented binaurally at 60 dBA without any noise. The participants were motivated to 147

pay attention by asking content-related questions after presentation of the story (which 148

were answered mostly correctly). It was presented through Etymotic ER-3A insert 149

phones (Etymotic Research, Inc., IL, USA) which were electromagnetically shielded 150

using CFL2 boxes from Perancea Ltd. (London, UK). The acoustic system was 151

calibrated using a 2-cm3 coupler of the artificial ear (Brüel & Kjær, type 4192). The 152

experimenter sat outside the room and presented the stimulus using the APEX 3 153

(version 3.1) software platform developed at ExpORL (Dept. Neurosciences, KU Leuven, 154

Belgium) (Francart et al., 2008) and a RME Multiface II sound card (RME, 155

Haimhausen, Germany) connected to a laptop. The experiments took place in a 156

soundproof, electromagnetically shielded room. 157

EEG acquisition 158

In order to measure the EEG responses, we used a BioSemi (Amsterdam, Netherlands) 159

ActiveTwo EEG setup with 64 channels. The signals were recorded at a sampling rate 160

of 8192 Hz, using the ActiView software provided by BioSemi. The electrodes were 161

placed over the scalp according to the international 10-20 standard. 162

Signal processing 163

EEG pre-processing 164

Data pre-processing was performed offline, using MATLAB (Mathworks Inc., Natick, 165

MA). In order to decrease computation time, the EEG data was downsampled from 166

8192 Hz to 1024 Hz (we used the resample function, which applies an antialiasing FIR 167

lowpass filter to the data). Next, the data was bandpass filtered between 0.5-4 Hz (delta 168

band), using a Chebyshev filter with 80 dB attenuation at 10 % outside the passband. 169

Finally, the data was downsampled to 64 Hz and re-referenced to Cz in the channel 170

subset selection stage, and to a common-average reference (across the selected channels) 171

in the decoding performance evaluation stage. The delta band was chosen because it 172

yields the highest correlations and most of the information in the stimulus envelope is 173

contained within this frequency band (Vanthornhout et al., 2018; Ding and Simon, 174

2014). To assess the effect of frequency band on the results, we also analyzed the 175

optimal number and placement of electrodes for measurement of neural tracking of 176

speech in the theta band (4-8 Hz), the results are shown in the appendix. 177

The pre-processing pipeline does not include an artifact rejection step, as this would 178

require the use of electrodes that may later on be eliminated and therefore can 179

potentially leak information from the unselected channels to the selected ones. However, 180

to investigate the effect of artefact rejection we repeated the full analysis using artifact 181

rejection, involving the Sparse Time Artifact Removal method (STAR) (de Cheveigné, 182

2016) and the multi-channel Wiener filter algorithm (Somers et al., 2018). A Wilcoxon 183

signed rank test of the effect of artefact rejection on correlation showed no significant 184

effect. 185

Speech envelope 186

The speech envelope was computed according to Biesmans et al. (2017), who showed 187

that good reconstruction accuracy can be achieved with a gammatone filterbank 188

followed by a power law. We used a gammatone filterbank (Søndergaard et al., 2012; 189
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Søndergaard and Majdak, 2013), with 28 channels spaced by 1 equivalent rectangular 190

bandwidth, with centre frequencies from 50 Hz to 5000 Hz. From each subband, we take 191

the absolute value of each sample and raise it to the power of 0.6. The resulting 28 192

signals were then downsampled to 1024 Hz, averaged, bandpass filtered with a (0.5-4 193

Hz) Chebyshev filter to obtain the final envelope, and finally downsampled again to 194

64Hz. The power law was chosen as the human auditory system is not a linear system 195

and compression is present in the system. The gammatone filterbank was chosen as it 196

mimics the auditory filters present in the basilar membrane in the cochlea. 197

Backward model 198

The backward model to decode a speech envelope from the EEG can be stated as a 199

regularized linear least squares (LS) problem (O’sullivan et al., 2014): 200

J(X) , minimize
w

‖Xw − y‖22 + λ‖w‖22 (1)

where X ∈ RT×(N×τ) is the EEG data matrix concatenated with τ time-shifted 201

(zero-padded) version of itself, y ∈ RT×1 is the speech envelope, w ∈ R(N×τ)×1 is the 202

decoder, T is the total number of time samples, N is the number of channels, τ is the 203

number of time samples covering the time integration window of interest, and λ is a 204

regularization parameter. The solution to the backward problem (ŵ) is usually referred 205

to as a decoder. In order to choose the regularization parameter λ, we compute and sort 206

the eigenvalues of the covariance matrix associated to X. Then, we pick as λ the 207

eigenvalue where the accumulated percentage of explained variance is greater than 99%. 208

Channel selection 209

To select channels we used the utility metric (Bertrand, 2018), which quantifies the 210

effective loss, i.e., the increase in the LS cost, if a group of columns (corresponding to 211

one channel or a set of channels and all their τ − 1 corresponding time-shifted version) 212

would be removed and if the model (1) would be reoptimized afterwards: 213

Ug , J(X−g)− J(X) (2)

where X−g denotes the EEG data matrix X after removing the columns associated with 214

the g-th group of channels and their corresponding time-shifted versions. We will later 215

on define how channels are grouped in our experiments (see Subsection ). 216

Note that a naive implementation of computing Ug would require solving one LS 217

squares problem like (1), for each possible removal of a candidate group, which would 218

lead to a large computational cost for problems with large dimensions and/or involving 219

a large number of groups. 220

Fortunately, this can be circumvented, as shown by Bertrand (2018), with a final 221

computational complexity that scales linearly in the number of groups, given the 222

solution of (1) when none of the channels are removed. The basic workflow for finding 223

the best k groups of EEG channels can be summarized as follows (Narayanan and 224

Bertrand, 2019): we compute the utility metric for each of the groups and remove the 225

group with the lowest utility. Next, we recalculate the new values of the utility metric 226

taking only into account the remaining groups, and once again we remove the one with 227

the lowest value of utility. We continue iterating following these steps until we arrive to 228

k groups. 229

We used the utility metric in two conditions: (1) in the subject-specific case where 230

optimal electrodes are selected for each subject, and (2) in the generic case where the 231

same set of electrodes is used for all subjects. 232
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In the subject-specific case, we computed (for each subject i) the regularized 233

covariance matrix C(i) = X(i)>X(i)

T + λI (I denotes the identity matrix) and the 234

cross-correlation vector r(i) = X(i)>y
T in order to compute the optimal all-channel 235

decoder ŵ(i) =
(
C(i)

)−1
r(i). The utility metric for each (group of) channel(s) can be 236

directly computed from ŵ(i) and C(i) (we refer to Bertrand (2018) and Narayanan and 237

Bertrand (2019) for more details). We used the utility metric toolbox from Narayanan 238

and Bertrand (2019) available at https://github.com/mabhijithn/channelselect. 239

We then ranked the groups according to their corresponding utilities, and removed the 240

channel(s) corresponding to the group g with the lowest utility. We then repeated the 241

same process with the matrix X
(i)
−g in which the columns corresponding to the channels 242

in group g were removed. We kept repeating this process until only k groups remained. 243

Next, during the decoding evaluation stage, we computed a decoder by solving the 244

backward problem using the best k selected groups of channels for each subject. In this 245

stage, we re-referenced the channels with respect to the common average across the 246

selected channels and discarded the reference electrode Cz. We solved each backward 247

problem using a 7-fold cross-validation approach, where 6 folds were used for training 248

and 1 for testing. This corresponds to approximately 12 and 2 minutes of data, 249

respectively. This cross-validation served to reduce the influence of intra-suject 250

variability over time on the results. Using the decoder ŵ, we computed the 251

reconstructed envelope as ŷ = Xŵ after which we computed the Spearman correlation 252

between the reconstructed speech envelope (ŷ) and the true one (y). By following this 253

procedure, for each subject, we ended up with 7 values of correlation (corresponding to 254

the evaluation of the correlation using each one of the test folds), which can be arranged 255

as an array S ∈ R90×k×7 (number of subjects × number of groups × number of test 256

folds). 257

To compare with the literature, we also implemented the DMB approach, wherein 258

we iteratively solved a backward problem for each subject, and at each iteration, the 259

group of electrodes with the lowest corresponding coefficient magnitudes in the decoder 260

was removed from the next iteration. 261

As a reference, we also implemented the forward model, where for each subject and 262

electrode the correlation between actual EEG and EEG predicted from the speech 263

envelope is obtained. The results are shown in the appendix. 264

In the subject-independent case, where the same set of electrodes is used for all 265

subjects, we only used the utility metric. The evaluation consisted of the same two 266

stages described above. The only difference was that, during the channel selection stage, 267

we computed a grand average model by averaging the covariance matrices of all the 268

subjects, which is equivalent to concatenating all the data from all the subjects in the 269

data matrix X in (1). Finally, the decoding evaluation stage followed exactly the same 270

steps described for the subject-specific case above, i.e., using a subject-specific decoder 271

(yet, computed over electrodes that were selected in a subject-independent fashion). 272

Symmetric grouping of the EEG channels 273

In addition to selecting individual channels to remove (no grouping of channels), we also 274

evaluated a strategy in which symmetric groups of channels were removed, to avoid 275

hemisphere bias effects across subjects. Each group is composed of two EEG channels 276

(see Fig. 1). For channels located on either side of the midline (Fig. 1, groups with 277

labels from 1 to 27), each group is composed by one channel located over the left 278

hemisphere and its closest symmetric counterpart located over the right hemisphere. 279

For channels located over the midline dividing both hemispheres (Fig. 1, groups with 280

labels from 28 to 31), each group is composed by one channel located over the frontal 281

lobe and its closest symmetric counterpart located either over the parietal or the 282
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occipital lobe. Channel Cz does not belong to any group because it was used as a 283

reference (in the channel subset selection stage). Channel Iz was not considered in order 284

to preserve the symmetry with respect to the number of electrodes. 285

1 1

2 2
3 3

4 4
5 56 67 7

8 89 910 1011 11

12 1213 1314 1415 15

16 1617 1718 1819 19

20 20

21 21
22 2223 2324 24

25 25
26 26

27 27

28
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29

29

30

30

31

31

Fig 1. Channel grouping strategy. For channels located either over the left or
right hemisphere (groups 1, 2, . . . , 27), each group is composed by one channel located
over the left hemisphere and its closest symmetric counterpart located over the right
hemisphere. For channels located over the central line dividing both hemispheres
(groups 28, 29, 30, 31), each group is composed by one channels located over the frontal
lobe and its closest symmetric counterpart located either over the parietal or the
occipital lobe.

Results 286

Channel selection strategies: utility metric vs DMB 287

We compared the performance of the utility metric and DMB in the the subject-specific 288

case, where the optimal electrode locations were determined for each subject 289

individually. We compared the median of the correlation between y and ŷ for each 290

subject, as well as the number of channels required to obtain it (from now on referred to 291

as the optimal number of channels). For both methods we observe a large increase in 292

correlation when we use a reduced number of channels, with the optimum of the median 293

around 20 and 30 channels, for the utility metric and DMB, respectively (see Fig. 2a). 294

This means that the evaluated strategies of removing electrodes can be used to 295

substantially improve the correlation metric in high-density EEG recordings. 296

We can see in Fig. 2a that the utility metric globally outperforms the DMB 297

approach, obtaining consistently higher correlations (median) across subjects. In Fig. 298

2b, we can see that the utility metric also outperforms the DMB approach on an 299

individual level, obtaining for every subject a higher value of maximal correlation, as 300

well as requiring a smaller number of electrodes to obtain it. A Wilcoxon signed rank 301

test showed that there was a significant difference (W=6, p < 0.001) between the 302

correlation using the optimal number of channels according to the utility metric 303
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(b) Comparison of the correlation obtained
using the optimal number of channels (number
of channels where each subject obtained the
highest correlation). Size of the markers is
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comparison purpose, the grey marker has a
size equivalent to 64 channels.

Fig 2. Comparison of channel selection strategies: utility metric vs DMB
(subject-specific scenario). A Wilcoxon signed rank test showed that there was a
significant difference (W=6, p ¡ 0.001) between the correlation obtained using the
optimal number of channels according to the utility metric (median=0.22) compared to
the one obtained using DMB (median=0.19). Another Wilcoxon signed rank test
showed that there was also a significant difference (W=424.5, p ¡ 0.001) between the
optimal number of channels selected by the utility metric (median=19) compared to the
one selected by DMB (median=32).

(median=0.22) compared to the one obtained using DMB (median=0.19). Another 304

Wilcoxon signed rank test showed that there was also a significant difference (W=424.5, 305

p < 0.001) between the optimal number of channels selected by the utility metric 306

(median=19) compared to the optimal number selected by DMB (median=32). Because 307

of the improved performance offered by the utility metric compared to DMB, we solely 308

focus on the former in the remaining of the paper. 309

Channel selection based on the utility metric vs using all the 310

channels 311

In this section, we compare the channel selection strategy based on the utility metric 312

with the case where all the available channels are used. We compared both strategies in 313

the subject-specific and subject-independent scenario. 314

Subject-specific electrode locations 315

We consider here the condition where we remove channels one by one, obtaining the 316

best channels for each subject independently. Fig. 3a shows the median correlation, 317

computed as the median across folds followed by the median across subjects. Blue 318

dashed lines show the 25-th (lower) and 75-th (upper) percentile. In this figure, we can 319

see that at least 50% (median) of the subjects exhibit a higher correlation for 6 up to 63 320

channels, with respect to the correlation obtained with all the available channels. 321

Fig. 3b shows the standard deviation of the correlation, as a measure for 322

within-subject variability, computed as the standard deviation across folds followed by 323
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the median across subjects. Blue dashed lines show the 25-th (lower) and 75-th (upper) 324

percentile. In this figure we can see a largely stable standard deviation of the 325

correlation around the reference value (standard deviation of the correlation when using 326

all the 64 channels). 327

Figs. 3a and 3b suggest that we could obtain a higher correlation with a reduced 328

number of channels. However, these are group results. Fig. 3c shows, independently for 329

each subject, the difference between the correlation when we use all the 64 channels and 330

when we use a reduced number of channels. We can see that this effect is indeed 331

consistently present for all subjects when we use a number of channels between 19 and 332

57. This behaviour can be seen more clearly in Fig. 4a, where the percentage of 333

subjects with a correlation greater or equal to 100%, 95% and 90% of the correlation 334

obtained using all the channels (green, purple and cyan lines, respectively) is shown. 335

Fig. 4a clearly shows that for 98% of the subjects it is possible to reduce the number of 336

channels to 19 and still obtain a correlation higher than the one obtained using all the 337

channels. Even if we go all the way down to 8 channels, we can see that 82%, 91% and 338

96% of the subjects are still able to get a correlation higher than 100%, 95% and 90% of 339

the correlation obtained using all channels, respectively. 340

Fig. 3d shows a comparison of the correlation obtained using the optimal number of 341

channels (obtained through the utility metric) versus the correlation obtained using all 342

64 channels. In this figure we can see that for every subject we get higher correlations 343

for the reduced number of channels, as selected by the utility metric, compared to using 344

all channels. A Wilcoxon signed rank test showed that there was a significant difference 345

(W=0, p < 0.001) between the correlation using the optimal number of channels 346

according to the utility metric (median=0.22) compared to the one obtained using all 347

the channels (median=0.17), which is a 29% improvement. 348

While for each of the 90 subjects electrodes are selected individually, we conducted 349

some extra analysis to investigate to what extent the selected electrodes correspond 350

across subjects. The median rank order of electrodes selected across subjects is shown 351

in S1 Appendix Fig. 6a. While some patterns emerge, there is clearly substantial 352

variation across subjects. In addition we analysed the correlations obtained for each 353

subject and electrode with the forward model (see S1 Appendix Fig. 7 ). We found 354

generally similar areas of interest, but there are also substantial differences. This is no 355

surprise: in the backward model a spatial filter is designed that exploits dependencies 356

across the channels, which is not possible in the forward model. Furthermore, in the 357

forward model channels with highly similar information are both highlighted while one 358

of them would be removed by the utility metric. 359

In the appendix the same analysis is conducted for the theta frequency band. 360

Generally the same trends are observed as in the delta band. A Wilcoxon signed rank 361

test showed that there was a significant difference (W=0, p < 0.001) between the 362

correlation using the optimal number of channels according to the utility metric 363

(median=0.12) compared to the one obtained using all the channels (median=0.06), 364

which is a 100% improvement. This suggests that these results are robust to the choice 365

of frequency band and filter parameters. However, other electrodes are selected. 366

Subject-independent electrode locations 367

We now consider the case where the same set of electrodes is used for all subjects. Fig. 368

5a shows the correlation across subjects, computed as the median across folds followed 369

by the median across subjects. In this figure, we can see that at least 50% (median) of 370

the subjects exhibit a stable correlation for 22 up to 64 channels. 371

Contrary to the subject-specific electrode locations, we here found a small benefit of 372

using the symmetric channel grouping strategy: median correlations with the optimal 373

number of channels significantly improved when moving from the channel-by-channel to 374
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symmetric grouping strategy (W = 1556, p = 0.04). In the figures and what follows, we 375

only consider the results obtained with the symmetric grouping strategy. 376

Fig. 5b shows the standard deviation of the correlation, as a measure of 377

within-subject variability, computed as the standard deviation across folds followed by 378

the median across subjects. In this figure we can see a largely stable standard deviation 379

of the correlation around the reference value (standard deviation of the correlation when 380

using all the 64 channels). 381

Figs. 5a and 5b suggest that we could obtain a correlation value similar to the one 382

obtained using all the available channels even if we use a reduced number of channels. 383

However, these are group results. Fig. 5c shows, separately for each subject, the 384

difference between the value of the correlation when we use all the 64 channels and the 385

value of the correlation when we use a reduced number of channels. We can see that 386

this effect is not consistently present for all subjects (if that would have been the case, 387

all the lines would have appeared above 0 when we use a reduced number of channels 388

nk, 22 ≤ nk < 64). Nevertheless, a certain percentage of subjects do exhibit a higher 389

value of the correlation when using a reduced number of channels. Fig. 4b helps us to 390

quantify this property, by showing the percentage of subjects with a correlation greater 391

or equal to 100%, 95% and 90% of the correlation obtained using all the channels 392

(green, purple and cyan lines, respectively). In this figure we can see that for 59%, 74% 393

and 91% of the subjects it is possible to reduce the number of channels to 32 and still 394

be able to obtain a correlation higher than 100%, 95% and 90% of the correlation 395

obtained using all channels, respectively. The percentage of subjects can increase to 396

62%, 81% and 91%, respectively, if we increase the number of channels from 32 to 40. 397

Fig. 5d shows a comparison of the correlation obtained using the optimal number of 398

channels suggested by the utility metric versus the correlation obtained using all 64 399

channels. In this figure we can see that, similar to the subject-specific scenario, the 400

utility metric consistently obtained, for every subject, a higher correlation compared to 401

using all the channels. A Wilcoxon signed rank test showed that there was a significant 402

difference (W=0, p < 0.001) between the correlation obtained using the optimal number 403

of channels suggested by the utility metric (median=0.18) compared to the one obtained 404

using all the channels (median=0.16). 405

Figs. 6a, 6b, 6c and 6d show the best 8, 16, 24 and 32 channels selected by the 406

utility metric. Next to each group of channels (formed exactly by two electrodes, see 407

Fig. 1), its corresponding rank order is shown, which is computed as N − p+ 1, where 408

N is the total number of groups and p is the iteration at which the group was discarded 409

in the greedy removal procedure. The rank order reflects the importance of a group of 410

channels with respect to the other selected groups. The lower this number, the more 411

important the group, as it was retained for a larger number of iterations in the 412

backwards greedy removal process due to its high influence in the LS cost (see Section ). 413

As we can see, the selected channels are mostly clustered over the left and right 414

temporal lobes, which agrees with the empirical evidence which suggests that channels 415

located close to auditory cortex are important for picking up electrical brain activity 416

evoked as response to an auditory stimulus. 417

In S1 Appendix Fig. 5 the same analysis is shown for the theta frequency band. It 418

can be seen that now mainly electrodes in the frontal and temporal areas are selected, 419

indicating that an application (frequency-band) specific electrode selection is required. 420

While the electrode layouts shown in figures 6 and S1 Appendix Fig. 5 are the best 421

we can do, they yield substantially worse performance than individual channel 422

selections. In the 8-channel cases the percentage of subjects with unchanged 423

performance is down to 10%, so this layout cannot be recommended for practical 424

applications. In S1 Appendix Fig. 8 and 9 we show for each channel in each 425

subject-independent layout how many times the same electrode was selected in the 426
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corresponding subject-specific layouts. The ranges are 20-28; 31-40; 37-55; 44-67 out of 427

90 subjects for respectively the 8, 16, 24 and 32 channel layout. These relatively small 428

proportions indicate again that the generic layouts are not optimal. Note that in this 429

analysis we did not apply the symmetric grouping constraint in the subject-independent 430

case for the sake of comparison. 431

Discussion 432

Based on 64-channel EEG recordings, we determined the effect of reducing the number 433

of available channels and the optimal electrode locations on the scalp for 4 434

frequently-used numbers of channels. This was based on a utility-based metric, by 435

which we avoided the computationally intractable number of combinations that 436

underlies the problem at hand. 437

Mirkovic et al. (2015); Fuglsang et al. (2017) tackled the channel subset selection 438

problem in the context auditory attention decoding (identify the attended speech 439

stream in a multi-speaker scenario). They processed EEG recordings from 12 and 29 440

subjects, acquired using an EEG system with 96 and 64 channels, respectively. They 441

found that, on average, the decoding accuracy dropped when using a number of 442

channels less than 25. Both studies used the same channel selection strategy, which is 443

based on an iterative backward elimination approach, where at each iteration, the 444

channel with the lowest average decoder coefficient is removed from the next iteration. 445

This strategy assumes that important channels will have a large coefficient in the LS 446

solution. However, as explained in the introduction, this is not necessarily a suitable 447

assumption. They did not report optimal electrode positions. 448

Narayanan and Bertrand (2019) also analyzed the channel subset selection problem 449

in the context of auditory attention decoding, using a channel selection strategy based 450

on the same utility metric discussed in the present study, but without imposing the 451

symmetric grouping approach discussed in Section . They found that, on average, the 452

decoding accuracy remained stable when using a number of channels greater or equal to 453

10. The (asymmetric) channels reported in their study correspond with the ones 454

reported in this study in the sense that mostly channels around the left and right 455

temporal lobes were selected. 456

Instead of attention decoding accuracy, we assessed the correlation between actual 457

and reconstructed envelope (in a single-speaker scenario), which can be used as a metric 458

for speech intelligibility (Vanthornhout et al., 2018; Lesenfants et al., 2019). A major 459

difference with auditory attention decoding accuracy as a metric is that in the attention 460

decoding paradigm correlations are compared between the attended and unattended 461

speaker, therefore if both increase or decrease in the same direction, decoding accuracy 462

is not affected. For subject-specific electrode locations, we found similar differences 463

between the DMB and utility metric: using the DMB metric, on average 14 electrodes 464

were required to avoid a drop in correlation below the 64-channel case, and using the 465

utility metric, only 6 electrodes were required. On top of this, we found a substantial 466

increase in correlation when reducing the number of electrodes from 64 to 32-20. This 467

indicates that application of the proposed channel selection approach may be practically 468

useful. 469

The stable or sometimes even improved performance after reducing the number of 470

channels could be attributed to the removal of noisy or irrelevant channels that do not 471

contribute significantly to the reconstruction of the target speech envelope. As 472

explained in Section , the backward problem is usually solved by using a regularized 473

Ridge regression approach, which shrinks the magnitude of many decoder components 474

to prevent overfitting (finding solutions that minimize the reconstruction error while 475

satisfying, at the same time, the condition of having a small norm value). We 476
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recalculated the optimal regularization parameter for each number of channels. 477

Reducing the number of channels has a similar regularization effect; it reduces the 478

degrees of freedom by discarding irrelevant channels, making the model less prone to 479

overfitting. 480

In the case where the same channels were selected for all subjects, the initial increase 481

in correlation with decreasing number of channels was smaller and not present for all 482

subjects. Therefore in this case our strategy is not useful to increase correlation. 483

Grouping electrodes across hemispheres to remove bias effects improved the results 484

in the subject-independent but not in the subject-specific experiments. This is probably 485

because of subject specific hemisphere bias. 486

Selected channels 487

Based on the literature, we expect that most of the signals of interest originate from 488

auditory cortex (e.g., Brodbeck et al., 2018; Pasley et al., 2012). We indeed see that 489

channels that cover dipoles originating in this area are always selected with high priority. 490

For higher numbers of channels, other areas are covered where auditory related 491

responses have been shown to originate from, such as the inferior frontal cortex and the 492

premotor cortex (Das et al., 2018; Lesenfants et al., 2019), and possibly channels that 493

aid in the suppression of large irrelevant sources. 494

When changing from the delta to theta frequency band, different channels were 495

selected. This suggests differences in neural sources and indicates that the frequency 496

band of interest should be taken into account when selecting channels. 497

Comparison of the selected channels with the literature is hard due to 498

methodological differences: (Mirkovic et al., 2016) investigated the attention decoding 499

paradigm in a two-speaker scenario (instead of single-speaker correlation in this work) 500

and only investigated a number of a priori defined channel selections. They report high 501

decoding accuracy using the scalp temporal and the scalp wide layouts, which is in 502

agreement with our results. 503

While the presented channel layouts for 8, 16, 24, and 32 channels are the best we 504

can do with our current data and methods, and may be useful for some applications, it 505

should be pointed out that they yield relatively poor performance compared to 506

subject-specific layouts and are therefore certainly not optimal for all subjects. 507

Applications 508

The use of subject-specific or subject-independent electrode locations leads to different 509

applications. 510

Subject-independent electrode locations could be used to design a headset for a 511

specific application. For example the backward model has been proposed in applications 512

where an objective measure of speech intelligibility is needed. Our suggested electrode 513

positions could be used to configure an electrode cap or headset for this specific 514

application. We chose to run our calculations with the speech envelope as the stimulus 515

feature and for the delta band (0.5-4Hz), as these parameters are most commonly used. 516

Note that when deviating from these parameters, the selection should be re-run. In 517

particular, when higher-order stimulus features are used, we expect significant changes 518

in topography and therefore optimal electrode positions. 519

Subject-specific electrode locations are at this point mainly useful to increase 520

correlations when a full electrode cap is available. In this case, the utility-based 521

algorithm would be part of the processing pipeline to retain the optimal number of 522

electrodes. In the future subject-specific locations may also be useful to design a 523

subject-specific headset based on initial recordings with a full cap. However, this will 524
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require validation of generalisability between test sessions and between EEG systems, 525

which is currently unknown. 526

Conclusion 527

In this work, the effect of selecting a reduced number of EEG channels was investigated 528

within the context of the stimulus reconstruction task. We proposed a utility-based 529

greedy channel selection strategy, aiming to induce the selection of symmetric EEG 530

channel groups. We evaluated our approach using 64-channel EEG data from 90 531

subjects. When using individual electrode selections for each subject, we found that the 532

correlation between the actual and reconstructed envelope first increased with 533

decreasing number of electrodes, with an optimum at around 20 electrodes. This means 534

that the proposed method can be used in practice to obtain higher correlations. When 535

using a generic electrode placement (the same for all subjects), we obtained a stable 536

decoding performance when using all 64 channels down to 22, suggesting that it is 537

possible to get an acceptable reconstruction of the speech envelope from a reduced 538

number of EEG channels. 539
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(a) Correlation computed as the median
across folds followed by the median across
subjects. Dashed lines show the 25-th (lower)
and 75-th (upper) percentile.
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(b) Standard deviation of the correlation
coefficient, computed as the standard
deviation across folds followed by the median
across subjects. Dashed lines show the 25-th
(lower) and 75-th (upper) percentile.

62 52 42 32 22 12 2
   −0.3

   −0.25

   −0.2

   −0.15

   −0.1

   −0.05

   0

   0.05

   0.1

Number of selected EEG channels

N
o
rm

al
iz

ed
 c

o
rr

el
at

io
n
 p

er
 s

u
b
je

ct

(c) Normalized correlation per subject (each
line is a different subject), defined as the
difference between the value of the correlation
obtained when we use all the channels and the
value of the correlation obtained when we use
a reduced number of channels.
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(d) Comparison of the correlation obtained
using the optimal number of channels (number
of channels where each subject obtained the
highest correlation) vs the correlation obtained
using all the channels. Size of the markers is
proportional to the optimal number of
channels (one marker per subject). The grey
marker has a size equivalent to 64 channels.

Fig 3. Comparison of the channel selection based on the utility metric vs
using all the channels (subject-specific scenario). A Wilcoxon signed rank test
showed that there was a significant difference (W=0, p < 0.001) between the correlation
obtained using the optimal number of channels suggested by the utility metric
(median=0.22) compared to the one obtained using all the channels (median=0.17).
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(a) Subject-specific scenario.
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(b) Subject-independent scenario.

Fig 4. Percentage of subjects with a correlation greater or equal to 100%,
95% and 90% of the correlation obtained using all the channels. In the
subject-specific scenario we can see that for 98% of the subjects is possible to reduce the
number of channels to 19 and still be able to obtain a correlation higher than the one
obtained using all the channels. In the subject-independent scenario we can see that for
59%, 74% and 91% of the subjects is possible to reduce the number of channels to 32
and still be able to obtain a correlation higher than 100%, 95% and 90% of the
correlation obtained using all channels, respectively. The percentage of subjects can
increase to 62%, 81% and 91%, respectively, if we increase the number of channels from
32 to 40.
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(a) Correlation across subjects, computed as
the median across folds followed by the
median across subjects. Dashed lines show the
25-th (lower) and 75-th (upper) percentile.
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(b) Standard deviation of the correlation
coefficient, computed as the standard
deviation across folds followed by the median
across subjects. Dashed lines show the 25-th
(lower) and 75-th (upper) percentile.
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(c) Normalized correlation per subject (each
line is a different subject), defined as the
difference between the value of the correlation
obtained when we use all the channels and the
value of the correlation obtained when we use
a reduced number of channels.
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(d) Comparison of the correlation obtained
using the optimal number of channels (number
of channels where each subject obtained the
highest correlation) vs the correlation obtained
using all the channels. Size of the markers is
proportional to the optimal number of
channels (one marker per subject). The grey
marker has a size equivalent to 64 channels.

Fig 5. Comparison of the channel selection based on the utility metric vs
using all the channels (subject-independent scenario). A Wilcoxon signed rank
test showed that there was a significant difference (W=0, p < 0.001) between the
correlation obtained using the optimal number of channels suggested by the utility
metric (median=0.18) compared to the one obtained using all the channels
(median=0.16).
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(c) Best 24 channels.
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Fig 6. Optimal channel selection The number next to each group of channels
(formed by two electrodes, see Fig. 1) indicates the ranking of the group with respect to
its influence on the LS cost (see text). The lower this number, the more important the
group.
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