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ABSTRACT

In this paper, we propose a new method for distributed la-
belling of audio sources in wireless acoustic sensor net-
works (WASNs). We consider WASNs comprising of nodes
equipped with multiple microphones observing signals trans-
mitted by multiple sources. An important step toward a coop-
eration between the nodes, e.g. for a voice-activity-detection,
is a network-wide consensus on the source labelling such that
all nodes assign the same unique label to each source. In
this paper, a hierarchical approach is applied such that first a
network clustering algorithm is performed and then in each
sub-network, the energy signatures of the sources are esti-
mated using a non-negative independent component analysis
over the energy patterns observed by the different nodes. Fi-
nally the source labels are obtained by an iterative consensus
and matching algorithm, which compares and matches the
energy signatures estimated in different sub-networks. The
experimental results show the effectiveness of the proposed
method.

Index Terms— Distributed labelling, consensus and
matching, wireless acoustic sensor networks, energy sig-
natures, non-negative independent component analysis

1. INTRODUCTION

A wireless acoustic sensor network (WASN) typically con-
sists of spatially distributed wireless nodes equipped with
one or more microphones observing signals transmitted by
multiple sources [1, 2, 3]. In ‘multiple devices for multiple
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tasks’ (MDMT) paradigm [4, 5, 6], different nodes cooperate
with each other to carry out different node-specific tasks. In
such an MDMT-based WASN, a critical step to empower the
cooperation between the nodes, e.g., for a better node-specific
signal enhancement or a distributed voice-activity-detection
(VAD), is a network-wide consensus on the source labelling
such that all nodes assign the same unique label to each
source [4]. In this setting, each node observes mixtures of
interfering signals transmitted by different sources, while
labelling the sources requires source-specific information
in each node. In this work, we use energy envelopes as a
signature to label the sources. Unmixing the observed micro-
phone signals to extract source-specific features (signatures)
is a challenging and computationally expensive task [7].
However, energy envelopes are non-negative and have a low
sampling rate, which allows us to rely on cheap non-negative
source separation methods operating on low-rate microphone
signal energy envelopes[8, 9].

In [8] and [10], a non-negative principal component anal-
ysis (NPCA) and a multiplicative non-negative independent
component analysis (MNICA) have been proposed to un-
mix the non-negative signals respectively. Although these
methods are attractive from several aspects, they use the ob-
servations of all nodes in a fusion centre, which requires
a large communication bandwidth, and hence the are very
energy-inefficient. On the other hand, performing a NPCA or
a MNICA on the microphone signals within a single node re-
sults in poor estimation since these methods typically require
sufficient spatial diversity in the observed signals to yield
satisfactory results [9, 4].

Chouvardas et al. [4] tackled this problem by introduc-
ing a hierarchical approach such that first a network cluster-
ing algorithm is performed and then an MNICA is applied
for each sub-network to estimate the energy signatures of the
sources. The required communication bandwidth and the es-
timation accuracy of this method is less compared to the cen-
tralized estimation and more compared to the node-level es-
timation. Since the estimated energy signatures correspond-
ing to a specific source are expected to be similar in different
sub-networks, the sources can be labelled by comparing and



matching the signatures obtained in different sub-networks.
In [4], a distributed k-means approach is applied to mea-

sure the similarity of the energy signatures obtained in differ-
ent sub-networks and achieve a network-wide consensus on
the labels of the sources. While effective, the accuracy of this
method drops down in the presence of uncorrelated noise, as
shown in our simulation.

In this paper, we adopt the method of Chouvardas et al. [4]
to estimate the energy signatures in each sub-network and re-
place the distributed k-means approach by proposing an ac-
curate signature matching method. In each iteration of the
proposed matching method, referred to as the consensus and
matching (CM) algorithm, we first compute a network-wide
consensus between the sub-networks on the energy signatures
of all the sources and then we match the signatures of each
sub-network with respect to the obtained network-wide con-
sented signatures. This method has two distinct advantages:
(1) it yields more accurate results in presence of an uncorre-
lated noise compared to the distributed k-means [4], and (2)
it results in network-wide consented energy signatures, rather
than per-sub-network estimates. The latter will result in a bet-
ter estimation performance, which is important if the energy
signatures are also used in the further processing pipeline,
e.g., for VAD. Experimental results show that the consented
signatures are more accurate than the estimated signatures in
each sub-network independently and the CM algorithm yields
more accurate labelling compared to the benchmark method
of [4].

2. DISTRIBUTED AUDIO SOURCE LABELLING

2.1. Problem Formulation

Consider a WASN with N sources and D nodes, where node
d is equipped with Jd microphones, d being the node in-
dex. The total number of microphones in the network is J =∑

d Jd. The nodes need to label N sources such that a unique
label is assigned to each source throughout the network to fa-
cilitate the collaboration between the nodes.

2.2. Energy Signatures
We denote the ith sample of the signal of the nth source as
s̃n[i], n = 1, · · · , N . Given a block of length L the instanta-
neous energy of this signal at sample iL is computed as

sn[i] =

L−1∑
l=0

s̃2n[iL + l]. (1)

Similarly we denote the ith sample of the jth microphone
signal as ỹj [i], j = 1, · · · , J and the instantaneous energy of
this signal at sample iL is computed as

yj [i] =

L−1∑
l=0

ỹ2j [iL + l]. (2)

As discussed in [9], assuming that the source signals are mu-
tually independent and that the reverberation has a negligible

effect across the block edges, we can model y[i] as

y[i] ≈ As[i], (3)

where A is a mixing matrix of size J × N describing the
power attenuation between the speech sources and the micro-
phones and

s[i] = [s1[i], · · · , sN [i]]′ (4)
y[i] = [y1[i], · · · , yJ [i]]′, (5)

where ′ denotes the transpose operation.
In practice, s[i] and A are not available and we have to es-

timate them. Given y[i], NPCA [8] and MNICA [10] estimate
the mixing matrix and the energy signature of the sources,
where the estimates are denoted as Â and ŝ[i] respectively.

Y ≈ ÂŜcent, (6)

where Y = [y[1],y[2], · · · ,y[Γ]] is the entire observation
energy matrix with Γ being the number of observed blocks
of length L, and Ŝcent = [̂s[1], ŝ[2], · · · , ŝ[Γ]] and Â are the
source energy signatures and their corresponding mixing ma-
trix estimated by NPCA respectively.

To avoid an energy inefficient centralized estimation, a
hierarchical approach is applied such that first a network-
clustering algorithm is performed to divide the network into
K sub-networks. In this paper we use a distributed Fiedler
vector algorithm [11], which identifies densely connected
node clusters in a distributed fashion. Then NPCA1 is applied
on the sub-network level as follows:

Yk ≈ ÂkŜk, (7)

with k ∈ 1, · · · ,K denoting the sub-network index. Note
that Yk and Âk denote a subset of the rows of Y and Â
respectively, whereas Ŝk is a sub-network estimate of the full
matrix Ŝcent, i.e., it has the same dimensions as Ŝcent. To
avoid scaling ambiguity, we apply a length normalization over
the obtained energy signatures.

Remark 1: Note that NPCA or MNICA require sub-
networks with sufficient spatial diversity to yield reasonable
results [9, 4].

2.3. Labelling using Distributed k-means

Chouvardas et. al. [4] use a distributed k-means algorithm
to label the sources given their energy signatures. In this
method, first N centroids of dimension Γ are considered for
each sub-network2. The centroids should be initialized such
that they are the same in all sub-networks.Then each sub-
network performs a local labelling scheme by employing a

1Both NPCA and MNICA can be used to find energy signatures. How-
ever, since our simulation results show that NPCA yields more accurate en-
ergy signatures, we applied this method in the sequel.

2The number of sources N is assumed to be known in [4] and also in
this work. Note that many methods are suggested to estimate the number of
sources such as [12].



k-means algorithm using the computed energy signatures and
the previously computed centroids such that each energy sig-
nature is assigned to the cluster in which the correlation be-
tween the energy signatures is maximized. Finally clusters
update their centroids in cooperation with the neighbouring
sub-networks. After convergence of the k-means labelling
procedure, the label of each signal is set to the number of the
class, in which the respective signature is assigned. Although
this method is effective, it does not yield accurate results in
the presence of uncorrelated noise, as will be demonstrated in
our simulations.
Remark 2: The distributed k-means algorithm is originally
developed for an unsupervised clustering [13], while Chou-
vardas et. al. [4] modify it for a distributed labelling.

3. LABELLING USING THE CM ALGORITHM

To improve the labelling accuracy, we introduce a robust la-
belling method based on an iterative consensus on the energy
signatures and matching the local energy signatures in each
sub-network to the obtained consented signatures. The pro-
posed CM algorithm relies on the following relation between
the true signatures of the sources and the estimated signatures
in each sub-network locally:

Ŝk = PkS + Ek, k = 1, · · · ,K, (8)

where S represents the true energy signatures, Pk is a permu-
tation matrix for sub-network k and Ek is the corresponding
error matrix. Eq. (8) implies that the estimated energy signa-
tures in each sub-network are equal to a permutation of the
true signatures up to an estimation error. Therefore, assuming
that S is available, finding the permutation matrix Pk in each
sub-network is trivial. In practice, however, neither the per-
mutation matrix Pk nor the true energy signatures S are avail-
able and we estimate them given the locally estimated energy
signatures Ŝk through minimizing the error Frobenius-norm
||Ek||F = ||Ŝk − P̂kŜ||F , i.e.

min
Ŝ,P̂1,··· ,P̂K

K∑
k=1

||Ŝk − P̂kŜ||F , (9)

subject to 
P̂k

ı

(
1− P̂k

ı

)
= 0∑

ı P̂
k
ı = 1∑

 P̂
k
ı = 1

, k = 1, · · · ,K. (10)

We propose an alternating optimization method for the
problem (9)-(10)3. In the first step, referred to as the match-
ing step, Ŝ is assumed to be known, and we try to update P̂k

for k = 1, · · · ,K. Similarly in the second step, referred to
as the consensus step, P̂k for k = 1, · · · ,K is assumed to be
known and we update Ŝ. These two steps are elaborated in
the next subsections.

3Similar constrained alternating optimization methods can be found
in [14, 15].

3.1. Matching step
Since P̂k is a permutation matrix, it is trivial to show that the
optimization problem (9)-(10) can be reformulated as

min
P1,··· ,PK

K∑
k=1

∑
ı,

Qk
ıP̂

k
ı, (11)

subject to the constrains (10), where Qk is the Euclidean dis-
tance matrix between Ŝ and ŜK obtained as

Qk
ı = ||Ŝk

ı − Ŝ||2, (12)

where || · ||2 denotes the vector 2-norm and where Ŝk
ı and

Ŝk
 are the ı− th and − th row of Ŝk respectively.
Assuming Ŝ is known, the minimization of (11) over P̂k

for k ∈ 1, · · · ,K, depends on Ŝk only. Therefore, the mini-
mization of (11) decouples into K independent minimizations
as follows

min
P̂k

∑
ı,

Qk
ıP̂

k
ı, (13)

subject to 
P̂k

ı

(
1− P̂k

ı

)
= 0∑

ı P̂
k
ı = 1∑

 P̂
k
ı = 1

. (14)

The optimization problem (13)-(14) is a so-called lin-
ear assignment problem, which is a well-known sub-class of
linear programming problems. The optimal solution to this
problem can be obtained using methods such as the Hungar-
ian algorithm [16] and the auction algorithm [17].

In this method, the permutation matrix of each sub-
network P̂k is locally calculated within the sub-network,
i.e. there is no cooperation between the sub-networks in the
matching step.

3.2. Consensus step
In the consensus step, we update Ŝ assuming P̂k is available
in all sub-networks.

Since the loss function (9) is convex, Ŝ is obtained by
setting the derivative of the loss function (9) with respect to Ŝ
to 0, i.e.

−
K∑

k=1

(P̂k)′Ŝk − (P̂k)′P̂k︸ ︷︷ ︸
I

Ŝ

 = 0. (15)

Since (P̂k)′P̂k = I, we obtain Ŝ as

Ŝ =
1

K

K∑
k=1

S̃k (16)

S̃k = (P̂k)′Ŝk. (17)



As (16) implies, the estimation of Ŝ results in an average
of S̃k over all sub-networks. We can calculate this averaging
in a distributed fashion using a consensus averaging protocol
as explained in [18]. It is noted that unlike the matching step
which is performed locally in each sub-network, the consen-
sus step is performed by a cooperation of all sub-networks in
a distributed fashion.
Remark 3: In the consensus step, Ŝ is obtained by coop-
eration of all sub-networks in the WASN. Estimation of Ŝ
yields a network-wide consensus on the energy signatures of
the sources. The consented signatures will generally have a
better estimation accuracy when compared to the initial per-
sub-network estimates. This is an advantage when these sig-
natures are further exploited in the processing pipeline, e.g.,
to perform VAD.
Remark 4: The cost function (9) monotonically decreases in
each iteration of the CM algorithm and in all experiments we
have carried out, the algorithm was observed to converge.

3.3. Labelling
After convergence of the CM algorithm, we label the sources
according to the network-wide consensus signatures such that
all sub-network signatures assigned to the first row of Ŝ are
labelled as 1, all sub-network signatures assigned to the sec-
ond row of Ŝ are labelled as 2, etc.

4. VALIDATION

In this section, the accuracy of the proposed CM algorithm is
investigated. The accuracy of the CM algorithm is measured
using the labelling error rate calculated as

Elbl =

∑K
k=1 ||Pk − P̂k||2F

2NK
× 100, (18)

where Pk is the permutation matrix obtained by matching the
signatures estimated in k-th sub-network with respect to true
energy signatures S.

4.1. Experimental Setup

A 20m × 10m × 5m room with a reflection coefficient of
0.3 at all the walls containing three sources is simulated us-
ing the image method [19, 20]. We consider the network de-
picted in Fig. 1, which consists of 20 nodes clustered in three
sub-networks. Each node is equipped with three microphones
with a sampling frequency of fs = 16kHz. An uncorrelated
additive white Gaussian noise is present in each microphone.
The energy of the signals is computed over frames of size
L = 480.

The CM algorithm is compared with the benchmark
method of [4], which is also based on energy signatures,
and which is here referred to as k-means.

4.2. Results
Table 1 lists the error rate of the source labelling for different
levels of noise variance. The results show that the CM algo-
rithm labels the sources without any error when the variance

Fig. 1. A WASN of 20 nodes observing 3 speech sources.
This network is clustered into three sub-networks.

Table 1. The error rate of the source labelling using the k-
means and CM algorithms (%).

Noise Variance k-means CM
0 11 0

0.01 22 0
0.05 33 0
0.1 56 11
0.5 78 11

of the noise is small and that the error rate increases with the
variance of the noise. Table 1 also shows that the CM algo-
rithm is more accurate than the k-means.

Table 2 summarizes the root mean square error (RMSE)
of the energy signature estimation for the network-wide con-
sented signatures obtained using the CM algorithm and the
signatures obtained using NPCA locally at sub-networks 1, 2
and 3 (C1, C2 and C3). The results of this table show that
the RMSE of the consented signatures is smaller than that of
each local estimate and hence show the benefit of the applied
cooperation between the sub-networks.

5. CONCLUSIONS

A new method for distributed labelling of audio sources in
wireless acoustic sensor networks (WASN) has been pro-
posed in this paper. This method uses a hierarchical approach
in which first a network clustering algorithm is performed,
where in each sub-network, the energy patterns of the sources
are estimated using a non-negative principal component anal-
ysis (NPCA). Finally the source labels are obtained by an
iterative matching algorithm, which performs a consensus
step and a matching step in each iteration. In the consensus
step, a network-wide consensus is obtained about the sig-
nature of the sources. In the matching step, the signatures
of each sub-network are labelled according to the consented
signature.



Table 2. The estimation error of the network-wide consented
signatures and the signatures estimated in each sub-network
locally.

Noise Variance Consented C1 C2 C3
0 8.14 9.69 13.35 11.1

0.01 8.15 9.64 13.43 11.03
0.05 8.17 9.66 13.37 11.01
0.1 8.14 9.85 13.45 13.34
0.5 8.18 9.91 13.05 10.10
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